Climate capers of the past 600,000 years

The researchers remove samples from a core segment taken from Lake Van at the center for Marine environmental sciences MARUM in Bremen, where all of the cores from the PALEOVAN project are stored. -  Photo: Nadine Pickarski/Uni Bonn
The researchers remove samples from a core segment taken from Lake Van at the center for Marine environmental sciences MARUM in Bremen, where all of the cores from the PALEOVAN project are stored. – Photo: Nadine Pickarski/Uni Bonn

If you want to see into the future, you have to understand the past. An international consortium of researchers under the auspices of the University of Bonn has drilled deposits on the bed of Lake Van (Eastern Turkey) which provide unique insights into the last 600,000 years. The samples reveal that the climate has done its fair share of mischief-making in the past. Furthermore, there have been numerous earthquakes and volcanic eruptions. The results of the drilling project also provide a basis for assessing the risk of how dangerous natural hazards are for today’s population. In a special edition of the highly regarded publication Quaternary Science Reviews, the scientists have now published their findings in a number of journal articles.

In the sediments of Lake Van, the lighter-colored, lime-containing summer layers are clearly distinguishable from the darker, clay-rich winter layers — also called varves. In 2010, from a floating platform an international consortium of researchers drilled a 220 m deep sediment profile from the lake floor at a water depth of 360 m and analyzed the varves. The samples they recovered are a unique scientific treasure because the climate conditions, earthquakes and volcanic eruptions of the past 600,000 years can be read in outstanding quality from the cores.

The team of scientists under the auspices of the University of Bonn has analyzed some 5,000 samples in total. “The results show that the climate over the past hundred thousand years has been a roller coaster. Within just a few decades, the climate could tip from an ice age into a warm period,” says Doctor Thomas Litt of the University of Bonn’s Steinmann Institute and spokesman for the PALEOVAN international consortium of researchers. Unbroken continental climate archives from the ice age which encompass several hundred thousand years are extremely rare on a global scale. “There has never before in all of the Middle East and Central Asia been a continental drilling operation going so far back into the past,” says Doctor Litt. In the northern hemisphere, climate data from ice-cores drilled in Greenland encompass the last 120,000 years. The Lake Van project closes a gap in the scientific climate record.

The sediments reveal six cycles of cold and warm periods


Scientists found evidence for a total of six cycles of warm and cold periods in the sediments of Lake Van. The University of Bonn paleoecologist and his colleagues analyzed the pollen preserved in the sediments. Under a microscope they were able to determine which plants around the eastern Anatolian Lake the pollen came from. “Pollen is amazingly durable and is preserved over very long periods when protected in the sediments,” Doctor Litt explained. Insight into the age of the individual layers was gleaned through radiometric age measurements that use the decay of radioactive elements as a geologic clock. Based on the type of pollen and the age, the scientists were able to determine when oak forests typical of warm periods grew around Lake Van and when ice-age steppe made up of grasses, mugwort and goosefoot surrounded the lake.

Once they determine the composition of the vegetation present and the requirements of the plants, the scientists can reconstruct with a high degree of accuracy the temperature and amount of rainfall during different epochs. These analyses enable the team of researchers to read the varves of Lake Van like thousands of pages of an archive. With these data, the team was able to demonstrate that fluctuations in climate were due in large part to periodic changes in the Earth’s orbit parameters and the commensurate changes in solar insolation levels. However, the influence of North Atlantic currents was also evident. “The analysis of the Lake Van sediments has presented us with an image of how an ecosystem reacts to abrupt changes in climate. This fundamental data will help us to develop potential scenarios of future climate effects,” says Doctor Litt.

