Antarctica: Heat comes from the deep

The Antarctic ice sheet is a giant water reservoir. The ice cap on the southern continent is on average 2,100 meters thick and contains about 70 percent of the world’s fresh water. If this ice mass were to melt completely, it could raise the global sea level by 60 meters. Therefore scientists carefully observe changes in the Antarctic. In the renowned international journal Science, researchers from Germany, the UK, the US and Japan are now publishing data according to which water temperatures, in particular on the shallow shelf seas of West Antarctica, are rising. “There are many large glaciers in the area. The elevated temperatures have accelerated the melting and sliding of these glaciers in recent decades and there are no indications that this trend is changing,” says the lead author of the study, Dr. Sunke Schmidtko from GEOMAR Helmholtz Centre for Ocean Research Kiel.

For their study, he and his colleagues of the University of East Anglia, the California Institute of Technology and the University of Hokkaido (Japan) evaluated all oceanographic data from the waters around Antarctica from 1960 to 2014 that were available in public databases. These data show that five decades ago, the water masses in the West Antarctic shelf seas were already warmer than in other parts of Antarctica, for example, in the Weddell Sea. However, the temperature difference is not constant. Since 1960, the temperatures in the West Antarctic Amundsen Sea and the Bellingshausen Sea have been rising. “Based on the data we were able to see that this shelf process is induced from the open ocean,” says Dr. Schmidtko.

Around Antarctica in greater depth along the continental slope water masses with temperatures from 0.5 to 1.5°C (33-35°F) are predominant. These temperatures are very warm for Antarctic conditions. “These waters have warmed in West Antarctica over the past 50 years. And they are significant shallower than 50 years ago,” says Schmidtko. Especially in the Amundsen Sea and Bellingshausen Sea they now increasingly spill onto the shelf and warm the shelf.

“These are the regions in which accelerated glacial melting has been observed for some time. We show that oceanographic changes over the past 50 years have probably caused this melting. If the water continues to warm, the increased penetration of warmer water masses onto the shelf will likely further accelerate this process, with an impact on the rate of global sea level rise ” explains Professor Karen Heywood from the University of East Anglia.

The scientists also draw attention to the rising up of warm water masses in the southwestern Weddell Sea. Here very cold temperatures (less than minus 1.5°C or 29°F) prevail on the shelf and a large-scale melting of shelf ice has not been observed yet. If the shoaling of warm water masses continues, it is expected that there will be major environmental changes with dramatic consequences for the Filchner or Ronne Ice Shelf, too. For the first time glaciers outside the West Antarctic could experience enhanced melting from below.

To what extent the diverse biology of the Southern Ocean is influenced by the observed changes is not fully understood. The shelf areas include spawning areas for the Antarctic krill, a shrimp species widespread in the Southern Ocean, which plays a key role in the Antarctic food chain. Research results have shown that spawning cycles could change in warmer conditions. A final assessment of the impact has not yet been made.

The exact reasons for the increase of the heating and the rising of warm water masses has not yet been completely resolved. “We suspect that they are related to large-scale variations in wind systems over the southern hemisphere. But which processes specifically play a role must be evaluated in more detail.” says Dr. Schmidtko.

Volcano hazards and the role of westerly wind bursts in El Niño

On June 27, lava from Kīlauea, an active volcano on the island of Hawai'i, began flowing to the northeast, threatening the residents in a community in the District of Puna. -  USGS
On June 27, lava from Kīlauea, an active volcano on the island of Hawai’i, began flowing to the northeast, threatening the residents in a community in the District of Puna. – USGS

On 27 June, lava from Kīlauea, an active volcano on the island of Hawai’i, began flowing to the northeast, threatening the residents in Pāhoa, a community in the District of Puna, as well as the only highway accessible to this area. Scientists from the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) and the Hawai’i County Civil Defense have been monitoring the volcano’s lava flow and communicating with affected residents through public meetings since 24 August. Eos recently spoke with Michael Poland, a geophysicist at HVO and a member of the Eos Editorial Advisory Board, to discuss how he and his colleagues communicated this threat to the public.

Drilling a Small Basaltic Volcano to Reveal Potential Hazards

Drilling into the Rangitoto Island Volcano in the Auckland Volcanic Field in New Zealand offers insight into a small monogenetic volcano, and may improve understanding of future hazards.

From AGU’s journals: El Niño fades without westerly wind bursts

The warm and wet winter of 1997 brought California floods, Florida tornadoes, and an ice storm in the American northeast, prompting climatologists to dub it the El Niño of the century. Earlier this year, climate scientists thought the coming winter might bring similar extremes, as equatorial Pacific Ocean conditions resembled those seen in early 1997. But the signals weakened by summer, and the El Niño predictions were downgraded. Menkes et al. used simulations to examine the differences between the two years.

The El Niño-Southern Oscillation is defined by abnormally warm sea surface temperatures in the eastern Pacific Ocean and weaker than usual trade winds. In a typical year, southeast trade winds push surface water toward the western Pacific “warm pool”–a region essential to Earth’s climate. The trade winds dramatically weaken or even reverse in El Niño years, and the warm pool extends its reach east.

Scientists have struggled to predict El Niño due to irregularities in the shape, amplitude, and timing of the surges of warm water. Previous studies suggested that short-lived westerly wind pulses (i.e. one to two weeks long) could contribute to this irregularity by triggering and sustaining El Niño events.

To understand the vanishing 2014 El Niño, the authors used computer simulations and examined the wind’s role. The researchers find pronounced differences between 1997 and 2014. Both years saw strong westerly wind events between January and March, but those disappeared this year as spring approached. In contrast, the westerly winds persisted through summer in 1997.

