Australian volcanic mystery explained: ANU media release

This is Dr. Rhodri Davies in the Raijin Supercomputer at The Australian National University. -  Stuart Hay, ANU
This is Dr. Rhodri Davies in the Raijin Supercomputer at The Australian National University. – Stuart Hay, ANU

Scientists have solved a long-standing mystery surrounding Australia’s only active volcanic area, in the country’s southeast.

The research explains a volcanic region that has seen more than 400 volcanic events in the last four million years. The 500 kilometre long region stretches from Melbourne to the South Australian town of Mount Gambier, which surrounds a dormant volcano that last erupted only 5,000 years ago.

“Volcanoes in this region of Australia are generated by a very different process to most of Earth’s volcanoes, which occur on the edges of tectonic plates, such as the Pacific Rim of Fire”, says lead researcher Dr Rhodri Davies, from the Research School of Earth Sciences.

“We have determined that the volcanism arises from a unique interaction between local variations in the continent’s thickness, which we were able to map for the first time, and its movement, at seven centimetres a year northwards towards New Guinea and Indonesia.

The volcanic area is comparatively shallow, less than 200 kilometres deep, in an area where a 2.5 billion year-old part of the continent meets a thinner, younger section, formed in the past 500 million years or so.

These variations in thickness drive currents within the underlying mantle, which draw heat from deeper up to the surface.

The researchers used state-of-the-art techniques to model these currents on the NCI Supercomputer, Raijin, using more than one million CPU hours.

“This boundary runs the length of eastern Australia, but our computer model demonstrates, for the first time, how Australia’s northward drift results in an isolated hotspot in this region,” Dr Davies said.

Dr Davies will now apply his research technique to other volcanic mysteries around the globe.

“There are around 50 other similarly isolated volcanic regions around the world, several of which we may now be able to explain,” he said.

It is difficult to predict where or when future eruptions might occur, Dr Davies said.

“There hasn’t been an eruption in 5,000 years, so there is no need to panic. However, the region is still active and we can’t rule out any eruptions in the future.”

Meteorite that doomed the dinosaurs helped the forests bloom

<IMG SRC="/Images/537934362.jpg" WIDTH="350" HEIGHT="233" BORDER="0" ALT="Seen here is a Late Cretaceous specimen from the Hell Creek Formation, morphotype HC62, taxon
''Rhamnus” cleburni. Specimens are housed at the Denver Museum of Nature and Science in
Denver, Colorado. – Image credit: Benjamin Blonder.”>
Seen here is a Late Cretaceous specimen from the Hell Creek Formation, morphotype HC62, taxon
Rhamnus” cleburni. Specimens are housed at the Denver Museum of Nature and Science in
Denver, Colorado. – Image credit: Benjamin Blonder.

66 million years ago, a 10-km diameter chunk of rock hit the Yukatan peninsula near the site of the small town of Chicxulub with the force of 100 teratons of TNT. It left a crater more than 150 km across, and the resulting megatsunami, wildfires, global earthquakes and volcanism are widely accepted to have wiped out the dinosaurs and made way for the rise of the mammals. But what happened to the plants on which the dinosaurs fed?

A new study led by researchers from the University of Arizona reveals that the meteorite impact that spelled doom for the dinosaurs also decimated the evergreen flowering plants to a much greater extent than their deciduous peers. They hypothesize that the properties of deciduous plants made them better able to respond rapidly to chaotically varying post-apocalyptic climate conditions. The results are publishing on September 16 in the open access journal PLOS Biology.

Applying biomechanical formulae to a treasure trove of thousands of fossilized leaves of angiosperms – flowering plants excluding conifers – the team was able to reconstruct the ecology of a diverse plant community thriving during a 2.2 million-year period spanning the cataclysmic impact event, believed to have wiped out more than half of plant species living at the time. The fossilized leaf samples span the last 1,400,000 years of the Cretaceous and the first 800,000 of the Paleogene.

The researchers found evidence that after the impact, fast-growing, deciduous angiosperms had replaced their slow-growing, evergreen peers to a large extent. Living examples of evergreen angiosperms, such as holly and ivy, tend to prefer shade, don’t grow very fast and sport dark-colored leaves.

“When you look at forests around the world today, you don’t see many forests dominated by evergreen flowering plants,” said the study’s lead author, Benjamin Blonder. “Instead, they are dominated by deciduous species, plants that lose their leaves at some point during the year.”

Blonder and his colleagues studied a total of about 1,000 fossilized plant leaves collected from a location in southern North Dakota, embedded in rock layers known as the Hell Creek Formation, which at the end of the Cretaceous was a lowland floodplain crisscrossed by river channels. The collection consists of more than 10,000 identified plant fossils and is housed primarily at the Denver Museum of Nature and Science. “When you hold one of those leaves that is so exquisitely preserved in your hand knowing it’s 66 million years old, it’s a humbling feeling,” said Blonder.