Risks of earthquakes and volcanic eruptions in the region of Van

Such risk assessments can also be made for other natural forces. “Deposits of volcanic ash with thicknesses of up to 10 m in the Lake Van sediments show us that approximately 270,000 years ago there was a massive eruption,” the University of Bonn paleoecologist said. The team struck some 300 different volcanic events in its drillings. Statistically, that corresponds to one explosive volcanic eruption in the region every 2000 years. Deformations in the sediment layers show that the area is subject to frequent, strong earthquakes. “The area around Lake Van is very densely populated. The data from the core samples show that volcanic activity and earthquakes present a relatively high risk for the region,” Doctor Litt says. According to media reports, in 2011 a 7.2 magnitude earthquake in the Van province claimed the lives of more than 500 people and injured more than 2,500.

Publication: “Results from the PALEOVAN drilling project: A 600,000 year long continental archive in the Near East”, Quaternary Science Reviews, Volume 104, online publication: (http://dx.doi.org/10.1016/j.quascirev.2014.09.026)

Climate capers of the past 600,000 years

The researchers remove samples from a core segment taken from Lake Van at the center for Marine environmental sciences MARUM in Bremen, where all of the cores from the PALEOVAN project are stored. -  Photo: Nadine Pickarski/Uni Bonn
The researchers remove samples from a core segment taken from Lake Van at the center for Marine environmental sciences MARUM in Bremen, where all of the cores from the PALEOVAN project are stored. – Photo: Nadine Pickarski/Uni Bonn

If you want to see into the future, you have to understand the past. An international consortium of researchers under the auspices of the University of Bonn has drilled deposits on the bed of Lake Van (Eastern Turkey) which provide unique insights into the last 600,000 years. The samples reveal that the climate has done its fair share of mischief-making in the past. Furthermore, there have been numerous earthquakes and volcanic eruptions. The results of the drilling project also provide a basis for assessing the risk of how dangerous natural hazards are for today’s population. In a special edition of the highly regarded publication Quaternary Science Reviews, the scientists have now published their findings in a number of journal articles.

In the sediments of Lake Van, the lighter-colored, lime-containing summer layers are clearly distinguishable from the darker, clay-rich winter layers — also called varves. In 2010, from a floating platform an international consortium of researchers drilled a 220 m deep sediment profile from the lake floor at a water depth of 360 m and analyzed the varves. The samples they recovered are a unique scientific treasure because the climate conditions, earthquakes and volcanic eruptions of the past 600,000 years can be read in outstanding quality from the cores.

The team of scientists under the auspices of the University of Bonn has analyzed some 5,000 samples in total. “The results show that the climate over the past hundred thousand years has been a roller coaster. Within just a few decades, the climate could tip from an ice age into a warm period,” says Doctor Thomas Litt of the University of Bonn’s Steinmann Institute and spokesman for the PALEOVAN international consortium of researchers. Unbroken continental climate archives from the ice age which encompass several hundred thousand years are extremely rare on a global scale. “There has never before in all of the Middle East and Central Asia been a continental drilling operation going so far back into the past,” says Doctor Litt. In the northern hemisphere, climate data from ice-cores drilled in Greenland encompass the last 120,000 years. The Lake Van project closes a gap in the scientific climate record.

The sediments reveal six cycles of cold and warm periods


Scientists found evidence for a total of six cycles of warm and cold periods in the sediments of Lake Van. The University of Bonn paleoecologist and his colleagues analyzed the pollen preserved in the sediments. Under a microscope they were able to determine which plants around the eastern Anatolian Lake the pollen came from. “Pollen is amazingly durable and is preserved over very long periods when protected in the sediments,” Doctor Litt explained. Insight into the age of the individual layers was gleaned through radiometric age measurements that use the decay of radioactive elements as a geologic clock. Based on the type of pollen and the age, the scientists were able to determine when oak forests typical of warm periods grew around Lake Van and when ice-age steppe made up of grasses, mugwort and goosefoot surrounded the lake.

Once they determine the composition of the vegetation present and the requirements of the plants, the scientists can reconstruct with a high degree of accuracy the temperature and amount of rainfall during different epochs. These analyses enable the team of researchers to read the varves of Lake Van like thousands of pages of an archive. With these data, the team was able to demonstrate that fluctuations in climate were due in large part to periodic changes in the Earth’s orbit parameters and the commensurate changes in solar insolation levels. However, the influence of North Atlantic currents was also evident. “The analysis of the Lake Van sediments has presented us with an image of how an ecosystem reacts to abrupt changes in climate. This fundamental data will help us to develop potential scenarios of future climate effects,” says Doctor Litt.