In the past, it was thought that westerly wind pulses were three times as likely to form if the warm pool extended east of the dateline. That did not occur this year. The team says their analysis shows that El Niño’s strength might depend on these short-lived and possibly unpredictable pulses.


The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on Facebook, Twitter, YouTube, and other social media channels.

Felling pine trees to study their wind resistance

Forestry experts of the French Institute for Agricultural Research INRA together with technicians from NEIKER-Tecnalia and the Chartered Provincial Council of Bizkaia felled radiata pine specimens of different ages in order to find out their resistance to gales and observe the force the wind needs to exert to blow down these trees in the particular conditions of the Basque Country.

This experience is of great interest for the managers of forests and will help them to manage their woodlands better and incorporate the wind variable into decisions like the distribution of plantations, or the most propitious moment for felling the trees.

Professionals like timber growers in the forestry sector, foresters, forestry technicians and researchers gathered to witness the simulation from close quarters. The trees were felled with steel cables that act as the wind force and which were fitted with sensors to measure the force need to bring the trees down. Each radiata pine had been fitted with three tilt meters that recorded the degree of tilt according to the force exerted on the tree. That way it was possible to determine the resistance of the roots and the strength of the trunk, two essential parameters to find out the capacity of the tree to withstand the thrust of the wind.

The experience carried out this morning is part of the seminar ‘FORRISK: Wind damage risk in forests’, which took place in the Bizkaia Aretoa in Bilbao, and was organised by NEIKER-Tecnalia in collaboration with the Chartered Provincial Council of Bizkaia, HAZI and the Atlantic Regional Office of EFI (European Forest Institute). The seminar is part of the European project “FORRISK- Network for innovation in silviculture and integrated systems for forest risk management”. This initiative has been co-funded by the ERDF and by the Sub-Ministry for Agriculture, Fisheries and Food Policy of the Government of the Basque Autonomous Community (region). The seminar took place in Bilbao because of its status as European Forest City 2014.

The seminar was used to present the detailed map of the characteristics of the wind in the Basque Country, which timber growers and forestry managers can now avail themselves of.The map has been produced by researchers at INRA, the French Institute for Agricultural Research, who have used information from the 57 meteorological stations equipped with anemometers in the network of the Basque Meteorological Authority, Euskalmet.

A tool for estimating wind damage

Those attending the seminar also had the chance to get to know the ForestGALES computing tool that allows managers to estimate the probability of wind damage in forests. ForestGALES was originally created for Britain and has been adapted to the characteristics of the Basque geography by INRA, NEIKER-Tecnalia and HAZI technicians. This innovative application is of great use in specifying concrete actions (for example: spacing, silvicultural interventions like clearing or thinning) bearing in mind the probability of wind damage on each plot.

To get the most out of this tool, it is necessary to know the resistance of the roots and strength of the trunks of the relevant species, as well as the characteristics of the wind where the trees are growing.So today’s simulation and the Basque wind map are two fundamental components for developing the ForestGALES model.

Increase in extreme winds owing to climate change

Cyclones like Klaus (2009) and Xynthia (2010) brought down over 200,000 cubic metres of timber as they passed through the Basque Country, owing to gusts of winds in excess of 228 kilometres per hour. Predictions indicate that the frequency of extreme phenomena like these is set to increase owing to climate change. So the forestry sector needs to have information and tools that will enable it to tackle the risks resulting from the wind.

New study shows 3 abrupt pulse of CO2 during last deglaciation

A new study shows that the rise of atmospheric carbon dioxide that contributed to the end of the last ice age more than 10,000 years ago did not occur gradually, but was characterized by three “pulses” in which C02 rose abruptly.

Scientists are not sure what caused these abrupt increases, during which C02 levels rose about 10-15 parts per million – or about 5 percent per episode – over a period of 1-2 centuries. It likely was a combination of factors, they say, including ocean circulation, changing wind patterns, and terrestrial processes.

The finding is important, however, because it casts new light on the mechanisms that take the Earth in and out of ice age regimes. Results of the study, which was funded by the National Science Foundation, appear this week in the journal Nature.

“We used to think that naturally occurring changes in carbon dioxide took place relatively slowly over the 10,000 years it took to move out of the last ice age,” said Shaun Marcott, lead author on the article who conducted his study as a post-doctoral researcher at Oregon State University. “This abrupt, centennial-scale variability of CO2 appears to be a fundamental part of the global carbon cycle.”

Some previous research has hinted at the possibility that spikes in atmospheric carbon dioxide may have accelerated the last deglaciation, but that hypothesis had not been resolved, the researchers say. The key to the new finding is the analysis of an ice core from the West Antarctic that provided the scientists with an unprecedented glimpse into the past.

Scientists studying past climate have been hampered by the limitations of previous ice cores. Cores from Greenland, for example, provide unique records of rapid climate events going back 120,000 years – but high concentrations of impurities don’t allow researchers to accurately determine atmospheric carbon dioxide records. Antarctic ice cores have fewer impurities, but generally have had lower “temporal resolution,” providing less detailed information about atmospheric CO2.

However, a new core from West Antarctica, drilled to a depth of 3,405 meters in 2011 and spanning the last 68,000 years, has “extraordinary detail,” said Oregon State paleoclimatologist Edward Brook, a co-author on the Nature study and an internationally recognized ice core expert. Because the area where the core was taken gets high annual snowfall, he said, the new ice core provides one of the most detailed records of atmospheric CO2.

“It is a remarkable ice core and it clearly shows distinct pulses of carbon dioxide increase that can be very reliably dated,” Brook said. “These are some of the fastest natural changes in CO2 we have observed, and were probably big enough on their own to impact the Earth’s climate.

