Researcher receives $1.2 million to create real-time seismic imaging system

This is Dr. WenZhan Song. -  Georgia State University
This is Dr. WenZhan Song. – Georgia State University

Dr. WenZhan Song, a professor in the Department of Computer Science at Georgia State University, has received a four-year, $1.2 million grant from the National Science Foundation to create a real-time seismic imaging system using ambient noise.

This imaging system for shallow earth structures could be used to study and monitor the sustainability of the subsurface, or area below the surface, and potential hazards of geological structures. Song and his collaborators, Yao Xie of the Georgia Institute of Technology and Fan-Chi Lin of the University of Utah, will use ambient noise to image the subsurface of geysers in Yellowstone National Park.

“This project is basically imaging what’s underground in a situation where there’s no active source, like an earthquake. We’re using background noise,” Song said. “At Yellowstone, for instance, people visit there and cars drive by. All that could generate signals that are penetrating through the ground. We essentially use that type of information to tap into a very weak signal to infer the image of underground. This is very frontier technology today.”

The system will be made up of a large network of wireless sensors that can perform in-network computing of 3-D images of the shallow earth structure that are based solely on ambient noise.

Real-time ambient noise seismic imaging technology could also inform homeowners if the subsurface below their home, which can change over time, is stable or will sink beneath them.

This technology can also be used in circumstances that don’t need to rely on ambient noise but have an active source that produces signals that can be detected by wireless sensors. It could be used for real-time monitoring and developing early warning systems for natural hazards, such as volcanoes, by determining how close magma is to the surface. It could also benefit oil exploration, which uses methods such as hydrofracturing, in which high-pressure water breaks rocks and allows natural gas to flow more freely from underground.

“As they do that, it’s critical to monitor that in real time so you can know what’s going on under the ground and not cause damage,” Song said. “It’s a very promising technology, and we’re helping this industry reduce costs significantly because previously they only knew what was going on under the subsurface many days and even months later. We could reduce this to seconds.”

Until now, data from oil exploration instruments had to be manually retrieved and uploaded into a centralized database, and it could take days or months to process and analyze the data.

The research team plans to have a field demonstration of the system in Yellowstone and image the subsurface of some of the park’s geysers. The results will be shared with Yellowstone management, rangers and staff. Yellowstone, a popular tourist attraction, is a big volcano that has been dormant for a long time, but scientists are concerned it could one day pose potential hazards.

In the past several years, Song has been developing a Real-time In-situ Seismic Imaging (RISI) system using active sources, under the support of another $1.8 million NSF grant. His lab has built a RISI system prototype that is ready for deployment. The RISI system can be implemented as a general field instrumentation platform for various geophysical imaging applications and incorporate new geophysical data processing and imaging algorithms.

The RISI system can be applied to a wide range of geophysical exploration topics, such as hydrothermal circulation, oil exploration, mining safety and mining resource monitoring, to monitor the uncertainty inherent to the exploration and production process, reduce operation costs and mitigate the environmental risks. The business and social impact is broad and significant. Song is seeking business investors and partners to commercialize this technology.

###

For more information about the project, visit http://sensorweb.cs.gsu.edu/?q=ANSI.

2015 DOE JGI’s science portfolio delves deeper into the Earth’s data mine

The U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science user facility, has announced that 32 new projects have been selected for the 2015 Community Science Program (CSP). From sampling Antarctic lakes to Caribbean waters, and from plant root micro-ecosystems, to the subsurface underneath the water table in forested watersheds, the CSP 2015 projects portfolio highlights diverse environments where DOE mission-relevant science can be extracted.

“These projects catalyze JGI’s strategic shift in emphasis from solving an organism’s genome sequence to enabling an understanding of what this information enables organisms to do,” said Jim Bristow, DOE JGI Science Deputy who oversees the CSP. “To accomplish this, the projects selected combine DNA sequencing with large-scale experimental and computational capabilities, and in some cases include JGI’s new capability to write DNA in addition to reading it. These projects will expand research communities, and help to meet the DOE JGI imperative to translate sequence to function and ultimately into solutions for major energy and environmental problems.”

The CSP 2015 projects were selected by an external review panel from 76 full proposals received that resulted from 85 letters of intent submitted. The total allocation for the CSP 2015 portfolio is expected to exceed 60 trillion bases (terabases or Tb)-or the equivalent of 20,000 human genomes of plant, fungal and microbial genome sequences. The full list of projects may be found at http://jgi.doe.gov/our-projects/csp-plans/fy-2015-csp-plans/. The DOE JGI Community Science Program also accepts proposals for smaller-scale microbial, resequencing and DNA synthesis projects and reviews them twice a year. The CSP advances projects that harness DOE JGI’s capability in massive-scale DNA sequencing, analysis and synthesis in support of the DOE missions in alternative energy, global carbon cycling, and biogeochemistry.

Among the CSP 2015 projects selected is one from Regina Lamendella of Juniata College, who will investigate how microbial communities in Marcellus shale, the country’s largest shale gas field, respond to hydraulic fracturing and natural gas extraction. For example, as fracking uses chemicals, researchers are interested in how the microbial communities can break down environmental contaminants, and how they respond to the release of methane during oil extraction operations.

Some 1,500 miles south from those gas extraction sites, Monica Medina-Munoz of Penn State University will study the effect of thermal stress on the Caribbean coral Orbicella faveolata and the metabolic contribution of its coral host Symbiodinium. The calcium carbonate in coral reefs acts as carbon sinks, but reef health depends on microbial communities. If the photosynthetic symbionts are removed from the coral host, for example, the corals can die and calcification rates decrease. Understanding how to maintain stability in the coral-microbiome community can provide information on the coral’s contribution to the global ocean carbon cycle.