Risks of earthquakes and volcanic eruptions in the region of Van

Such risk assessments can also be made for other natural forces. “Deposits of volcanic ash with thicknesses of up to 10 m in the Lake Van sediments show us that approximately 270,000 years ago there was a massive eruption,” the University of Bonn paleoecologist said. The team struck some 300 different volcanic events in its drillings. Statistically, that corresponds to one explosive volcanic eruption in the region every 2000 years. Deformations in the sediment layers show that the area is subject to frequent, strong earthquakes. “The area around Lake Van is very densely populated. The data from the core samples show that volcanic activity and earthquakes present a relatively high risk for the region,” Doctor Litt says. According to media reports, in 2011 a 7.2 magnitude earthquake in the Van province claimed the lives of more than 500 people and injured more than 2,500.

Publication: “Results from the PALEOVAN drilling project: A 600,000 year long continental archive in the Near East”, Quaternary Science Reviews, Volume 104, online publication: (http://dx.doi.org/10.1016/j.quascirev.2014.09.026)

Magma pancakes beneath Lake Toba

The tremendous amounts of lava that are emitted during super-eruptions accumulate over millions of years prior to the event in the Earth’s crust. These reservoirs consist of magma that intrudes into the crust in the form of numerous horizontally oriented sheets resting on top of each other like a pile of pancakes.

A team of geoscientists from Novosibirsk, Paris and Potsdam presents these results in the current issue of Science (2014/10/31). The scientists investigate the question on where the tremendous amounts of material that are ejected to from huge calderas during super-eruptions actually originate. Here we are not dealing with large volcanic eruptions of the size of Pinatubo of Mount St. Helens, here we are talking about extreme events: The Toba-caldera in the Sumatra subduction zone in Indonesia originated from one of the largest volcanic eruption in recent Earth history, about 74,000 years ago. It emitted the enormous amount of 2,800 cubic kilometers of volcanic material with a dramatic global impact on climate and environment. Hereby, the 80 km long Lake Toba was formed.

Geoscientists were interested in finding out: How can the gigantic amounts of eruptible material required to form such a super volcano accumulate in the Earth’s crust. Was this a singular event thousands of years ago or can it happen again?

Researchers from the GFZ German Research Centre for Geosciences successfully installed a seismometer network in the Toba area to investigate these questions and provided the data to all participating scientists via the GEOFON data archive. GFZ scientist, Christoph Sens-Schönfelder, a co-author of the study explains: “With a new seismological method we were able to investigate the internal structure of the magma reservoir beneath the Toba-caldera. We found that the middle crust below the Toba supervolcano is horizontally layered.” The answer thus lies in the structure of the magma reservoir. Here, below 7 kilometers the crust consists of many, mostly horizontal, magmatic intrusions still containing molten material.

New seismological technique

It was already suspected that the large volume of magma ejected during the supervolcanic eruption had slowly accumulated over the last few millions of years in the form of consequently emplaced intrusions. This could now be confirmed with the results of field measurements. The GFZ scientists used a novel seismological method for this purpose. Over a six-month period they recorded the ambient seismic noise, the natural vibrations which usually are regarded as disturbing signals. With a statistical approach they analyzed the data and discovered that the velocity of seismic waves beneath Toba depends on the direction in which the waves shear the Earth’s crust. Above 7 kilometers depth the deposits of the last eruption formed a zone of low velocities. Below this depth the seismic anisotropy is caused by horizontally layered intrusions that structure the reservoir like a pile of pancakes. This is reflected in the seismic data.