“The abrupt events did not end the ice age by themselves,” Brook added. “That might be jumping the gun a bit. But it is fair to say that the natural carbon cycle can change a lot faster than was previously thought – and we don’t know all of the mechanisms that caused that rapid change.”

The researchers say that the increase in atmospheric CO2 from the peak of the last ice age to complete deglaciation was about 80 parts per million, taking place over 10,000 years. Thus, the finding that 30-45 ppm of the increase happened in just a few centuries was significant.

The overall rise of atmospheric carbon dioxide during the last deglaciation was thought to have been triggered by the release of CO2 from the deep ocean – especially the Southern Ocean. However, the researchers say that no obvious ocean mechanism is known that would trigger rises of 10-15 ppm over a time span as short as one to two centuries.

“The oceans are simply not thought to respond that fast,” Brook said. “Either the cause of these pulses is at least part terrestrial, or there is some mechanism in the ocean system we don’t yet know about.”

One reason the researchers are reluctant to pin the end of the last ice age solely on CO2 increases is that other processes were taking place, according to Marcott, who recently joined the faculty of the University of Wisconsin-Madison.

“At the same time CO2 was increasing, the rate of methane in the atmosphere was also increasing at the same or a slightly higher rate,” Marcott said. “We also know that during at least two of these pulses, the Atlantic Meridional Overturning Circulation changed as well. Changes in the ocean circulation would have affected CO2 – and indirectly methane, by impacting global rainfall patterns.”

“The Earth is a big coupled system,” he added, “and there are many pieces to the puzzle. The discovery of these strong, rapid pulses of CO2 is an important piece.”

Offshore islands amplify, rather than dissipate, a tsunami’s power

This model shows the impact of coastal islands on a tsunami's height. -  Courtesy of Jose Borrero/eCoast/USC
This model shows the impact of coastal islands on a tsunami’s height. – Courtesy of Jose Borrero/eCoast/USC

A long-held belief that offshore islands protect the mainland from tsunamis turns out to be the exact opposite of the truth, according to a new study.

Common wisdom — from Southern California to the South Pacific — for coastal residents and scientists alike has long been that offshore islands would create a buffer that blocked the power of a tsunami. In fact, computer modeling of tsunamis striking a wide variety of different offshore island geometries yielded no situation in which the mainland behind them fared better.

Instead, islands focused the energy of the tsunami, increasing flooding on the mainland by up to 70 percent.

“This is where many fishing villages are located, behind offshore islands, in the belief that they will be protected from wind waves. Even Southern California residents believe that the Channel Islands and Catalina will protect them,” said Costas Synolakis of the USC Viterbi School of Engineering, a member of the multinational team that conducted the research.

The research was inspired by a field survey of the impact of the 2010 tsunami on the Mentawai Islands off of Sumatra. The survey data showed that villages located in the shadow of small offshore islets suffered some of the strongest tsunami impacts, worse than villages located along open coasts.

Subsequent computer modeling by Jose Borrero, adjunct assistant research professor at the USC Viterbi Tsunami Research Center, showed that the offshore islands had actually contributed to — not diminished — the tsunami’s impact.

Synolakis then teamed up with researchers Emile Contal and Nicolas Vayatis of Ecoles Normales de Cachan in Paris; and Themistoklis S. Stefanakis and Frederic Dias, who both have joint appointments at Ecoles Normales de Cachan and University College Dublin to determine whether that was a one-of-a-kind situation, or the norm.

Their study, of which Dias was the corresponding author, was published in Proceedings of the Royal Society A on Nov. 5.

The team designed a computer model that took into consideration various island slopes, beach slopes, water depths, distance between the island and the beach, and wavelength of the incoming tsunami.

“Even a casual analysis of these factors would have required hundreds of thousands of computations, each of which could take up to half a day,” Synolakis said. “So instead, we used machine learning.”

Machine learning is a mathematical process that makes it easier to identify the maximum values of interdependent processes with multiple parameters by allowing the computer to “learn” from previous results.

The computer starts to understand how various tweaks to the parameters affect the overall outcome and finds the best answer quicker. As such, results that traditionally could have taken hundreds of thousands of models to uncover were found with 200 models.

“This work is applicable to some of our tsunami study sites in New Zealand,” said Borrero, who is producing tsunami hazard maps for regions of the New Zealand coast. “The northeast coast of New Zealand has many small islands offshore, similar to those in Indonesia, and our modeling suggests that this results in areas of enhanced tsunami heights.”

“Substantial public education efforts are needed to help better explain to coastal residents tsunami hazards, and whenever they need to be extra cautious and responsive with evacuations during actual emergencies,” Synolakis said.


The research was funded by EDSP of ENS-Cachan; the Cultural Service of the French Embassy in Dublin; the ERC; SFI; University College Dublin; and the EU FP7 program ASTARTE. The study can be found online at

Geologists dig into science around the globe, on land and at sea

University of Cincinnati geologists will be well represented among geoscientists from around the world at The Geological Society of America’s Annual Meeting and Exposition. The meeting takes place Oct. 19-22, in Vancouver, Canada, and will feature geoscientists representing more than 40 different disciplines. The meeting will feature highlights of UC’s geological research that is taking place globally, from Chile to Costa Rica, Belize, Bulgaria, Scotland, Trinidad and a new project under development in the Canary Islands.

UC faculty and graduate students are lead or supporting authors on more than two dozen Earth Sciences-related research papers and/or PowerPoint and poster exhibitions at the GSA meeting.

The presentations also cover UC’s longtime and extensive exploration and findings in the Cincinnati Arch of the Ohio Valley, world-renowned for its treasure trove of paleontology – plant and animal fossils that were preserved when a shallow sea covered the region 450 million years ago during the Paleozoic Era.