Longtime DOE JGI collaborator Jill Banfield of the University of California (UC), Berkeley is profiling the diversity of microbial communities found in the subsurface from the Rifle aquifer adjacent to the Colorado River. The subsurface is a massive, yet poorly understood, repository of organic carbon as well as greenhouse gases. Another research question, based on having the microbial populations close to both the water table and the river, is how they impact carbon, nitrogen and sulfur cycles. Her project is part of the first coordinated attempt to quantify the metabolic potential of an entire subsurface ecosystem under the aegis of the Lawrence Berkeley National Laboratory’s Subsurface Biogeochemistry Scientific Focus Area.

Banfield also successfully competed for a second CSP project to characterize the tree-root microbial interactions that occur below the soil mantle in the unsaturated zone or vadose zone, which extends into unweathered bedrock. The project’s goal is to understand how microbial communities this deep underground influence tree-based carbon fixation in forested watersheds by the Eel River in northwestern California.

Several fungal projects were selected for the 2015 CSP portfolio, including one led by Kabir Peay of Stanford University. He and his colleagues will study how fungal communities in animal feces decompose organic matter. His project has a stated end goal of developing a model system that emulates the ecosystem at Point Reyes National Seashore, where Tule elk are the largest native herbivores.

Another selected fungal project comes from Timothy James of University of Michigan, who will explore the so-called “dark matter fungi” – those not represented in culture collections. By sequencing several dozen species of unculturable zoosporic fungi from freshwater, soils and animal feces, he and his colleagues hope to develop a kingdom-wide fungal phylogenetic framework.

Christian Wurzbacher of Germany’s the Leibniz Institute of Freshwater Ecology and Inland Fisheries, IGB, will characterize fungi from the deep sea to peatlands to freshwater streams to understand the potentially novel adaptations that are necessary to thrive in their aquatic environments. The genomic information would provide information on their metabolic capabilities for breaking down cellulose, lignin and other plant cell wall components, and animal polymers such as keratin and chitin.

Many of the selected projects focus on DOE JGI Flagship Plant Genomes, with most centered on the poplar (Populus trichocarpa.) For example, longtime DOE JGI collaborator Steve DiFazio of West Virginia University is interested in poplar but will study its reproductive development with the help of a close relative, the willow (Salix purpurea). With its shorter generation time, the plant is a good model system and comparator for understanding sex determination, which can help bioenergy crop breeders by, for example, either accelerating or preventing flowering.

Another project comes from Posy Busby of the University of Washington, who will study the interactions between the poplar tree and its fungal, non-pathogenic symbionts or endophytes. As disease-causing pathogens interact with endophytes in leaves, he noted in his proposal, understanding the roles and functions of endophytes could prove useful to meeting future fuel and food requirements.

Along the lines of poplar endophytes, Carolin Frank at UC Merced will investigate the nitrogen-fixing endophytes in poplar, willow, and pine, with the aim of improving growth in grasses and agricultural crops under nutrient-poor conditions.

Rotem Sorek from the Weizmann Institute of Science in Israel takes a different approach starting from the hypothesis that poplar trees have an adaptive immunity system rooted in genome-encoded immune memory. Through deep sequencing of tissues from single poplar trees (some over a century old, others younger) his team hopes to gain insights into the tree genome’s short-term evolution and how its gene expression profiles change over time, as well as to predict how trees might respond under various climate change scenarios.

Tackling a different DOE JGI Flagship Plant Genome, Debbie Laudencia-Chingcuangco of the USDA-ARS will develop a genome-wide collection of several thousand mutants of the model grass Brachypodium distachyon to help domesticate the grasses that are being considered as candidate bioenergy feedstocks. This work is being done in collaboration with researchers at the Great Lakes Bioenergy Research Center, as the team there considers Brachypodium “critical to achieving its mission of developing productive energy crops that can be easily processed into fuels.”

Continuing the theme of candidate bioenergy grasses, Kankshita Swaminathan from the University of Illinois will study gene expression in polyploidy grasses Miscanthus and sugarcane, comparing them against the closely related diploid grass sorghum to understand how these plants recycle nutrients.

Baohong Zhang of East Carolina University also focused on a bioenergy grass, and his project will look at the microRNAs in switchgrass. These regulatory molecules are each just a couple dozen nucleotides in length and can downregulate (decrease the quantity of) a cellular component. With a library of these small transcripts, he and his team hope to identify the gene expression variation associated with desirable biofuel traits in switchgrass such as increased biomass and responses to drought and salinity stressors.

Nitin Baliga of the Institute of Systems Biology will use DOE JGI genome sequences to build a working model of the networks that regulate lipid accumulation in Chlamydomonas reinhardtii, still another DOE JGI Plant Flagship Genome and a model for characterizing biofuel production by algae.

Other accepted projects include:

The study of the genomes of 32 fungi of the Agaricales order, including 16 fungi to be sequenced for the first time, will be carried out by Jose Maria Barrasa of Spain’s University of Alcala. While many of the basidiomycete fungi involved in wood degradation that have been sequenced are from the Polyporales, he noted in his proposal, many of the fungi involved in breaking down leaf litter and buried wood are from the order Agaricales.

Now at the University of Connecticut, Jonathan Klassen conducted postdoctoral studies at GLBRC researcher Cameron Currie’s lab at University of Wisconsin-Madison. His project will study interactions in ant-microbial community fungus gardens in three states to learn more about how the associated bacterial metagenomes contribute to carbon and nitrogen cycling.

Hinsby Cadillo-Quiroz, at Arizona State University, will conduct a study of the microbial communities in the Amazon peatlands to understand their roles in both emitting greenhouse gases and in storing and cycling carbon. The peatlands are hotspots of soil organic carbon accumulation, and in the tropical regions, they are estimated to hold between 11 percent and 14 percent, or nearly 90 gigatons, of the global carbon stored in soils.

Barbara Campbell, Clemson University will study carbon cycling mechanisms of active bacteria and associated viruses in the freshwater to marine transition zone of the Delaware Bay. Understanding the microbes’ metabolism would help researchers understand they capabilities with regard to dealing with contaminants, and their roles in the nitrogen, sulfur and carbon cycles.

Jim Fredrickson of Pacific Northwest National Laboratory will characterize functional profiles of microbial mats in California, Washington and Yellowstone National Park to understand various functions such as how they produce hydrogen and methane, and break down cellulose.