Supervolcanoes

Not only in Indonesia, but also in other parts of the world there are such supervoclcanoes, which erupt only every couple of hundred thousand years but then in gigantic eruptions. Because of their size those volcanoes do not build up mountains but manifest themselves with their huge carter formed during the eruption – the caldera. Other known supervolcanoes include the area of the Yellow-Stone-Park, volcanoes in the Andes, and the caldera of Lake-Taupo in New Zealand. The present study helps to better understand the processes that lead to such super-eruptions.

Magma pancakes beneath Lake Toba

The tremendous amounts of lava that are emitted during super-eruptions accumulate over millions of years prior to the event in the Earth’s crust. These reservoirs consist of magma that intrudes into the crust in the form of numerous horizontally oriented sheets resting on top of each other like a pile of pancakes.

A team of geoscientists from Novosibirsk, Paris and Potsdam presents these results in the current issue of Science (2014/10/31). The scientists investigate the question on where the tremendous amounts of material that are ejected to from huge calderas during super-eruptions actually originate. Here we are not dealing with large volcanic eruptions of the size of Pinatubo of Mount St. Helens, here we are talking about extreme events: The Toba-caldera in the Sumatra subduction zone in Indonesia originated from one of the largest volcanic eruption in recent Earth history, about 74,000 years ago. It emitted the enormous amount of 2,800 cubic kilometers of volcanic material with a dramatic global impact on climate and environment. Hereby, the 80 km long Lake Toba was formed.

Geoscientists were interested in finding out: How can the gigantic amounts of eruptible material required to form such a super volcano accumulate in the Earth’s crust. Was this a singular event thousands of years ago or can it happen again?

Researchers from the GFZ German Research Centre for Geosciences successfully installed a seismometer network in the Toba area to investigate these questions and provided the data to all participating scientists via the GEOFON data archive. GFZ scientist, Christoph Sens-Schönfelder, a co-author of the study explains: “With a new seismological method we were able to investigate the internal structure of the magma reservoir beneath the Toba-caldera. We found that the middle crust below the Toba supervolcano is horizontally layered.” The answer thus lies in the structure of the magma reservoir. Here, below 7 kilometers the crust consists of many, mostly horizontal, magmatic intrusions still containing molten material.

New seismological technique

It was already suspected that the large volume of magma ejected during the supervolcanic eruption had slowly accumulated over the last few millions of years in the form of consequently emplaced intrusions. This could now be confirmed with the results of field measurements. The GFZ scientists used a novel seismological method for this purpose. Over a six-month period they recorded the ambient seismic noise, the natural vibrations which usually are regarded as disturbing signals. With a statistical approach they analyzed the data and discovered that the velocity of seismic waves beneath Toba depends on the direction in which the waves shear the Earth’s crust. Above 7 kilometers depth the deposits of the last eruption formed a zone of low velocities. Below this depth the seismic anisotropy is caused by horizontally layered intrusions that structure the reservoir like a pile of pancakes. This is reflected in the seismic data.

Supervolcanoes

Not only in Indonesia, but also in other parts of the world there are such supervoclcanoes, which erupt only every couple of hundred thousand years but then in gigantic eruptions. Because of their size those volcanoes do not build up mountains but manifest themselves with their huge carter formed during the eruption – the caldera. Other known supervolcanoes include the area of the Yellow-Stone-Park, volcanoes in the Andes, and the caldera of Lake-Taupo in New Zealand. The present study helps to better understand the processes that lead to such super-eruptions.

Sea-level spikes, volcanic risk, volcanos cause drought

Unforeseen, short-term increases in sea level caused by strong winds, pressure changes and fluctuating ocean currents can cause more damage to beaches on the East Coast over the course of a year than a powerful hurricane making landfall, according to a new study. The new research suggests that these sea-level anomalies could be more of a threat to coastal homes and businesses than previously thought, and could become higher and more frequent as a result of climate change, according to a new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

From this week’s Eos: Assessing Volcanic Risk in Saudi Arabia: An Integrated Approach


The Kingdom of Saudi Arabia has numerous large volcanic fields, known locally as “harrats.” The largest of these, Harrat Rahat, produced a basaltic fissure eruption in 1256 A.D. with lava flows traveling within 20 kilometers of the city Al-Madinah, which has a current population of 1.5 million plus an additional 3 million pilgrims annually. With more than 950 visible vents and periodic seismic swarms, an understanding of the risk of future eruptions in this volcanic field is vital. The Volcanic Risk in Saudi Arabia (VORISA) project was developed as a multidisciplinary international research collaboration that integrates geological, geophysical, hazard, and risk studies in this important area.