Furthermore, in an effort to diversify the field of researchers in the Earth Sciences, a UC assistant professor of science education and geology, Christopher Atchison, was awarded funding from the National Science Foundation and the Society of Exploration Geophysics to lead a research field trip in Vancouver for students with disabilities. Graduate and undergraduate student participants will conduct the research on Oct. 18 and then join events at the GSA meeting. They’ll be guided by geoscience researchers representing the United Kingdom, New Zealand, Canada and the U.S. Those guides include Atchison and Julie Hendricks, a UC special education major from Batavia, Ohio, who will be using her expertise in American Sign Language (ASL) to assist student researchers representing Deaf and Hard of Hearing communities.

The meeting will also formally introduce Arnold Miller, UC professor of geology, as the new president-elect of the national Paleontological Society Thomas Lowell, professor of geology, is a recently elected Fellow of the Geological Society of America – a recognition for producing a substantial body of research. Lowell joins colleagues Warren Huff, professor of geology, and Lewis Owen, professor and head of the Department of Geology, as GSA Fellows.

Here are highlights of the UC research to be presented at the GSA meeting Oct. 19-22:

Staying Put or Moving On? Researchers Develop Model to Identify Migrating Patterns of Different Species

Are plant and animal species what you might call lifelong residents – they never budge from the same place? That’s a relatively common belief in ecology and paleoecology – that classes of organisms tend to stay put over millions of years and either evolve or go extinct as the environment changes. UC researchers developed a series of numerical models simulating shifting habitats in fossil regions to compare whether species changed environments when factoring geological and other changes in the fossil record. They found that geologically driven changes in the quality of the fossil record did not distort the real ecological signal, and that most species maintained their particular habitat preferences through time. They did not evolve to adapt to changing environments, but rather, they migrated, following their preferred environments. That is to say, they did not stay in place geographically but by moving, they were able to track their favored habitats. Field research for the project was conducted in New York state as well as the paleontological-rich region of Cincinnati; Dayton, Ohio, Lexington, Ky.; and Indiana. Funding for the project was supported by The Paleontological Society; The Geological Society of America; The American Museum of Natural History and the UC Geology Department’s Kenneth E. Caster Memorial Fund.

Presenter: Andrew Zaffos, UC geology doctoral student

Co-authors: Arnold Miller, Carlton Brett

Pioneering Study Provides a Better Understanding of What Southern Ohio and Central Kentucky Looked Like Hundreds of Millions of Years Ago

The end of the Ordovician period resulted in one of the largest mass extinction events in the Earth’s history. T.J. Malgieri, a UC master’s student in geology, led this study examining the limestone and shales of the Upper Ordovician Period – the geologic Grant Lake Formation covering southern Ohio and central Kentucky – to recreate how the shoreline looked some 445 million years ago. In this pioneering study of mud cracks and deposits in the rocks, the researchers discovered that the shoreline existed to the south and that the water became deeper toward the north. By determining these ecological parameters, the ramp study provides a better understanding of environments during a time of significant ecological change. Malgieri says the approach can be applied to other basins throughout the world to create depth indicators in paeloenvironments.

Presenter: T.J. Malgieri, UC geology master’s student

Co-authors: Carlton Brett, Cameron Schalbach, Christopher Aucoin, UC; James Thomka (UC, University of Akron); Benjamin Dattilo, Indiana University Purdue University Ft. Wayne

UC Researchers Take a Unique Approach to Monitoring Groundwater Supplies Near Ohio Fracking Sites

A collaborative research project out of UC is examining effects of fracking on groundwater in the Utica Shale region of eastern Ohio. First launched in Carroll County in 2012, the team of researchers is examining methane levels and origins of methane in private wells and springs before, during and after the onset of fracking. The team travels to the region to take water samples four times a year.

Presenter: Claire Botner, a UC geology master’s student

Co-author: Amy Townsend-Small, UC assistant professor of geology

Sawing Through Seagrass to Reveal Clues to the Past

Kelsy Feser, a UC doctoral student in geology, is working at several sites around St. Croix in the Virgin Islands to see if human developments impact marine life. The research focuses on shells of snails and clams that have piled up on the sea floor for thousands of years. Digging through layers of thick seagrass beds on the ocean floor, Feser can examine deeper shells that were abundant thousands of years ago and compare them to shallower layers that include living clams and snails. Early analysis indicates a greater population of potentially pollution-tolerant mussels in an area near a landfill on the island, compared with shells from much earlier time periods. Feser is doing this sea grass analysis around additional sites including tourist resorts, an oil refinery, a power plant and a marina. Funding for the research is provided by the Paleontological Society, the GSA, the American Museum of Natural History and the UC Geology Department.

Presenter: Kelsy Feser, UC geology doctoral student

Co-authors: Arnold Miller

Turning to the Present to Understand the Past

In order to properly interpret changes in climate, vegetation, or animal populations over time, it is necessary to establish a comparative baseline. Stella Mosher, a UC geology master’s student, is studying stable carbon, nitrogen, sulfur and strontium isotopes in modern vegetation from the Canary Islands in order to quantify modern climatic and environmental patterns. Her findings will provide a crucial foundation for future UC research on regional paleoclimatic and paleoenvironmental shifts.