“If you think about a mass extinction caused by catastrophic event such as a meteorite impacting Earth, you might imagine all species are equally likely to die,” Blonder said. “Survival of the fittest doesn’t apply – the impact is like a reset button. The alternative hypothesis, however, is that some species had properties that enabled them to survive.

“Our study provides evidence of a dramatic shift from slow-growing plants to fast-growing species,” he said. “This tells us that the extinction was not random, and the way in which a plant acquires resources predicts how it can respond to a major disturbance. And potentially this also tells us why we find that modern forests are generally deciduous and not evergreen.”

Previously, other scientists found evidence of a dramatic drop in temperature caused by dust from the impact. “The hypothesis is that the impact winter introduced a very variable climate,” Blonder said. “That would have favored plants that grew quickly and could take advantage of changing conditions, such as deciduous plants.”

“We measured the mass of a given leaf in relation to its area, which tells us whether the leaf was a chunky, expensive one to make for the plant, or whether it was a more flimsy, cheap one,” Blonder explained. “In other words, how much carbon the plant had invested in the leaf.” In addition the researchers measured the density of the leaves’ vein networks, a measure of the amount of water a plant can transpire and the rate at which it can acquire carbon.

“There is a spectrum between fast- and slow-growing species,” said Blonder. “There is the ‘live fast, die young’ strategy and there is the ‘slow but steady’ strategy. You could compare it to financial strategies investing in stocks versus bonds.” The analyses revealed that while slow-growing evergreens dominated the plant assemblages before the extinction event, fast-growing flowering species had taken their places afterward.

Asteroid attacks significantly altered ancient Earth

This is an artistic conception of the early Earth, showing a surface pummeled by large impacts, resulting in extrusion of deep seated magma onto the surface. At the same time, distal portion of the surface could have retained liquid water. -  Simone Marchi
This is an artistic conception of the early Earth, showing a surface pummeled by large impacts, resulting in extrusion of deep seated magma onto the surface. At the same time, distal portion of the surface could have retained liquid water. – Simone Marchi

New research shows that more than four billion years ago, the surface of Earth was heavily reprocessed – or mixed, buried and melted – as a result of giant asteroid impacts. A new terrestrial bombardment model based on existing lunar and terrestrial data sheds light on the role asteroid bombardments played in the geological evolution of the uppermost layers of the Hadean Earth (approximately 4 to 4.5 billion years ago).

An international team of researchers published their findings in the July 31, 2014 issue of Nature.

“When we look at the present day, we have a very high fidelity timeline over the last about 500 million years of what’s happened on Earth, and we have a pretty good understanding that plate tectonics and volcanism and all these kinds of processes have happened more or less the same way over the last couple of billion years,” says Lindy Elkins-Tanton, director of the School of Earth and Space Exploration at Arizona State University.

But, in the very beginning of Earth’s formation, the first 500 million years, there’s a less well-known period which has typically been called the Hadean (meaning hell-like) because it was assumed that it was wildly hot and volcanic and everything was covered with magma – completely unlike the present day.

Terrestrial planet formation models indicate Earth went through a sequence of major growth phases: accretion of planetesimals and planetary embryos over many tens of millions of years; a giant impact that led to the formation of our Moon; and then the late bombardment, when giant asteroids, dwarfing the one that presumably killed the dinosaurs, periodically hit ancient Earth.

While researchers estimate accretion during late bombardment contributed less than one percent of Earth’s present-day mass, giant asteroid impacts still had a profound effect on the geological evolution of early Earth. Prior to four billion years ago Earth was resurfaced over and over by voluminous impact-generated melt. Furthermore, large collisions as late as about four billion years ago, may have repeatedly boiled away existing oceans into steamy atmospheres. Despite heavy bombardment, the findings are compatible with the claim of liquid water on Earth’s surface as early as about 4.3 billion years ago based on geochemical data.

A key part of Earth’s mysterious infancy period that has not been well quantified in the past is the kind of impacts Earth was experiencing at the end of accretion. How big and how frequent were those incoming bombardments and what were their effects on the surface of the Earth? How much did they affect the ability of the now cooling crust to actually form plates and start to subduct and make plate tectonics? What kind of volcanism did it produce that was different from volcanoes today?”

“We are increasingly understanding both the similarities and the differences to present day Earth conditions and plate tectonics,” says Elkins-Tanton. “And this study is a major step in that direction, trying to bridge that time from the last giant accretionary impact that largely completed the Earth and produced the Moon to the point where we have something like today’s plate tectonics and habitable surface.”