Joyce Loper of USDA-ARS will carry out a comparative analysis of all Pseudomonas bacteria getting from DOE JGI the sequences of just over 100 type strains to infer a evolutionary history of the this genus — a phylogeny — to characterize the genomic diversity, and determine the distribution of genes linked to key observable traits in this non-uniform group of bacteria.

Holly Simon of Oregon Health & Science University is studying microbial populations in the Columbia River estuary, in part to learn how they enhance greenhouse gas CO2 methane and nitrous oxide production.

Michael Thon from Spain’s University of Salamanca will explore sequences of strains of the Colletotrichum species complex, which include fungal pathogens that infect many crops. One of the questions he and his team will ask is how these fungal strains have adapted to break down the range of plant cell wall compositions.

Kathleen Treseder of UC Irvine will study genes involved in sensitivity to higher temperatures in fungi from a warming experiment in an Alaskan boreal forest. The team’s plan is to fold the genomic information gained into a trait-based ecosystem model called DEMENT to predict carbon dioxide emissions under global warming.

Mary Wildermuth of UC Berkeley will study nearly a dozen genomes of powdery mildew fungi, including three that infect designated bioenergy crops. The project will identify the mechanisms by which the fungi successfully infect plants, information that could lead to the development of crops with improved resistance to fungal infection and limiting fungicide use to allow more sustainable agricultural practices.

Several researchers who have previously collaborated with the DOE JGI have new projects:

Ludmila Chistoserdova from the University of Washington had a pioneering collaboration with the DOE JGI to study microbial communities in Lake Washington. In her new project, she and her team will look at the microbes in the Lake Washington sediment to understand their role in metabolizing the potent greenhouse gas methane.

Rick Cavicchioli of Australia’s University of New South Wales will track how microbial communities change throughout a complete annual cycle in three millennia-old Antarctic lakes and a near-shore marine site. By establishing what the microbes do in different seasons, he noted in his proposal, he and his colleagues hope to learn which microbial processes change and about the factors that control the evolution and speciation of marine-derived communities in cold environments.

With samples collected from surface waters down to the deep ocean, Steve Hallam from Canada’s University of British Columbia will explore metabolic pathways and compounds involved in marine carbon cycling processes to understand how carbon is regulated in the oceans.

The project of Hans-Peter Klenk, of DSMZ in Germany, will generate sequences of 1,000 strains of Actinobacteria, which represent the third most populated bacterial phylum and look for genes that encode cellulose-degrading enzymes or enzymes involved in synthesizing novel, natural products.

Han Wosten of the Netherlands’ Utrecht University will carry out a functional genomics approach to wood degradation by looking at Agaricomycetes, in particular the model white rot fungus Schizophyllum commune and the more potent wood-degrading white rots Phanaerochaete chrysosporium and Pleurotus ostreatus that the DOE JGI has previously sequenced.

Wen-Tso Liu of the University of Illinois and his colleagues want to understand the microbial ecology in anaerobic digesters, key components of the wastewater treatment process. They will study microbial communities in anaerobic digesters from the United States, East Asia and Europe to understand the composition and function of the microbes as they are harnessed for this low-cost municipal wastewater strategy efficiently removes waster and produces methane as a sustainable energy source.

Another project that involves wastewater, albeit indirectly, comes from Erica Young of the University of Wisconsin. She has been studying algae grown in wastewater to track how they use nitrogen and phosphorus, and how cellulose and lipids are produced. Her CSP project will characterize the relationship between the algae and the bacteria that help stabilize these algal communities, particularly the diversity of the bacterial community and the pathways and interactions involved in nutrient uptake and carbon sequestration.

Previous CSP projects and other DOE JGI collaborations are highlighted in some of the DOE JGI Annual User Meeting talks that can be seen here: http://usermeeting.jgi.doe.gov/past-speakers/. The 10th Annual Genomics of Energy and Environment Meeting will be held March 24-26, 2015 in Walnut Creek, Calif. A preliminary speakers list is posted here (http://usermeeting.jgi.doe.gov/) and registration will be opened in the first week of November.

Textbook theory behind volcanoes may be wrong

In the typical textbook picture, volcanoes, such as those that are forming the Hawaiian islands, erupt when magma gushes out as narrow jets from deep inside Earth. But that picture is wrong, according to a new study from researchers at Caltech and the University of Miami in Florida.

New seismology data are now confirming that such narrow jets don’t actually exist, says Don Anderson, the Eleanor and John R. McMillian Professor of Geophysics, Emeritus, at Caltech. In fact, he adds, basic physics doesn’t support the presence of these jets, called mantle plumes, and the new results corroborate those fundamental ideas.

“Mantle plumes have never had a sound physical or logical basis,” Anderson says. “They are akin to Rudyard Kipling’s ‘Just So Stories’ about how giraffes got their long necks.”

Anderson and James Natland, a professor emeritus of marine geology and geophysics at the University of Miami, describe their analysis online in the September 8 issue of the Proceedings of the National Academy of Sciences.

According to current mantle-plume theory, Anderson explains, heat from Earth’s core somehow generates narrow jets of hot magma that gush through the mantle and to the surface. The jets act as pipes that transfer heat from the core, and how exactly they’re created isn’t clear, he says. But they have been assumed to exist, originating near where the Earth’s core meets the mantle, almost 3,000 kilometers underground-nearly halfway to the planet’s center. The jets are theorized to be no more than about 300 kilometers wide, and when they reach the surface, they produce hot spots.

While the top of the mantle is a sort of fluid sludge, the uppermost layer is rigid rock, broken up into plates that float on the magma-bearing layers. Magma from the mantle beneath the plates bursts through the plate to create volcanoes. As the plates drift across the hot spots, a chain of volcanoes forms-such as the island chains of Hawaii and Samoa.

“Much of solid-Earth science for the past 20 years-and large amounts of money-have been spent looking for elusive narrow mantle plumes that wind their way upward through the mantle,” Anderson says.