Presenter: Stella Mosher, graduate student in geology

Co-authors: Brooke Crowley, assistant professor of geology; Yurena Yanes, research assistant professor of geology

A Study on the Impact of Sea Spray

Sulfur is an element of interest in both geology and archaeology, because it can reveal information about the diets of ancient cultures. This study takes a novel approach to studying how sea spray can affect the sulfur isotope values in plants on a small island, focusing on the island of Trinidad. Researchers collected leaves from different plant species to get their sulfur isotope value, exploring whether wind direction played a role in how plants were influenced by the marine water from sea spray. Vegetation was collected from the edges of the island to the deeply forested areas. The study found that sulfur isotope values deeper inland and on the calmer west coast were dramatically lower in indicating marine water than vegetation along the edges and the east coast. The findings can help indicate the foraging activities of humans and animals. Funding for the study was supported by the Geological Society of America, the UC Graduate Student Association and the UC Department of Geology.

Presenter: Janine Sparks, UC geology doctoral student

Co-authors: Brooke Crowley, UC assistant professor, geology/anthropology; William Gilhooly III, assistant professor, Earth Sciences, Indiana University-Purdue University Indianapolis

Proxy Wars – The Paleobiology Data Debate

For the past several decades, paleobiologists have built large databases containing information on fossil plants and animals of all geological ages to investigate the timing and extent of major changes in biodiversity – changes such as mass extinctions that have taken place throughout the history of life. Biodiversity researcher Arnold Miller says that in building these databases, it can be a challenge to accurately identify species in the geological record, so it has been common for researchers to instead study biodiversity trends using data compiled at broader levels of biological classification, including the genus level, under the assumption that these patterns are effective proxies for what would be observed among species if the data were available. Miller has been involved in construction of The Paleobiology Database, an extensive public online resource that contains global genus- and species-level data, now permitting a direct, novel look at the similarities and differences between patterns at these two levels. Miller’s discussion aims to set the record straight as to when researchers can effectively use a genus as a proxy for a species and also when it’s inappropriate. This research is funded by the NASA Astrobiology Program.

Presenter: Arnold Miller, UC professor of geology

A Novel New Method for Examining the Distribution of Pores in Rocks

Oil and gas companies take an interest in the porosity of sedimentary rocks because those open spaces can be filled with fuel resources. Companies involved with hydraulic fracturing (“fracking”) are also interested in porosity because it could be a source for storing wastewater as a result of fracking. In this unique study, UC researchers made pore-size measurements similar to those used in crystal size distribution (CSD) theory to determine distribution of pores as a function of their sizes, using thin sections of rock. In addition to providing accurate porosity distribution at a given depth, their approach can be extended to evaluate variation of pore spaces as a function of depth in a drill core, percent of pores in each size range, and pore types and pore geometry. The Texas Bureau of Economic Geology provided the rock samples used in the study. Funding for the study was supported by the Turkish Petroleum Corporation.

Presenter: Ugurlu Ibrahim, master’s student in geology

Co-author: Attila Kilinc, professor of geology

Researchers Turn to 3-D Technology to Examine the Formation of Cliffband Landscapes

A blend of photos and technology takes a new twist on studying cliff landscapes and how they were formed. The method called Structure-From-Motion Photogrammetry – computational photo image processing techniques – is used to study the formation of cliff landscapes in Colorado and Utah and to understand how the layered rock formations in the cliffs are affected by erosion.

Presenter: Dylan Ward, UC assistant professor of geology

Testing the Links Between Climate and Sedimentation in the Atacama Desert, Northern Chile

The Atacama Desert is used as an analog for understanding the surface of Mars. In some localities, there has been no activity for millions of years. UC researchers have been working along the flank of the Andes Mountains in northern Chile, and this particular examination focuses on the large deposits of sediment that are transported down the plateau and gather at the base. The researchers are finding that their samples are not reflecting the million-year-old relics previously found on such expeditions, but may indicate more youthful activity possibly resulting from climatic events. The research is supported by a $273,634 grant from the National Science Foundation to explore glacio-geomorphic constraints on the climate history of subtropical northern Chile.

Presenter: Jason Cesta, UC geology master’s student

Co-author: Dylan Ward, UC assistant professor of geology

Uncovering the Explosive Mysteries Surrounding the Manganese of Northeast Bulgaria

UC’s geology collections hold minerals from field expeditions around the world, including manganese from the Obrochishte mines of northeastern Bulgaria. Found in the region’s sedimentary rock, manganese can be added to metals such as steel to improve strength. It’s widely believed that these manganese formations were the result of ocean water composition at the time the sediments were deposited in the ocean. In this presentation, UC researchers present new information on why they believe the manganese formations resulted from volcanic eruptions, perhaps during the Rupelian stage of the geologic time scale, when bentonite clay minerals were formed. The presentation evolved from an advance class project last spring under the direction of Warren Huff, a UC professor of geology.

Presenter: Jason Cesta, UC geology master’s student

Co-authors: Warren Huff, UC professor of geology; Christopher Aucoin; Michael Harrell; Thomas Malgieri; Barry Maynard; Cameron Schwalbach; Ibrahim Ugurlu; Antony Winrod

Two UC researchers will chair sessions at the GSA meeting: Doctoral student Gary Motz will chair the session, “Topics in Paleoecology: Modern Analogues and Ancient Systems,” on Oct. 19. Matt Vrazo, also a doctoral student in geology, is chairing “Paleontology: Trace Fossils, Taphonomy and Exceptional Preservation” on Oct. 21, and will present, “Taphonomic and Ecological Controls on Eurypterid Lagerstäten: A Model for Preservation in the Mid-Paleozoic.”


UC’s nationally ranked Department of Geology conducts field research around the world in areas spanning paleontology, quaternary geology, geomorphology, sedimentology, stratigraphy, tectonics, environmental geology and biogeochemistry.

The Geological Society of America, founded in 1888, is a scientific society with more than 26,500 members from academia, government, and industry in more than 100 countries. Through its meetings, publications, and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind.

Fracking’s environmental impacts scrutinized

Greenhouse gas emissions from the production and use of shale gas would be comparable to conventional natural gas, but the controversial energy source actually faired better than renewables on some environmental impacts, according to new research.