The new research reveals that asteroidal collisions not only severely altered the geology of the Hadean Earth, but likely played a major role in the subsequent evolution of life on Earth as well.

“Prior to approximately four billion years ago, no large region of Earth’s surface could have survived untouched by impacts and their effects,” says Simone Marchi, of NASA’s Solar System Exploration Research Virtual Institute at the Southwest Research Institute. “The new picture of the Hadean Earth emerging from this work has important implications for its habitability.”

Large impacts had particularly severe effects on existing ecosystems. Researchers found that on average, Hadean Earth could have been hit by one to four impactors that were more than 600 miles wide and capable of global sterilization, and by three to seven impactors more than 300 miles wide and capable of global ocean vaporization.

“During that time, the lag between major collisions was long enough to allow intervals of more clement conditions, at least on a local scale,” said Marchi. “Any life emerging during the Hadean eon likely needed to be resistant to high temperatures, and could have survived such a violent period in Earth’s history by thriving in niches deep underground or in the ocean’s crust.

Victoria’s volcano count rises

Geologists have discovered three previously unrecorded volcanoes in volcanically active southeast Australia.

The new Monash University research, published in the Australian Journal of Earth Sciences, gives a detailed picture of an area of volcanic centres already known to geologists in the region.

Covering an area of 19,000 square kilometres in Victoria and South Australia, with over 400 volcanoes, the Newer Volcanics Province (NVP) features the youngest volcanoes in Australia including Mount Schank and Mount Gambier.

Focusing on the Hamilton region, lead researcher Miss Julie Boyce from the School of Geosciences said the surprising discovery means additional volcanic centres may yet be discovered in the NVP.

“Victoria’s latest episode of volcanism began about eight million years ago, and has helped to shape the landscape. The volcanic deposits, including basalt, are among the youngest rocks in Victoria but most people know little about them,”Miss Boyce said.

“Though it’s been more than 5000 years since the last volcanic eruption in Australia, it’s important that we understand where, when and how these volcanoes erupted. The province is still active, so there may be future eruptions.”

The largest unrecorded volcano is a substantial maar-cone volcanic complex – a broad, low relief volcanic crater caused by an explosion when groundwater comes into contact with hot magma – identified 37 kilometres east of Hamilton.

Miss Boyce said the discoveries were made possible only by analysing a combination of satellite photographs, detailed NASA models of the topography of the area and the distribution of magnetic minerals in the rocks, alongside site visits to build a detailed picture of the Hamilton region of the NVP.

“Traditionally, volcanic sites are analysed by one or two of these techniques. This is the first time that this multifaceted approach has been applied to the NVP and potentially it could be used to study other volcanic provinces worldwide.”

The NVP is considered active, as carbon dioxide is released from the Earth’s mantle in several areas, where there is a large heat anomaly at depth. With an eruption frequency of one volcano every 10,800 years or less, future eruptions may yet occur.

It’s hoped that this multifaceted approach will lead to a better understanding of the distribution and nature of volcanism, allowing for more accurate hazard analysis and risk estimates for future eruptions.

On the shoulder of a giant: Precursor volcano to the island of O’ahu discovered

Map showing schematically the distribution of the three volcanoes now thought to have made up the region of O'ahu, Hawai'i.  From oldest to youngest these are the Ka'ena, Wai'anae, and Ko'olau Volcanoes.  Upper panel: bold dashed lines delineate possible rift zones of the three volcanoes; also shown are the major landslide deposits around O'ahu.  The lower panel shows how the three volcanic edifices overlap. -  J. Sinton, et al., UH SOEST
Map showing schematically the distribution of the three volcanoes now thought to have made up the region of O’ahu, Hawai’i. From oldest to youngest these are the Ka’ena, Wai’anae, and Ko’olau Volcanoes. Upper panel: bold dashed lines delineate possible rift zones of the three volcanoes; also shown are the major landslide deposits around O’ahu. The lower panel shows how the three volcanic edifices overlap. – J. Sinton, et al., UH SOEST

Researchers from the University of Hawai’i – Mānoa (UHM), Laboratoire des Sciences du Climat et de L’Environment (France), and Monterey Bay Aquarium Research Institute recently discovered that O’ahu actually consists of three major Hawaiian shield volcanoes, not two, as previously thought. The island of O’ahu, as we know it today, is the remnants of two volcanoes, Wai’anae and Ko’olau. But extending almost 100 km WNW from Ka’ena Point, the western tip of the island of O’ahu, is a large region of shallow bathymetry, called the submarine Ka’ena Ridge. It is that region that has now been recognized to represent a precursor volcano to the island of O’ahu, and on whose flanks the Wai’anae and Ko’olau Volcanoes later formed.