To look for the hypothetical plumes, researchers analyze global seismic activity. Everything from big quakes to tiny tremors sends seismic waves echoing through Earth’s interior. The type of material that the waves pass through influences the properties of those waves, such as their speeds. By measuring those waves using hundreds of seismic stations installed on the surface, near places such as Hawaii, Iceland, and Yellowstone National Park, researchers can deduce whether there are narrow mantle plumes or whether volcanoes are simply created from magma that’s absorbed in the sponge-like shallower mantle.

No one has been able to detect the predicted narrow plumes, although the evidence has not been conclusive. The jets could have simply been too thin to be seen, Anderson says. Very broad features beneath the surface have been interpreted as plumes or super-plumes, but, still, they’re far too wide to be considered narrow jets.

But now, thanks in part to more seismic stations spaced closer together and improved theory, analysis of the planet’s seismology is good enough to confirm that there are no narrow mantle plumes, Anderson and Natland say. Instead, data reveal that there are large, slow, upward-moving chunks of mantle a thousand kilometers wide.

In the mantle-plume theory, Anderson explains, the heat that is transferred upward via jets is balanced by the slower downward motion of cooled, broad, uniform chunks of mantle. The behavior is similar to that of a lava lamp, in which blobs of wax are heated from below and then rise before cooling and falling. But a fundamental problem with this picture is that lava lamps require electricity, he says, and that is an outside energy source that an isolated planet like Earth does not have.

The new measurements suggest that what is really happening is just the opposite: Instead of narrow jets, there are broad upwellings, which are balanced by narrow channels of sinking material called slabs. What is driving this motion is not heat from the core, but cooling at Earth’s surface. In fact, Anderson says, the behavior is the regular mantle convection first proposed more than a century ago by Lord Kelvin. When material in the planet’s crust cools, it sinks, displacing material deeper in the mantle and forcing it upward.

“What’s new is incredibly simple: upwellings in the mantle are thousands of kilometers across,” Anderson says. The formation of volcanoes then follows from plate tectonics-the theory of how Earth’s plates move and behave. Magma, which is less dense than the surrounding mantle, rises until it reaches the bottom of the plates or fissures that run through them. Stresses in the plates, cracks, and other tectonic forces can squeeze the magma out, like how water is squeezed out of a sponge. That magma then erupts out of the surface as volcanoes. The magma comes from within the upper 200 kilometers of the mantle and not thousands of kilometers deep, as the mantle-plume theory suggests.

“This is a simple demonstration that volcanoes are the result of normal broad-scale convection and plate tectonics,” Anderson says. He calls this theory “top-down tectonics,” based on Kelvin’s initial principles of mantle convection. In this picture, the engine behind Earth’s interior processes is not heat from the core but cooling at the planet’s surface. This cooling and plate tectonics drives mantle convection, the cooling of the core, and Earth’s magnetic field. Volcanoes and cracks in the plate are simply side effects.

The results also have an important consequence for rock compositions-notably the ratios of certain isotopes, Natland says. According to the mantle-plume idea, the measured compositions derive from the mixing of material from reservoirs separated by thousands of kilometers in the upper and lower mantle. But if there are no mantle plumes, then all of that mixing must have happened within the upwellings and nearby mantle in Earth’s top 1,000 kilometers.

The paper is titled “Mantle updrafts and mechanisms of oceanic volcanism.”

Yellowstone supereruption would send ash across North America

An example of the possible distribution of ash from a month-long Yellowstone supereruption. The distribution map was generated by a new model developed by the US Geological Survey using wind information from January 2001. The improved computer model, detailed in a new study published in Geochemistry, Geophysics, Geosystems, finds that the hypothetical, large eruption would create a distinctive kind of ash cloud known as an umbrella, which expands evenly in all directions, sending ash across North America. Ash distribution will vary depending on cloud height, eruption duration, diameter of volcanic particles in the cloud, and wind conditions, according to the new study. -  Credit: USGS
An example of the possible distribution of ash from a month-long Yellowstone supereruption. The distribution map was generated by a new model developed by the US Geological Survey using wind information from January 2001. The improved computer model, detailed in a new study published in Geochemistry, Geophysics, Geosystems, finds that the hypothetical, large eruption would create a distinctive kind of ash cloud known as an umbrella, which expands evenly in all directions, sending ash across North America. Ash distribution will vary depending on cloud height, eruption duration, diameter of volcanic particles in the cloud, and wind conditions, according to the new study. – Credit: USGS

In the unlikely event of a volcanic supereruption at Yellowstone National Park, the northern Rocky Mountains would be blanketed in meters of ash, and millimeters would be deposited as far away as New York City, Los Angeles and Miami, according to a new study.

An improved computer model developed by the study’s authors finds that the hypothetical, large eruption would create a distinctive kind of ash cloud known as an umbrella, which expands evenly in all directions, sending ash across North America.

A supereruption is the largest class of volcanic eruption, during which more than 1,000 cubic kilometers (240 cubic miles) of material is ejected. If such a supereruption were to occur, which is extremely unlikely, it could shut down electronic communications and air travel throughout the continent, and alter the climate, the study notes.

A giant underground reservoir of hot and partly molten rock feeds the volcano at Yellowstone National Park. It has produced three huge eruptions about 2.1 million, 1.3 million and 640,000 years ago. Geological activity at Yellowstone shows no signs that volcanic eruptions, large or small, will occur in the near future. The most recent volcanic activity at Yellowstone-a relatively non-explosive lava flow at the Pitchstone Plateau in the southern section of the park-occurred 70,000 years ago.

Researchers at the U.S. Geological Survey used a hypothetical Yellowstone supereruption as a case study to run their new model that calculates ash distribution for eruptions of all sizes. The model, Ash3D, incorporates data on historical wind patterns to calculate the thickness of ash fall for a supereruption like the one that occurred at Yellowstone 640,000 years ago.

The new study provides the first quantitative estimates of the thickness and distribution of ash in cities around the U.S. if the Yellowstone volcanic system were to experience this type of huge, yet unlikely, eruption.