The UK holds enough shale gas to supply its entire gas demand for 470 years, promising to solve the country’s energy crisis and end its reliance on fossil-fuel imports from unstable markets. But for many, including climate scientists and environmental groups, shale gas exploitation is viewed as environmentally dangerous and would result in the UK reneging on its greenhouse gas reduction obligations under the Climate Change Act.

University of Manchester scientists have now conducted one of the most thorough examinations of the likely environmental impacts of shale gas exploitation in the UK in a bid to inform the debate. Their research has just been published in the leading academic journal Applied Energy and study lead author, Professor Adisa Azapagic, will outline the findings at the Labour Party Conference in Manchester, England, today (Monday, 22 September).

“While exploration is currently ongoing in the UK, commercial extraction of shale gas has not yet begun, yet its potential has stirred controversy over its environmental impacts, its safety and the difficulty of justifying its use to a nation conscious of climate change,” said Professor Azapagic.

“There are many unknowns in the debate surrounding shale gas, so we have attempted to address some of these unknowns by estimating its life cycle environmental impacts from ‘cradle to grave’. We looked at 11 different impacts from the extraction of shale gas using hydraulic fracturing – known as ‘fracking’- as well as from its processing and use to generate electricity.”

The researchers compared shale gas to other fossil-fuel alternatives, such as conventional natural gas and coal, as well as low-carbon options, including nuclear, offshore wind and solar power (solar photovoltaics).

The results of the research suggest that the average emissions of greenhouse gases from shale gas over its entire life cycle are about 460 grams of carbon dioxide-equivalent per kilowatt-hour of electricity generated. This, the authors say, is comparable to the emissions from conventional natural gas. For most of the other life-cycle environmental impacts considered by the team, shale gas was also comparable to conventional natural gas.

But the study also found that shale gas was better than offshore wind and solar for four out of 11 impacts: depletion of natural resources, toxicity to humans, as well as the impact on freshwater and marine organisms. Additionally, shale gas was better than solar (but not wind) for ozone layer depletion and eutrophication (the effect of nutrients such as phosphates, on natural ecosystems).

On the other hand, shale gas was worse than coal for three impacts: ozone layer depletion, summer smog and terrestrial eco-toxicity.

Professor Azapagic said: “Some of the impacts of solar power are actually relatively high, so it is not a complete surprise that shale gas is better in a few cases. This is mainly because manufacturing solar panels is very energy and resource-intensive, while their electrical output is quite low in a country like the UK, as we don’t have as much sunshine. However, our research shows that the environmental impacts of shale gas can vary widely, depending on the assumptions for various parameters, including the composition and volume of the fracking fluid used, disposal routes for the drilling waste and the amount of shale gas that can be recovered from a well.

“Assuming the worst case conditions, several of the environmental impacts from shale gas could be worse than from any other options considered in the research, including coal. But, under the best-case conditions, shale gas may be preferable to imported liquefied natural gas.”

The authors say their results highlight the need for tight regulation of shale gas exploration – weak regulation, they claim, may result in shale gas having higher impacts than coal power, resulting in a failure to meet climate change and sustainability imperatives and undermining the deployment of low-carbon technologies.

Professor Azapagic added: “Whether shale gas is an environmentally sound option depends on the perceived importance of different environmental impacts and the regulatory structure under which shale gas operates.

“From the government policy perspective – focusing mainly on economic growth and energy security – it appears likely that shale gas represents a good option for the UK energy sector, assuming that it can be extracted at reasonable cost.

“However, a wider view must also consider other aspects of widespread use of shale gas, including the impact on climate change, as well as many other environmental considerations addressed in our study. Ultimately, the environmental impacts from shale gas will depend on which options it is displacing and how tight the regulation is.”

Study co-author Dr Laurence Stamford, from Manchester’s School of Chemical Engineering and Analytical Science, said: “Appropriate regulation should introduce stringent controls on the emissions from shale gas extraction and disposal of drilling waste. It should also discourage extraction from sites where there is little shale gas in order to avoid the high emissions associated with a low-output well.

He continued: “If shale gas is extracted under tight regulations and is reasonably cheap, there is no obvious reason, as yet, why it should not make some contribution to our energy mix. However, regulation should also ensure that investment in sustainable technologies is not reduced at the expense of shale gas.”

How a change in slope affects lava flows

When exposed to the elements, flowing lava will form a crust at its surface. -  Scott Rowland
When exposed to the elements, flowing lava will form a crust at its surface. – Scott Rowland

As soon as lava flows from a volcano, exposure to air and wind causes it to start to cool and harden. Rather than hardening evenly, the energy exchange tends to take place primarily at the surface. The cooling causes a crust to form on the outer edges of the lava flow, insulating the molten lava within. This hardened lava shell allows a lava flow to travel much further than it would otherwise, while cracks in the lava’s crust can cause it to draw up short.

When there is a break in the terrain-a sharp change in slope, a valley, or a rock wall, for example-the smooth lava flow is disrupted. Pulses in flow volume or the formation of turbulent eddies caused by these topographic features can make the hard lava shell crack. Using observations from historical eruptions and a simple mechanical model, Glaze et al. studied how changes in slope can affect lava flows. This was featured in a recent study in the Journal of Geophysical Research: Solid Earth.

The increase in flow velocity from a steepening slope is often quite minor, as most of the energy goes into vertical rotation of the lava, just as with a rock rolling down a hill. The authors’ model considers factors such as temperature, depth and flow velocity, along with the effect of lava viscosity, to calculate how a change in slope affects the formation of vertical eddies created by tumbling lava. The authors’ model allowed them to determine how far downstream the turbulence persists before the lava returns to a more streamlined flow.