Prior to the recognition of Ka’ena Volcano, Wai’anae Volcano was assumed to have been exceptionally large and to have formed an unusually large distance from its next oldest neighbor – Kaua’i. “Both of these assumptions can now be revised: Wai’anae is not as large as previously thought and Ka’ena Volcano formed in the region between Kauai and Wai’anae,” noted John Sinton, lead author of the study and Emeritus Professor of Geology and Geophysics at the UHM School of Ocean and Earth Science and Technology (SOEST).

In 2010 scientists documented enigmatic chemistry of some unusual lavas of Wai’anae. “We previously knew that they formed by partial melting of the crust beneath Wai’anae, but we didn’t understand why they have the isotopic composition that they do,” said Sinton” Now, we realize that the deep crust that melted under Waianae is actually part of the earlier Ka’ena Volcano.”

This new understanding has been a long time in the making. Among the most important developments was the acquisition of high-quality bathymetric data of the seafloor in the region. This mapping was greatly accelerated after UH acquired the Research Vessel Kilo Moana, equipped with a high-resolution mapping system. The new data showed that Ka’ena Ridge had an unusual morphology, unlike that of submarine rift zone extensions of on-land volcanoes. Researchers then began collecting samples from Ka’ena and Wai’alu submarine Ridges. The geochemical and age data, along with geological observations and geophysical data confirmed that Ka’ena was not part of Waianae, but rather was an earlier volcanic edifice; Wai’anae must have been built on the flanks of Ka’ena.

“What is particularly interesting is that Ka’ena appears to have had an unusually prolonged history as a submarine volcano, only breaching the ocean surface very late in its history,” said Sinton. Much of our knowledge of Hawaiian volcanoes is based on those that rise high above sea level, and almost all of those formed on the flanks of earlier ones. Ka’ena represents a chance to study a Hawaiian volcano that formed in isolation on the deep ocean floor.

Despite four different cruises and nearly 100 rock samples from Ka’ena, researchers say they have only begun to observe and sample this massive volcanic edifice. While this article was in press, SOEST scientists visited Ka’ena Ridge again – this time with the UH’s newest remotely operated vehicle, ROV Lu’ukai – and collected new rock samples from some of its shallowest peaks. With these new samples Sinton and colleagues hope to constrain the timing of the most recent volcanism on Ka’ena.

Against the current with lava flows

<IMG SRC="/Images/38239538.jpg" WIDTH="350" HEIGHT="233" BORDER="0" ALT="A pit chain marks a subterranean lava tunnel. Its roof collapsed partially. – Image: Mars Image Explorer /“>
A pit chain marks a subterranean lava tunnel. Its roof collapsed partially. – Image: Mars Image Explorer /

An Italian astronomer in the 19th century first described them as ‘canali’ – on Mars’ equatorial region, a conspicuous net-like system of deep gorges known as the Noctis Labyrinthus is clearly visible. The gorge system, in turn, leads into another massive canyon, the Valles Marineris, which is 4,000 km long, 200 km wide and 7 km deep. Both of these together would span the US completely from east to west.

As these gorges, when observed from orbit, resemble terrestrial canyons formed by water, most researchers assumed that immense flows of water must have carved the Noctis Labyrinthus and the Valles Marineris into the surface of Mars. Another possibility was that tectonic activity had created the largest rift valley on a planet in our solar system.

Lava flows caused the gorges

These assumptions were far from the mark, says Giovanni Leone, a specialist in planetary volcanism in the research group of ETH professor Paul Tackley. Only lava flows would have had the force and mass required to carve these gigantic gorges into the surface of Mars. The study was recently published in the Journal of Volcanology and Geothermal Research.

In recent years, Leone has examined intensively the structure of these canyons and their outlets into the Ares Vallis and the Chryse Planitia, a massive plain on Mars’ low northern latitude. He examined thousands of high-resolution surface images taken by numerous Mars probes, including the latest from the Mars Reconnaissance Orbiter, and which are available on the image databases of the US Geological Survey.

No discernible evidence of erosion by water

His conclusion is unequivocal: “Everything that I observed on those images were structures of lava flows as we know them on Earth,” he emphasises. “The typical indicators of erosion by water were not visible on any of them.” Leone therefore does not completely rules out water as final formative force. Evidence of water, such as salt deposits in locations where water evaporated from the ground or signs of erosion on the alluvial fans of the landslides, are scarce but still existing. “One must therefore ask oneself seriously how Valles Marineris could have been created by water if one can not find any massive and widespread evidence of it.” The Italian volcanologist similarly could find no explanation as to where the massive amounts of water that would be required to form such canyons might have originated.