From AGU’s journals: Large volcanic eruptions cause drought in eastern China


In most cases, the annual East Asian Monsoon brings heavy rains and widespread flooding to southeast China and drought conditions to the northeast. At various points throughout history, however, large volcanic eruptions have upset the regular behavior of the monsoon.

Sulfate aerosols injected high into the atmosphere by powerful eruptions can lower the land-sea temperature contrast that powers the monsoon circulation. How this altered aerosol forcing affects precipitation is not entirely clear, however, as climate models do not always agree with observations of the nature and scale of the effect.

Using two independent records of historical volcanic activity along with two different measures of rainfall, including one 3,000-year long record derived from local flood and drought observations, Zhuo et al. analyzes how large volcanic eruptions changed the conditions on the ground for the period 1368 to 1911. Understanding the effect of sulfate aerosols on monsoon behavior is particularly important now, as researchers explore aerosol seeding as a means of climate engineering.

The authors find that large Northern Hemispheric volcanic eruptions cause strong droughts in much of eastern China. The drought begins in the north in the second or third summer following an eruption and slowly moves southward over the next 2 to 3 years. They find that the severity of the drought scales with the amount of aerosol injected into the atmosphere, and that it takes 4 to 5 years for precipitation to recover. The drying pattern agrees with observations from three large modern eruptions.

China’s northeast is the country’s major grain-producing region. The results suggest that any geoengineering schemes meant to mimic the effect of a large volcanic eruption could potentially trigger devastating consequences for China’s food supply.

Sea-level spikes, volcanic risk, volcanos cause drought

Unforeseen, short-term increases in sea level caused by strong winds, pressure changes and fluctuating ocean currents can cause more damage to beaches on the East Coast over the course of a year than a powerful hurricane making landfall, according to a new study. The new research suggests that these sea-level anomalies could be more of a threat to coastal homes and businesses than previously thought, and could become higher and more frequent as a result of climate change, according to a new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.

From this week’s Eos: Assessing Volcanic Risk in Saudi Arabia: An Integrated Approach


The Kingdom of Saudi Arabia has numerous large volcanic fields, known locally as “harrats.” The largest of these, Harrat Rahat, produced a basaltic fissure eruption in 1256 A.D. with lava flows traveling within 20 kilometers of the city Al-Madinah, which has a current population of 1.5 million plus an additional 3 million pilgrims annually. With more than 950 visible vents and periodic seismic swarms, an understanding of the risk of future eruptions in this volcanic field is vital. The Volcanic Risk in Saudi Arabia (VORISA) project was developed as a multidisciplinary international research collaboration that integrates geological, geophysical, hazard, and risk studies in this important area.

From AGU’s journals: Large volcanic eruptions cause drought in eastern China


In most cases, the annual East Asian Monsoon brings heavy rains and widespread flooding to southeast China and drought conditions to the northeast. At various points throughout history, however, large volcanic eruptions have upset the regular behavior of the monsoon.

Sulfate aerosols injected high into the atmosphere by powerful eruptions can lower the land-sea temperature contrast that powers the monsoon circulation. How this altered aerosol forcing affects precipitation is not entirely clear, however, as climate models do not always agree with observations of the nature and scale of the effect.

Using two independent records of historical volcanic activity along with two different measures of rainfall, including one 3,000-year long record derived from local flood and drought observations, Zhuo et al. analyzes how large volcanic eruptions changed the conditions on the ground for the period 1368 to 1911. Understanding the effect of sulfate aerosols on monsoon behavior is particularly important now, as researchers explore aerosol seeding as a means of climate engineering.