Textbook theory behind volcanoes may be wrong

In the typical textbook picture, volcanoes, such as those that are forming the Hawaiian islands, erupt when magma gushes out as narrow jets from deep inside Earth. But that picture is wrong, according to a new study from researchers at Caltech and the University of Miami in Florida.

New seismology data are now confirming that such narrow jets don’t actually exist, says Don Anderson, the Eleanor and John R. McMillian Professor of Geophysics, Emeritus, at Caltech. In fact, he adds, basic physics doesn’t support the presence of these jets, called mantle plumes, and the new results corroborate those fundamental ideas.

“Mantle plumes have never had a sound physical or logical basis,” Anderson says. “They are akin to Rudyard Kipling’s ‘Just So Stories’ about how giraffes got their long necks.”

Anderson and James Natland, a professor emeritus of marine geology and geophysics at the University of Miami, describe their analysis online in the September 8 issue of the Proceedings of the National Academy of Sciences.

According to current mantle-plume theory, Anderson explains, heat from Earth’s core somehow generates narrow jets of hot magma that gush through the mantle and to the surface. The jets act as pipes that transfer heat from the core, and how exactly they’re created isn’t clear, he says. But they have been assumed to exist, originating near where the Earth’s core meets the mantle, almost 3,000 kilometers underground-nearly halfway to the planet’s center. The jets are theorized to be no more than about 300 kilometers wide, and when they reach the surface, they produce hot spots.

While the top of the mantle is a sort of fluid sludge, the uppermost layer is rigid rock, broken up into plates that float on the magma-bearing layers. Magma from the mantle beneath the plates bursts through the plate to create volcanoes. As the plates drift across the hot spots, a chain of volcanoes forms-such as the island chains of Hawaii and Samoa.

“Much of solid-Earth science for the past 20 years-and large amounts of money-have been spent looking for elusive narrow mantle plumes that wind their way upward through the mantle,” Anderson says.

To look for the hypothetical plumes, researchers analyze global seismic activity. Everything from big quakes to tiny tremors sends seismic waves echoing through Earth’s interior. The type of material that the waves pass through influences the properties of those waves, such as their speeds. By measuring those waves using hundreds of seismic stations installed on the surface, near places such as Hawaii, Iceland, and Yellowstone National Park, researchers can deduce whether there are narrow mantle plumes or whether volcanoes are simply created from magma that’s absorbed in the sponge-like shallower mantle.

No one has been able to detect the predicted narrow plumes, although the evidence has not been conclusive. The jets could have simply been too thin to be seen, Anderson says. Very broad features beneath the surface have been interpreted as plumes or super-plumes, but, still, they’re far too wide to be considered narrow jets.

But now, thanks in part to more seismic stations spaced closer together and improved theory, analysis of the planet’s seismology is good enough to confirm that there are no narrow mantle plumes, Anderson and Natland say. Instead, data reveal that there are large, slow, upward-moving chunks of mantle a thousand kilometers wide.

In the mantle-plume theory, Anderson explains, the heat that is transferred upward via jets is balanced by the slower downward motion of cooled, broad, uniform chunks of mantle. The behavior is similar to that of a lava lamp, in which blobs of wax are heated from below and then rise before cooling and falling. But a fundamental problem with this picture is that lava lamps require electricity, he says, and that is an outside energy source that an isolated planet like Earth does not have.

The new measurements suggest that what is really happening is just the opposite: Instead of narrow jets, there are broad upwellings, which are balanced by narrow channels of sinking material called slabs. What is driving this motion is not heat from the core, but cooling at Earth’s surface. In fact, Anderson says, the behavior is the regular mantle convection first proposed more than a century ago by Lord Kelvin. When material in the planet’s crust cools, it sinks, displacing material deeper in the mantle and forcing it upward.

“What’s new is incredibly simple: upwellings in the mantle are thousands of kilometers across,” Anderson says. The formation of volcanoes then follows from plate tectonics-the theory of how Earth’s plates move and behave. Magma, which is less dense than the surrounding mantle, rises until it reaches the bottom of the plates or fissures that run through them. Stresses in the plates, cracks, and other tectonic forces can squeeze the magma out, like how water is squeezed out of a sponge. That magma then erupts out of the surface as volcanoes. The magma comes from within the upper 200 kilometers of the mantle and not thousands of kilometers deep, as the mantle-plume theory suggests.

“This is a simple demonstration that volcanoes are the result of normal broad-scale convection and plate tectonics,” Anderson says. He calls this theory “top-down tectonics,” based on Kelvin’s initial principles of mantle convection. In this picture, the engine behind Earth’s interior processes is not heat from the core but cooling at the planet’s surface. This cooling and plate tectonics drives mantle convection, the cooling of the core, and Earth’s magnetic field. Volcanoes and cracks in the plate are simply side effects.

The results also have an important consequence for rock compositions-notably the ratios of certain isotopes, Natland says. According to the mantle-plume idea, the measured compositions derive from the mixing of material from reservoirs separated by thousands of kilometers in the upper and lower mantle. But if there are no mantle plumes, then all of that mixing must have happened within the upwellings and nearby mantle in Earth’s top 1,000 kilometers.

The paper is titled “Mantle updrafts and mechanisms of oceanic volcanism.”