Source region of lava flows identified

The explanatory model presented by Leone in his study illustrates the formation history from the source to the outlet of the gorge system. He identifies the volcanic region of Tharsis as the source region of the lava flows and from there initial lava tubes stretched to the edge of the Noctis Labyrinthus. When the pressure from an eruption subsided, some of the tube ceilings collapsed, leading to the formation of a chain of almost circular holes, the ‘pit chains’.

When lava flowed again through the tubes, the ceilings collapsed entirely, forming deep V-shaped troughs. Due to the melting of ground and rim material, and through mechanical erosion, the mass of lava carved an ever-deeper and broader bed to form canyons. The destabilised rims then slipped and subsequent lava flows carried away the debris from the landslides or covered it. “The more lava that flowed, the wider the canyon became,” says Leone.

Leone supported his explanatory model with height measurements from various Mars probes. The valleys of the Noctis Labyrinthus manifest the typical V-shape of ‘young’ lava valleys where the tube ceilings have completely collapsed. The upper rims of these valleys, however, have the same height. If tectonic forces had been at work, they would not be on the same level, he says. The notion of water as the formative force, in turn, is undermined by the fact that it would have taken tens of millions of cubic kilometres of water to carve such deep gorges and canyons. Practically all the atmospheric water of all the ages of Mars should have been concentrated only on Labyrinthus Noctis. Moreover, the atmosphere on Mars is too thin and the temperatures too cold. Water that came to the surface wouldn’t stay liquid, he notes: “How could a river of sufficient force and size even form?”

Life less likely

Leone’s study could have far-reaching consequences. “If we suppose that lava formed the Noctis Labyrinthus and the Valles Marineris, then there has always been much less water on Mars than the research community has believed to date,” he says. Mars received very little rain in the past and it would not have been sufficient to erode such deep and large gorges. He adds that the shallow ocean north of the equator was probably much smaller than imagined – or hoped for; it would have existed only around the North Pole. The likelihood that life existed, or indeed still exists, on Mars is accordingly much lower.

Leone can imagine that the lava tubes still in existence are possible habitats for living organisms, as they would offer protection from the powerful UV rays that pummel the Martian surface. He therefore proposes a Mars mission to explore the lava tubes. He considers it feasible to send a rover through a hole in the ceiling of a tube and search for evidence of life. “Suitable locations could be determined using my data,” he says.

Swimming against the current

With his study, the Italian is swimming against the current and perhaps dismantling a dogma in the process. Most studies of the past 20 years have been concerned with the question of water on Mars and how it could have formed the canyons. Back in 1977, a researcher first posited the idea that the Valles Marineris may have been formed by lava, but the idea failed to gain traction. Leone says this was due to the tunnel vision that the red planet engenders and the prevailing mainstream research. The same story has been told for decades, with research targeted to that end, without achieving a breakthrough. Leone believes that in any case science would only benefit in considering other approaches. “I expect a spirited debate,” he says. “But my evidence is strong.”

Hot mantle drives elevation, volcanism along mid-ocean ridges

Scientists have found that temperature deep in Earth's mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth's crust. -  Dalton Lab / Brown University
Scientists have found that temperature deep in Earth’s mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth’s crust. – Dalton Lab / Brown University

Scientists have shown that temperature differences deep within Earth’s mantle control the elevation and volcanic activity along mid-ocean ridges, the colossal mountain ranges that line the ocean floor. The findings, published April 4 in the journal Science, shed new light on how temperature in the depths of the mantle influences the contours of the Earth’s crust.

Mid-ocean ridges form at the boundaries between tectonic plates, circling the globe like seams on a baseball. As the plates move apart, magma from deep within the Earth rises up to fill the void, creating fresh crust as it cools. The crust formed at these seams is thicker in some places than others, resulting in ridges with widely varying elevations. In some places, the peaks are submerged miles below the ocean surface. In other places – Iceland, for example – the ridge tops are exposed above the water’s surface.

“These variations in ridge depth require an explanation,” said Colleen Dalton, assistant professor of geological sciences at Brown and lead author of the new research. “Something is keeping them either sitting high or sitting low.”

That something, the study found, is the temperature of rocks deep below Earth’s surface.

By analyzing the speeds of seismic waves generated by earthquakes, the researchers show that mantle temperature along the ridges at depths extending below 400 kilometers varies by as much as 250 degrees Celsius. High points on the ridges tend to be associated with higher mantle temperatures, while low points are associated with a cooler mantle. The study also showed that volcanic hot spots along the ridge – volcanoes near Iceland as well as the islands of Ascension, Tristan da Cunha, and elsewhere – all sit above warm spots in Earth’s mantle.

“It is clear from our results that what’s being erupted at the ridges is controlled by temperature deep in the mantle,” Dalton said. “It resolves a long-standing controversy and has not been shown definitively before.”