Cities close to the modeled Yellowstone supereruption could be covered by more than a meter (a few feet) of ash. There would be centimeters (a few inches) of ash in the Midwest, while cities on both coasts would see millimeters (a fraction of an inch) of accumulation, according to the new study that was published online today in Geochemistry, Geophysics, Geosystems, a journal of the American Geophysical Union. The paper has been made available at no charge at http://onlinelibrary.wiley.com/doi/10.1002/2014GC005469/abstract.

The model results help scientists understand the extremely widespread distribution of ash deposits from previous large eruptions at Yellowstone. Other USGS scientists are using the Ash3D model to forecast possible ash hazards at currently restless volcanoes in Alaska.

Unlike smaller eruptions, whose ash deposition looks roughly like a fan when viewed from above, the spreading umbrella cloud from a supereruption deposits ash in a pattern more like a bull’s eye – heavy in the center and diminishing in all directions – and is less affected by prevailing winds, according to the new model.

“In essence, the eruption makes its own winds that can overcome the prevailing westerlies, which normally dominate weather patterns in the United States,” said Larry Mastin, a geologist at the USGS Cascades Volcano Observatory in Vancouver, Washington, and the lead author of the new paper. Westerly winds blow from the west.

“This helps explain the distribution from large Yellowstone eruptions of the past, where considerable amounts of ash reached the west coast,” he added.

The three large past eruptions at Yellowstone sent ash over many tens of thousands of square kilometers (thousands of square miles). Ash deposits from these eruptions have been found throughout the central and western United States and Canada.

Erosion has made it difficult for scientists to accurately estimate ash distribution from these deposits. Previous computer models also lacked the ability to accurately determine how the ash would be transported.

Using their new model, the study’s authors found that during very large volcanic eruptions, the expansion rate of the ash cloud’s leading edge can exceed the average ambient wind speed for hours or days depending on the length of the eruption. This outward expansion is capable of driving ash more than 1,500 kilometers (932 miles) upwind – westward — and crosswind – north to south — producing a bull’s eye-like pattern centered on the eruption site.

In the simulated modern-day eruption scenario, cities within 500 kilometers (311 miles) of Yellowstone like Billings, Montana, and Casper, Wyoming, would be covered by centimeters (inches) to more than a meter (more than three feet) of ash. Upper Midwestern cities, like Minneapolis, Minnesota, and Des Moines, Iowa, would receive centimeters (inches), and those on the East and Gulf coasts, like New York and Washington, D.C. would receive millimeters or less (fractions of an inch). California cities would receive millimeters to centimeters (less than an inch to less than two inches) of ash while Pacific Northwest cities like Portland, Oregon, and Seattle, Washington, would receive up to a few centimeters (more than an inch).

Even small accumulations only millimeters or centimeters (less than an inch to an inch) thick could cause major effects around the country, including reduced traction on roads, shorted-out electrical transformers and respiratory problems, according to previous research cited in the new study. Prior research has also found that multiple inches of ash can damage buildings, block sewer and water lines, and disrupt livestock and crop production, the study notes.

The study also found that other eruptions – powerful but much smaller than a Yellowstone supereruption — might also generate an umbrella cloud.

“These model developments have greatly enhanced our ability to anticipate possible effects from both large and small eruptions, wherever they occur,” said Jacob Lowenstern, USGS Scientist-in-Charge of the Yellowstone Volcano Observatory in Menlo Park, California, and a co-author on the new paper.

Source of Galapagos eruptions is not where models place it

Birds flock not far from a volcano on Isabella Island, where two still active volcanoes are located. The location of the mantle plume, to the southeast of where computer modeling had put it, may explain the continued activity of volcanoes on the various Galapagos Islands. -  Douglas Toomey
Birds flock not far from a volcano on Isabella Island, where two still active volcanoes are located. The location of the mantle plume, to the southeast of where computer modeling had put it, may explain the continued activity of volcanoes on the various Galapagos Islands. – Douglas Toomey

Images gathered by University of Oregon scientists using seismic waves penetrating to a depth of 300 kilometers (almost 200 miles) report the discovery of an anomaly that likely is the volcanic mantle plume of the Galapagos Islands. It’s not where geologists and computer modeling had assumed.

The team’s experiments put the suspected plume at a depth of 250 kilometers (155 miles), at a location about 150 kilometers (about 100 miles) southeast of Fernandina Island, the westernmost island of the chain, and where generations of geologists and computer-generated mantle convection models have placed the plume.

The plume anomaly is consistent with partial melting, melt extraction, and remixing of hot rocks and is spreading north toward the mid-ocean ridge instead of, as projected, eastward with the migrating Nazca plate on which the island chain sits, says co-author Douglas R. Toomey, a professor in the UO’s Department of Geological Sciences.

The findings — published online Jan. 19 ahead of print in the February issue of the journal Nature Geoscience — “help explain why so many of the volcanoes in the Galapagos are active,” Toomey said.

The Galapagos chain covers roughly 3,040 square miles of ocean and is centered about 575 miles west of Ecuador, which governs the islands. Galapagos volcanic activity has been difficult to understand, Toomey said, because conventional wisdom and modeling say newer eruptions should be moving ahead of the plate, not unlike the long-migrating Yellowstone hotspot. </p

The separating angles of the two plates in the Galapagos region cloud easy understanding. The leading edge of the Nazca plate is at Fernandina. The Cocos plate, on which the islands’ some 1,000-kilometer-long (620-miles) hotspot chain once sat, is moving to the northeast.

The suspected plume’s location is closer to Isabella and Floreana islands. While a dozen volcanoes remain active in the archipelago, the three most volatile are Fernandina’s and the Cerro Azul and Sierra Negra volcanoes on the southwest and southeast tips, respectively, of Isabella Island, the archipelago’s largest landmass.