Yellowstone supereruption would send ash across North America

An example of the possible distribution of ash from a month-long Yellowstone supereruption. The distribution map was generated by a new model developed by the US Geological Survey using wind information from January 2001. The improved computer model, detailed in a new study published in Geochemistry, Geophysics, Geosystems, finds that the hypothetical, large eruption would create a distinctive kind of ash cloud known as an umbrella, which expands evenly in all directions, sending ash across North America. Ash distribution will vary depending on cloud height, eruption duration, diameter of volcanic particles in the cloud, and wind conditions, according to the new study. -  Credit: USGS
An example of the possible distribution of ash from a month-long Yellowstone supereruption. The distribution map was generated by a new model developed by the US Geological Survey using wind information from January 2001. The improved computer model, detailed in a new study published in Geochemistry, Geophysics, Geosystems, finds that the hypothetical, large eruption would create a distinctive kind of ash cloud known as an umbrella, which expands evenly in all directions, sending ash across North America. Ash distribution will vary depending on cloud height, eruption duration, diameter of volcanic particles in the cloud, and wind conditions, according to the new study. – Credit: USGS

In the unlikely event of a volcanic supereruption at Yellowstone National Park, the northern Rocky Mountains would be blanketed in meters of ash, and millimeters would be deposited as far away as New York City, Los Angeles and Miami, according to a new study.

An improved computer model developed by the study’s authors finds that the hypothetical, large eruption would create a distinctive kind of ash cloud known as an umbrella, which expands evenly in all directions, sending ash across North America.

A supereruption is the largest class of volcanic eruption, during which more than 1,000 cubic kilometers (240 cubic miles) of material is ejected. If such a supereruption were to occur, which is extremely unlikely, it could shut down electronic communications and air travel throughout the continent, and alter the climate, the study notes.

A giant underground reservoir of hot and partly molten rock feeds the volcano at Yellowstone National Park. It has produced three huge eruptions about 2.1 million, 1.3 million and 640,000 years ago. Geological activity at Yellowstone shows no signs that volcanic eruptions, large or small, will occur in the near future. The most recent volcanic activity at Yellowstone-a relatively non-explosive lava flow at the Pitchstone Plateau in the southern section of the park-occurred 70,000 years ago.

Researchers at the U.S. Geological Survey used a hypothetical Yellowstone supereruption as a case study to run their new model that calculates ash distribution for eruptions of all sizes. The model, Ash3D, incorporates data on historical wind patterns to calculate the thickness of ash fall for a supereruption like the one that occurred at Yellowstone 640,000 years ago.

The new study provides the first quantitative estimates of the thickness and distribution of ash in cities around the U.S. if the Yellowstone volcanic system were to experience this type of huge, yet unlikely, eruption.

Cities close to the modeled Yellowstone supereruption could be covered by more than a meter (a few feet) of ash. There would be centimeters (a few inches) of ash in the Midwest, while cities on both coasts would see millimeters (a fraction of an inch) of accumulation, according to the new study that was published online today in Geochemistry, Geophysics, Geosystems, a journal of the American Geophysical Union. The paper has been made available at no charge at

The model results help scientists understand the extremely widespread distribution of ash deposits from previous large eruptions at Yellowstone. Other USGS scientists are using the Ash3D model to forecast possible ash hazards at currently restless volcanoes in Alaska.

Unlike smaller eruptions, whose ash deposition looks roughly like a fan when viewed from above, the spreading umbrella cloud from a supereruption deposits ash in a pattern more like a bull’s eye – heavy in the center and diminishing in all directions – and is less affected by prevailing winds, according to the new model.

“In essence, the eruption makes its own winds that can overcome the prevailing westerlies, which normally dominate weather patterns in the United States,” said Larry Mastin, a geologist at the USGS Cascades Volcano Observatory in Vancouver, Washington, and the lead author of the new paper. Westerly winds blow from the west.

“This helps explain the distribution from large Yellowstone eruptions of the past, where considerable amounts of ash reached the west coast,” he added.

The three large past eruptions at Yellowstone sent ash over many tens of thousands of square kilometers (thousands of square miles). Ash deposits from these eruptions have been found throughout the central and western United States and Canada.

Erosion has made it difficult for scientists to accurately estimate ash distribution from these deposits. Previous computer models also lacked the ability to accurately determine how the ash would be transported.

Using their new model, the study’s authors found that during very large volcanic eruptions, the expansion rate of the ash cloud’s leading edge can exceed the average ambient wind speed for hours or days depending on the length of the eruption. This outward expansion is capable of driving ash more than 1,500 kilometers (932 miles) upwind – westward — and crosswind – north to south — producing a bull’s eye-like pattern centered on the eruption site.

In the simulated modern-day eruption scenario, cities within 500 kilometers (311 miles) of Yellowstone like Billings, Montana, and Casper, Wyoming, would be covered by centimeters (inches) to more than a meter (more than three feet) of ash. Upper Midwestern cities, like Minneapolis, Minnesota, and Des Moines, Iowa, would receive centimeters (inches), and those on the East and Gulf coasts, like New York and Washington, D.C. would receive millimeters or less (fractions of an inch). California cities would receive millimeters to centimeters (less than an inch to less than two inches) of ash while Pacific Northwest cities like Portland, Oregon, and Seattle, Washington, would receive up to a few centimeters (more than an inch).

Even small accumulations only millimeters or centimeters (less than an inch to an inch) thick could cause major effects around the country, including reduced traction on roads, shorted-out electrical transformers and respiratory problems, according to previous research cited in the new study. Prior research has also found that multiple inches of ash can damage buildings, block sewer and water lines, and disrupt livestock and crop production, the study notes.

The study also found that other eruptions – powerful but much smaller than a Yellowstone supereruption — might also generate an umbrella cloud.

“These model developments have greatly enhanced our ability to anticipate possible effects from both large and small eruptions, wherever they occur,” said Jacob Lowenstern, USGS Scientist-in-Charge of the Yellowstone Volcano Observatory in Menlo Park, California, and a co-author on the new paper.