A CAT scan of the Earth

The mid-ocean ridges provide geologists with a window to the interior of the Earth. The ridges form when mantle material melts, rises into the cracks between tectonic plates, and solidifies again. The characteristics of the ridges provide clues about the properties of the mantle below.

For example, a higher ridge elevation suggests a thicker crust, which in turn suggests that a larger volume of magma was erupted at the surface. This excess molten rock can be caused by very hot temperatures in the mantle. The problem is that hot mantle is not the only way to produce excess magma. The chemical composition of the rocks in Earth’s mantle also controls how much melt is produced. For certain rock compositions, it is possible to generate large volumes of molten rock under cooler conditions. For many decades it has not been clear whether mid-ocean ridge elevations are caused by variations in the temperature of the mantle or variations in the rock composition of the mantle.

To distinguish between these two possibilities, Dalton and her colleagues introduced two additional data sets. One was the chemistry of basalts, the rock that forms from solidification of magma at the mid-ocean ridge. The chemical composition of basalts differs depending upon the temperature and composition of the mantle material from which they’re derived. The authors analyzed the chemistry of nearly 17,000 basalts formed along mid-ocean ridges around the globe.

The other data set was seismic wave tomography. During earthquakes, seismic waves are sent pulsing through the rocks in the crust and mantle. By measuring the velocity of those waves, scientists can gather data about the characteristics of the rocks through which they traveled. “It’s like performing a CAT scan of the inside of the Earth,” Dalton said.

Seismic wave speeds are especially sensitive to the temperature of rocks. In general, waves propagate more quickly in cooler rocks and more slowly in hotter rocks.

Dalton and her colleagues combined the seismic data from hundreds of earthquakes with data on elevation and rock chemistry from the ridges. Correlations among the three data sets revealed that temperature deep in the mantle varied between around 1,300 and 1,550 degrees Celsius underneath about 61,000 kilometers of ridge terrain. “It turned out,” said Dalton, “that seismic tomography was the smoking gun. The only plausible explanation for the seismic wave speeds is a very large temperature range.”

The study showed that as ridge elevation falls, so does mantle temperature. The coolest point beneath the ridges was found near the lowest point, an area of very deep and rugged seafloor known as the Australian-Antarctic discordance in the Indian Ocean. The hottest spot was near Iceland, which is also the ridges’ highest elevation point.

Iceland is also where scientists have long debated whether a mantle plume – a vertical jet of hot rock originating from deep in the Earth – intersects the mid-ocean ridge. This study provides strong support for a mantle plume located beneath Iceland. In fact, this study showed that all regions with above-average temperature are located near volcanic hot spots, which points to mantle plumes as the culprit for the excess volume of magma in these areas.

Understanding a churning planet

Despite being made of solid rock, Earth’s mantle doesn’t sit still. It undergoes convection, a slow churning of material from the depths of the Earth toward the surface and back again.

“Convection is why we have plate tectonics and earthquakes,” Dalton said. “It’s also responsible for almost all volcanism at the surface. So understanding mantle convection is crucial to understanding many fundamental questions about the Earth.”

Two factors influence how that convection works: variations in the composition of the mantle and variations in its temperature. This work, says Dalton, points to temperature as a primary factor in how convection is expressed on the surface.

“We get consistent and coherent temperature measurements from the mantle from three independent datasets,” Dalton said. “All of them suggest that what we see at the surface is due to temperature, and that composition is only a secondary factor. What is surprising is that the data require the temperature variations to exist not only near the surface but also many hundreds of kilometers deep inside the Earth.”

The findings from this study will also be useful in future research using seismic waves, Dalton says. Because the temperature readings as indicated by seismology were backed up by the other datasets, they can be used to calibrate seismic readings for places where geochemical samples aren’t available. This makes it possible to estimate temperature deep in Earth’s mantle all over the globe.

That will help geologists gain a new insights into how processes deep within the Earth mold the ground beneath our feet.

Off-rift volcanoes explained

Potsdam: Rift valleys are large depressions formed by tectonic stretching forces. Volcanoes often occur in rift valleys, within the rift itself or on the rift flanks as e.g. in East Africa. The magma responsible for this volcanism is formed in the upper mantle and ponds at the boundary between crust and mantle. For many years, the question of why volcanoes develop outside the rift zone in an apparently unexpected location offset by tens of kilometers from the source of molten magma directly beneath the rift has remained unanswered. A team of scientists from the GFZ German Research Centre for Geosciences, University of Southampton and University Roma Tre (Italy) have shown that the pattern of stresses in the crust changes when the crust thins due to stretching and becomes gravitationally unloaded. As a consequence of this stress pattern, the path of the magma pockets ascending from the ponding zone is deviated diagonally to the sides of the rift. Eventually, the magma pockets emerge at distances of tens, sometime hundreds of kilometers from the rift axis, creating the so-called off-rift volcanoes.