The plume’s more southern location, Toomey said, adds fuel to his group’s findings, at three different sites along the globe encircling mid-ocean ridge (where 85 percent of Earth’s volcanic activity occurs), that Earth’s internal convection doesn’t always adhere to modeling efforts and raises new questions about how ocean plates at the Earth’s surface — the lithosphere — interact with the hotter, more fluid asthenosphere that sits atop the mantle.

“Ocean islands have always been enigmatic,” said co-author Dennis J. Geist of the Department of Geological Sciences at the University of Idaho. “Why out in the middle of the ocean basins do you get these big volcanoes? The Galapagos, Hawaii, Tahiti, Iceland — all the world’s great ocean islands – they’re mysterious.”

The Galapagos plume, according to the new paper, extends up into shallower depths and tracks northward and perpendicular to plate motion. Mantle plumes, such as the Galapagos, Yellowstone and Hawaii, generally are believed to bend in the direction of plate migration. In the Galapagos, however, the volcanic plume has decoupled from the plates involved.

“Here’s an archipelago of volcanic islands that are broadly active over a large region, and the plume is almost decoupled from the plate motion itself,” Toomey said. “It is going opposite than expected, and we don’t know why.”

The answer may be in the still unknown rheology of the gooey asthenosphere on which the Earth’s plates ride, Toomey said. In their conclusion, the paper’s five co-authors theorize that the plume material is carried to the mid-ocean ridge by a deep return flow centered in the asthenosphere rather than flowing along the base of the lithosphere as in modeling projections.

“Researchers at the University of Oregon are using tools and technologies to yield critical insights into complex scientific questions,” said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. “This research by Dr. Toomey and his team sheds new light on the volcanic activity of the Galapagos Islands and raises new questions about plate tectonics and the interaction between the zones of the Earth’s mantle.”

Co-authors with Toomey and Geist were: doctoral student Darwin R. Villagomez, now with ID Analytics in San Diego, Calif.; Emilie E.E. Hooft of the UO Department of Geological Sciences; and Sean C. Solomon of the Lamont-Doherty Earth Observatory at Columbia University.

The National Science Foundation (grants OCE-9908695, OCE-0221549 and EAR-0651123 to the UO; OCE-0221634 to the Carnegie Institution of Washington and EAR-11452711 to the University of Idaho) supported the research.

Supervolcanoes discovered in Utah

Brigham Young University geologists found evidence of some of the largest volcanic eruptions in earth’s history right in their own backyard.

These supervolcanoes aren’t active today, but 30 million years ago more than 5,500 cubic kilometers of magma erupted during a one-week period near a place called Wah Wah Springs. By comparison, this eruption was about 5,000 times larger than the 1980 Mount St. Helens eruption.

“In southern Utah, deposits from this single eruption are 13,000 feet thick,” said Eric Christiansen, the lead author for the BYU study. “Imagine the devastation – it would have been catastrophic to anything living within hundreds of miles.”

Dinosaurs were already extinct during this time period, but what many people don’t know is that 25-30 million years ago, North America was home to rhinos, camels, tortoises and even palm trees. Evidence of the ancient flora and fauna was preserved by volcanic deposits.

The research group, headed by Christiansen and professor emeritus Myron Best, measured the thickness of the pyroclastic flow deposits. They used radiometric dating, X-ray fluorescence spectrometry, and chemical analysis of the minerals to verify that the volcanic ash was all from the same ancient super-eruption.

They found that the Wah Wah Springs eruption buried a vast region extending from central Utah to central Nevada and from Fillmore on the north to Cedar City on the south. They even found traces of ash as far away as Nebraska.

But this wasn’t an isolated event; the BYU geologists found evidence of fifteen super-eruptions and twenty large calderas. The scientific journal Geosphere recently published two of their papers detailing the discoveries.

Despite their enormous size, the supervolcanoes have been hidden in plain sight for millions of years.

“The ravages of erosion and later deformation have largely erased them from the landscape, but our careful work has revealed their details,” said Christiansen. “The sheer magnitude of this required years of work and involvement of dozens of students in putting this story together.”

Supervolcanoes are different from the more familiar “straddle” volcanoes – like Mount St. Helens – because they aren’t as obvious to the naked eye and they affect enormous areas.

“Supervolcanoes as we’ve seen are some of earth’s largest volcanic edifices, and yet they don’t stand as high cones,” said Christiansen. “At the heart of a supervolcano instead, is a large collapse.”

Those collapses in supervolcanoes occur with the eruption and form enormous holes in the ground in plateaus, known as calderas.

Not many people know that there are still active supervolcanoes today. Yellowstone National Park in Wyoming is home to one roughly the same size as the Wah Wah Springs caldera, which was about 25 miles across and 3 miles deep when it first formed.

Could the Colorado River once have flowed into the Labrador Sea?

A figure stands on Esplanade surface opposite Vulcan's Throne volcano, Grand Canyon, USA. Photo by J.W. Sears. -  Photo by James W. Sears
A figure stands on Esplanade surface opposite Vulcan’s Throne volcano, Grand Canyon, USA. Photo by J.W. Sears. – Photo by James W. Sears

In the November issue of GSA Today, James W. Sears of the University of Montana in Missoula advocates a possible Canadian connection for the early Miocene Grand Canyon by arguing for the existence of a “super-river” traceable from headwaters in the southern Colorado Plateau through a proto-Grand Canyon to a delta in the Labrador Sea.

Sears proposes that the river flowed first toward the southwest corner of the Colorado Plateau, and then, in a shift initiated by uplift of the Rio Grande Rift, turned north into Paleogene rifts in the vicinity of Lake Mead. He posits that it then followed northeast-trending grabens across the Idaho and Montana Rockies to the Great Plains and joined the pre-ice age “Bell River” of Canada, which discharged into a massive delta in the Saglek basin of the Labrador Sea.

In this scenario, tectonic faulting beginning 16 million years ago dammed the Miocene Grand Canyon, creating a large lake that existed up to six million years ago. Then volcanism, including the action of the Yellowstone hotspot, cut the river off in Idaho about six million years ago, leading to the eventual capture of the Colorado River by the Gulf of California.

Crystals in Picabo’s rocks point to ‘recycled’ super-volcanic magma chambers

University of Oregon geologist Ilya Bindeman, left, and graduate student Dana Drew, working in Bindeman's stable isotope laboratory say that the composition of zircon bits in igneous rocks in the Yellowstone hotspot track tell a new story on how super volcanoes recycle magma. -  University of Oregon
University of Oregon geologist Ilya Bindeman, left, and graduate student Dana Drew, working in Bindeman’s stable isotope laboratory say that the composition of zircon bits in igneous rocks in the Yellowstone hotspot track tell a new story on how super volcanoes recycle magma. – University of Oregon

A thorough examination of tiny crystals of zircon, a mineral found in rhyolites, an igneous rock, from the Snake River Plain has solidified evidence for a new way of looking at the life cycle of super-volcanic eruptions in the long track of the Yellowstone hotspot, say University of Oregon scientists.

The pattern emerging from new and previous research completed in the last five years under a National Science Foundation career award, said UO geologist Ilya N. Bindeman, is that another super-eruption from the still-alive Yellowstone volcanic field is less likely for the next few million years than previously thought (see related story, “Not in a million years, says Oregon geologist about Yellowstone eruption“). The last eruption 640,000 years ago created the Yellowstone Caldera and the Lava Creek Tuff in what is now Yellowstone National Park.

The Yellowstone hotspot creates a conveyor belt style of volcanism because of the southwest migration of the North American plate at 2-4 centimeters (about .8 to 1.6 inches) annually over the last 16 million years of volcanism. Due to the movement of the North American plate, the plume interaction with the crust leaves footprints in the form of caldera clusters, in what is now the Snake River Plain, Bindeman said.

The Picabo volcanic field of southern Idaho, described in a new paper by a six-member team, was active between 10.4 and 6.6 million years ago and experienced at least three, and maybe as many as six, violent caldera-forming eruptions. The field has been difficult to assess, said lead author Dana Drew, a UO graduate student, because the calderas have been buried by as much as two kilometers of basalt since its eruption cycle died.

The work at Picabo is detailed in a paper online ahead of publication in the journal Earth and Planetary Science Letters.

The team theorized that basalt from the mantle plume, rocks from Earth’s crust and previously erupted volcanoes are melted together to form the rhyolites erupted in the Snake River Plain. Before each eruption, rhyolite magma is stored in dispersed pockets throughout the upper crust, which are later mixed together, according to geochemical evidence. “We think that this batch-assembly process is an important part of caldera-forming eruptions, and generating rhyolites in general,” Drew said.

In reaching their conclusions, Drew and colleagues analyzed radiogenic and stable isotopic data — specifically oxygen and hafnium — in zircons detected in rhyolites found at the margins of the Picabo field and from a deep borehole. That data, in combination with whole rock geochemistry and zircon uranium-lead geochronology helped provide a framework to understand the region’s ancient volcanic past.

Previous research on the related Heise volcanic field east of Picabo yielded similar results. “There is a growing database of the geochemistry of rhyolites in the Yellowstone hotspot track,” Drew said. “Adding Picabo provides a missing link in the database.

Drew and colleagues, through their oxygen isotope analyses, identified a wide diversity of oxygen ratios occurring in erupted zircons near the end of the Picabo volcanic cycle. Such oxygen ratios are referred to as delta-O-18 signatures based on oxygen 18 levels relative to seawater. (Oxygen 18 contains eight protons and 10 neutrons; Oxygen 16, with eight protons and eight neutrons, is the most commonly found form of oxygen in nature)

The approach provided a glimpse into the connection of surface and subsurface processes at a caldera cluster. The interaction of erupted rhyolite with groundwater and surface water causes hydrothermal alteration and the change in oxygen isotopes, thereby providing a fingerprinting tool for the level of hydrothermal alteration, Drew said.

“Through the eruptive sequence, we begin to generate lower delta-O-18 signatures of the magmas and, with that, we also see a more diverse signature,” Drew said. “By the time of the final eruption there is up to five per mil diversity in the signature recorded in the zircons.” The team attributes these signatures to the mixing of diverse magma batches dispersed in the upper crust, which were formed by melting variably hydrothermally altered rocks — thus diverse delta-O-18 — after repeated formation of calderas and regional extension or stretching of the crust.

When the pockets of melt are rapidly assembled, the process could be the trigger for caldera forming eruptions, Bindeman said. “That leads to a homogenized magma, but in a way that preserves these zircons of different signatures from the individual pockets of melt,” he said. This research, he added, highlights the importance of using new micro-analytical isotopic techniques to relate geochemistry at the crystal-scale to processes occurring at the crustal-wide scale in generating and predicting large-volume rhyolitic eruptions.

“This important research by Dr. Bindeman and his team demonstrates the enormous impact an NSF CAREER award can have,” said Kimberly Andrews Espy, vice president for research and innovation and dean of the graduate school at the University of Oregon. “The five-year project is providing new insights into the eruption cycles of the Yellowstone hotspot and helping scientists to better predict future volcanic activity.”

Supervolcanic ash can turn to lava miles from eruption, scientists find

Evidence of flowing lava hardened into rock was found in Idaho several miles away from the site of an eight million year old supervolcano eruption at Yellowstone. -  Graham Andrews, assistant professor at California State University Bakersfield
Evidence of flowing lava hardened into rock was found in Idaho several miles away from the site of an eight million year old supervolcano eruption at Yellowstone. – Graham Andrews, assistant professor at California State University Bakersfield

Supervolcanoes, such as the one sitting dormant under Yellowstone National Park, are capable of producing eruptions thousands of times more powerful than normal volcanic eruptions. While they only happen every several thousand years, these eruptions have the potential to kill millions of people and animals due to the massive amount of heat and ash they release into the atmosphere. Now, researchers at the University of Missouri have shown that the ash produced by supervolcanoes can be so hot that it has the ability to turn back into lava once it hits the ground tens of miles away from the original eruption.