The scientists used a numerical model that simulates the propagation of the magma pockets, called dikes, to demonstrate a previously unknown control of rift topography on the trajectory of magma transport. The surface location of the volcanoes depend on the geometry of the rift valleys, explains GFZ researcher Francesco Maccaferri: “We find that in broad, shallow rift valleys, the magma will ascend vertically above the source of magma. In deep, narrow valleys the modification of the stress pattern is very intense and the magma path is strongly deviated.” Since in the latter case the initial path of the dikes is almost horizontal, in extreme cases the magma can arrest as a horizontal intrusion and form a pile of stacked sheet-like bodies without any surface volcanism. This is confirmed in rift valleys around the worl

The phenomenon is a dynamic one: “If the tectonic extension continues and the rift reaches a mature stage of evolution, the pile of the magma sheets can reach the shallow crust. Our model predicts correctly that additional magma-filled sheets will then orient vertically and propagate laterally along the middle of the rift.”adds Eleonora Rivalta from GFZ.

Rift valleys are one of the main tectonic features of our planet. They form both between diverging tectonic plates or within plates which undergo tectonic extension. The generation of magma at depth beneath rift valleys and the divergence of the plates through magma intrusions has been an object of research for tens of years, but the link between deep sources and surface volcanism have previously been missing. The new model may be invoked to explain both off-rift volcanism or the lack of volcanism in million years old rift valleys in Europe.

Water-rich gem points to vast ‘oceans’ beneath the Earth

Graham Pearson holds a diamond that contains the water-rich mineral 'ringwoodite,' a new discovery that yields new clues about the presence of large amounts of water deep beneath the Earth. -  Richard Siemens/University of Alberta
Graham Pearson holds a diamond that contains the water-rich mineral ‘ringwoodite,’ a new discovery that yields new clues about the presence of large amounts of water deep beneath the Earth. – Richard Siemens/University of Alberta

A University of Alberta diamond scientist has found the first terrestrial sample of a water-rich gem that yields new evidence about the existence of large volumes of water deep beneath the Earth.

An international team of scientists led by Graham Pearson, Canada Excellence Research Chair in Arctic Resources at the U of A, has discovered the first-ever sample of a mineral called ringwoodite. Analysis of the mineral shows it contains a significant amount of water-1.5 per cent of its weight-a finding that confirms scientific theories about vast volumes of water trapped 410 to 660 kilometres beneath the Earth, between the upper and lower mantle.

“This sample really provides extremely strong confirmation that there are local wet spots deep in the Earth in this area,” said Pearson, a professor in the Faculty of Science, whose findings were published March 13 in Nature. “That particular zone in the Earth, the transition zone, might have as much water as all the world’s oceans put together.”

Ringwoodite is a form of the mineral peridot, believed to exist in large quantities under high pressures in the transition zone. Ringwoodite has been found in meteorites but, until now, no terrestrial sample has ever been unearthed because scientists haven’t been able to conduct fieldwork at extreme depths.

Pearson’s sample was found in 2008 in the Juina area of Mato Grosso, Brazil, where artisan miners unearthed the host diamond from shallow river gravels. The diamond had been brought to the Earth’s surface by a volcanic rock known as kimberlite-the most deeply derived of all volcanic rocks.

The discovery that almost wasn’t

Pearson said the discovery was almost accidental in that his team had been looking for another mineral when they purchased a three-millimetre-wide, dirty-looking, commercially worthless brown diamond. The ringwoodite itself is invisible to the naked eye, buried beneath the surface, so it was fortunate that it was found by Pearson’s graduate student, John McNeill, in 2009.

“It’s so small, this inclusion, it’s extremely difficult to find, never mind work on,” Pearson said, “so it was a bit of a piece of luck, this discovery, as are many scientific discoveries.”

The sample underwent years of analysis using Raman and infrared spectroscopy and X-ray diffraction before it was officially confirmed as ringwoodite. The critical water measurements were performed at Pearson’s Arctic Resources Geochemistry Laboratory at the U of A. The laboratory forms part of the world-renowned Canadian Centre for Isotopic Microanalysis, also home to the world’s largest academic diamond research group.

The study is a great example of a modern international collaboration with some of the top leaders from various fields, including the Geoscience Institute at Goethe University, University of Padova, Durham University, University of Vienna, Trigon GeoServices and Ghent University.

For Pearson, one of the world’s leading authorities in the study of deep Earth diamond host rocks, the discovery ranks among the most significant of his career, confirming about 50 years of theoretical and experimental work by geophysicists, seismologists and other scientists trying to understand the makeup of the Earth’s interior.

Scientists have been deeply divided about the composition of the transition zone and whether it is full of water or desert-dry. Knowing water exists beneath the crust has implications for the study of volcanism and plate tectonics, affecting how rock melts, cools and shifts below the crust.