Following a volcanic eruption, lava typically flows directly from the site of the eruption until it cools enough that it hardens in place. However, researchers found evidence of an ancient lava flow tens of miles away from a supervolcano eruption near Yellowstone that occurred around 8 million years ago. Previously, Graham Andrews, an assistant professor at California State University Bakersfield, found that this lava flow was made of ash ejected during the eruption. Following Andrew’s discovery, Alan Whittington, an associate professor in the University of Missouri department of geological sciences in the College of Arts and Science, along with lead author Genevieve Robert and Jiyang Ye, both doctoral students in the geological sciences department, determined how this was possible.

“During a supervolcano eruption, pyroclastic flows, which are giant clouds of very hot ash and rock, travel away from the volcano at typically a hundred miles an hour,” Robert said. “We determined the ash must have been exceptionally hot so that it could actually turn into lava and flow before it eventually cooled.”

Because the ash should have cooled too much in the air to turn into lava right as it landed, the researchers believe the phenomenon was made possible by a process known as “viscous heating.” Viscosity is the degree to which a liquid resists flow. The higher the viscosity, the less the substance can flow. For example, water has a very low viscosity, so it flows very easily, while molasses has a higher viscosity and flows much slower. Whittington likens the process of viscous heating to stirring a pot of molasses.

“It is very hard to stir a pot of molasses and you have to use a lot of energy and strength to move your spoon around the pot,” Whittington said. “However, once you get the pot stirring, the energy you are using to move the spoon is transferred into the molasses, which actually heats up a little bit. This is viscous heating. So when you think about how fast the hot ash is traveling after a massive supervolcano eruption, once it hits the ground that energy is turned into heat, much like the energy from the spoon heating up the molasses. This extra heat created by viscous heating is enough to cause the ash to weld together and actually begin flowing as lava.”

The volcanic ash from this eruption has to be at least 1,500 degrees Fahrenheit to turn into lava; however, since the ash should have lost some of that heat in the air, the researchers believe viscous heating accounted for 200 to 400 degrees Fahrenheit of additional heating to turn the ash into lava.

Molten magma can survive in upper crust for hundreds of millennia

The formations in the Grand Canyon of the Yellowstone, in Yellowstone National Park, are an example of  silica-rich volcanic rock. -  Sarah Gelman/University of Washington
The formations in the Grand Canyon of the Yellowstone, in Yellowstone National Park, are an example of silica-rich volcanic rock. – Sarah Gelman/University of Washington

Reservoirs of silica-rich magma – the kind that causes the most explosive volcanic eruptions – can persist in Earth’s upper crust for hundreds of thousands of years without triggering an eruption, according to new University of Washington modeling research.

That means an area known to have experienced a massive volcanic eruption in the past, such as Yellowstone National Park, could have a large pool of magma festering beneath it and still not be close to going off as it did 600,000 years ago.

“You might expect to see a stewing magma chamber for a long period of time and it doesn’t necessarily mean an eruption is imminent,” said Sarah Gelman, a UW doctoral student in Earth and space sciences.

Recent research models have suggested that reservoirs of silica-rich magma, or molten rock, form on and survive for geologically short time scales – in the tens of thousands of years – in the Earth’s cold upper crust before they solidify. They also suggested that the magma had to be injected into the Earth’s crust at a high rate to reach a large enough volume and pressure to cause an eruption.

But Gelman and her collaborators took the models further, incorporating changes in the crystallization behavior of silica-rich magma in the upper crust and temperature-dependent heat conductivity. They found that the magma could accumulate more slowly and remain molten for a much longer period than the models previously suggested.

Gelman is the lead author of a paper explaining the research published in the July edition of Geology. Co-authors are Francisco GutiƩrrez, a former UW doctoral student now with Universidad de Chile in Santiago, and Olivier Bachmann, a former UW faculty member now with the Swiss Federal Institute of Technology in Zurich.

There are two different kinds of magma and their relationship to one another is unclear. Plutonic magma freezes in the Earth’s crust and never erupts, but rather becomes a craggy granite formation like those commonly seen in Yosemite National Park. Volcanic magma is associated with eruptions, whether continuous “oozing” types of eruption such as Hawaii’s Kilauea Volcano or more explosive eruptions such as Mount Pinatubo in the Philippines or Mount St. Helens in Washington state.

Some scientists have suggested that plutonic formations are what remain in the crust after major eruptions eject volcanic material. Gelman believes it is possible that magma chambers in the Earth’s crust could consist of a core of partially molten material feeding volcanoes surrounded by more crystalline regions that ultimately turn into plutonic rock. It is also possible the two rock types develop independently, but those questions remain to be answered, she said.

The new work suggests that molten magma reservoirs in the crust can persist for far longer than some scientists believe. Silica content is a way of judging how the magma has been affected by being in the crust, Gelman said. As the magma is forced up a column from lower in the Earth to the crust, it begins to crystallize. Crystals start to drop out as the magma moves higher, leaving the remaining molten rock with higher silica content.

“These time scales are in the hundreds of thousands, even up to a million, years and these chambers can sit there for that long,” she said.

Even if the molten magma begins to solidify before it erupts, that is a long process, she added. As the magma cools, more crystals form giving the rock a kind of mushy consistency. It is still molten and capable of erupting, but it will behave differently than magma that is much hotter and has fewer crystals.

The implications are significant for volcanic “arcs,” found near subduction zones where one of Earth’s tectonic plates is diving beneath another. Arcs are found in various parts of the world, including the Andes Mountains of South America and the Cascades Range of the Pacific Northwest.

Scientists have developed techniques to detect magma pools beneath these arcs, but they cannot determine how long the reservoirs have been there. Because volcanic magma becomes more silica-rich with time, its explosive potential increases.

“If you see melt in an area, it’s important to know how long that melt has been around to determine whether there is eruptive potential or not,” Gelman said. “If you image it today, does that mean it could not have been there 300,000 years ago? Previous models have said it couldn’t have been. Our model says it could. That doesn’t mean it was there, but it could have been there.”