“One of the reasons the Earth is such a dynamic planet is the presence of some water in its interior,” Pearson said. “Water changes everything about the way a planet works.”

Rain as acidic as lemon juice may have contributed to ancient mass extinction

Rain as acidic as undiluted lemon juice may have played a part in killing off plants and organisms around the world during the most severe mass extinction in Earth’s history.

About 252 million years ago, the end of the Permian period brought about a worldwide collapse known as the Great Dying, during which a vast majority of species went extinct.

The cause of such a massive extinction is a matter of scientific debate, centering on several potential causes, including an asteroid collision, similar to what likely killed off the dinosaurs 186 million years later; a gradual, global loss of oxygen in the oceans; and a cascade of environmental events triggered by massive volcanic eruptions in a region known today as the Siberian Traps.

Now scientists at MIT and elsewhere have simulated this last possibility, creating global climate models of scenarios in which repeated bursts of volcanism spew gases, including sulfur, into the atmosphere. From their simulations, they found that sulfur emissions were significant enough to create widespread acid rain throughout the Northern Hemisphere, with pH levels reaching 2 – as acidic as undiluted lemon juice. They say such acidity may have been sufficient to disfigure plants and stunt their growth, contributing to their ultimate extinction.

“Imagine you’re a plant that’s growing happily in the latest Permian,” says Benjamin Black, a postdoc in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “It’s been getting hotter and hotter, but perhaps your species has had time to adjust to that. But then quite suddenly, over the course of a few months, the rain begins to sizzle with sulfuric acid. It would be quite a shock if you were that plant.”

Black is lead author of a paper reporting the group’s results, which appears in the journal Geology. Co-authors include Jean-Fran├žois Lamarque, Christine Shields, and Jeffrey Kiehl from the National Center for Atmospheric Research and Linda Elkins-Tanton of the Carnegie Institution for Science.

Lemon juice spike

Geologists who have examined the rock record in Siberia have observed evidence of immense volcanism that came in short bursts beginning near the end of the Permian period and continuing for another million years. The volume of magma totaled several million cubic kilometers – enough to completely blanket the continental United States. This boiling stew of magma likely released carbon dioxide and other gases into the atmosphere, leading to gradual but powerful global warming.

The eruptions may also have released large clouds of sulfur, which ultimately returned to Earth’s surface as acid rain. Black, who has spent several summers in Siberia collecting samples to measure sulfur and other chemicals preserved in igneous rocks, used these measurements, along with other evidence, to develop simulations of magmatic activity in the end-Permian world.

The group simulated 27 scenarios, each approximating the release of gases from a plausible volcanic episode, including medium eruptions, large eruptions, and magma erupted through explosive pipes in the Earth’s crust. The researchers included a wide range of gases in their simulations, based on estimates from chemical analyses and thermal modeling. They then tracked water in the atmosphere, and the interactions among various gases and aerosols, to calculate the pH of rain.

The results showed that both carbon dioxide and volcanic sulfur could have significantly affected the acidity of rain at the end of the Permian. Levels of carbon dioxide and other greenhouse gases may have risen rapidly at the time, in part because of Siberian volcanism. According to their simulations, the researchers found that this elevated carbon dioxide could have increased rain’s acidity by an order of magnitude.

Adding sulfur emissions to the mix, they found that acidity further spiked to a pH of 2 – as acidic as undiluted lemon juice – and that such acidic rain may have fallen over most of the Northern Hemisphere. After an eruption ended, the researchers found that pH levels in rain bounced back, becoming less acidic within one year. However, with repeated bursts of volcanic activity, Black says the resulting swings in acid rain could have greatly stressed terrestrial species.

“Plants and animals wouldn’t have much time to adapt to these changes in the pH of rain,” Black says. “I think it certainly contributed to the environmental stress which was making it difficult for plants and animals to survive. At a certain point you have to ask, ‘How much can a plant take?'”

Life as an end-Permian organism

In addition to acid rain, the researchers modeled ozone depletion resulting from volcanic activity. While ozone depletion is more difficult to model than acid rain, their results suggest that a mix of gases released into the atmosphere may have destroyed 5 to 65 percent of the ozone layer, substantially increasing species’ exposure to ultraviolet radiation. The greatest ozone depletion occurred near the poles.

Going forward, Black hopes paleontologists and geochemists will consider the results as a point of comparison for their own observations of the end-Permian mass extinction. In the meantime, he says he now has a much more vivid picture of that catastrophic time.

“It’s not just one thing that was unpleasant,” Black says. “It’s this whole host of really nasty atmospheric and environmental effects. These results really made me feel sorry for end-Permian organisms.”