The authors find that large Northern Hemispheric volcanic eruptions cause strong droughts in much of eastern China. The drought begins in the north in the second or third summer following an eruption and slowly moves southward over the next 2 to 3 years. They find that the severity of the drought scales with the amount of aerosol injected into the atmosphere, and that it takes 4 to 5 years for precipitation to recover. The drying pattern agrees with observations from three large modern eruptions.

China’s northeast is the country’s major grain-producing region. The results suggest that any geoengineering schemes meant to mimic the effect of a large volcanic eruption could potentially trigger devastating consequences for China’s food supply.

How much magma is hiding beneath our feet?

Molten rock (or magma) has a strong influence on our planet and its inhabitants, causing destructive volcanic eruptions and generating some of the giant mineral deposits. Our understanding of these phenomena is, however, limited by the fact that most magma cools and solidifies several kilometres beneath our feet, only to be exposed at the surface, millions of years later, by erosion. Scientists have never been able to track the movements of magma at such great depths? that is, until a team from the University of Geneva (UNIGE) discovered an innovative technique, details of which will be published in the next issue of the journal Nature.

It is a story of three scientists: a modelling specialist, an expert in a tiny mineral known as “zircon”, and a volcanologist. Following a casual conversation, the researchers stumbled upon an idea, and eventually a new method to estimate the volume and flow of magma required for the construction of magma chambers was shaped. The technique they developed makes it possible to refine predictions of future volcanic eruptions as well as identifying areas of the planet that are rich in magma-related natural resources.

Zircon: a valuable mineral for scientists

Professor Urs Schaltegger has been studying zircon for more than ten years in his laboratory at UNIGE, one of the world’s few labs in this field. «The zircon crystals that are found in solidified magma hold key information about the injection of molten rock into a magma chamber before it freezes underground,» explains the professor. Zircon contains radioactive elements that enable researchers to determine its age. As part of the study, the team from the Section of Earth and Environmental Sciences of UNIGE paired data collected using natural samples and numerical simulation. As Guy Simpson, a researcher at UNIGE further explains: «Modelling meant that we could establish how the age of crystallised zircon in a cooled magma reservoir depends on the flow rate of injected magma and the size of the reservoir.»

Applications for society and industry


In the Nature article, the researchers propose a model that is capable of determining with unprecedented accuracy the age, volume and injection rate of magma that has accumulated at inaccessible depths. As a result, they have established that the formation of Earth’s crust, volcanic super eruptions and mineral deposits occur under very specific yet different conditions. Professor Luca Caricchi adds: «When we determine the age of a family of zircons from a small sample of solidified magmatic rock, using results from the mathematical model we have developed, we can tell what the size of the entire magma chamber was, as well as how fast the magma reservoir grew». The professor continues: «This information means that we can determine the probability of an explosive volcanic eruption of a certain size to occur. In addition, the model will be of interest to industry because we will be able to identify new areas of our planet that are home to large amounts of natural resources such as copper and gold.»

How much magma is hiding beneath our feet?

Molten rock (or magma) has a strong influence on our planet and its inhabitants, causing destructive volcanic eruptions and generating some of the giant mineral deposits. Our understanding of these phenomena is, however, limited by the fact that most magma cools and solidifies several kilometres beneath our feet, only to be exposed at the surface, millions of years later, by erosion. Scientists have never been able to track the movements of magma at such great depths? that is, until a team from the University of Geneva (UNIGE) discovered an innovative technique, details of which will be published in the next issue of the journal Nature.

It is a story of three scientists: a modelling specialist, an expert in a tiny mineral known as “zircon”, and a volcanologist. Following a casual conversation, the researchers stumbled upon an idea, and eventually a new method to estimate the volume and flow of magma required for the construction of magma chambers was shaped. The technique they developed makes it possible to refine predictions of future volcanic eruptions as well as identifying areas of the planet that are rich in magma-related natural resources.

Zircon: a valuable mineral for scientists

Professor Urs Schaltegger has been studying zircon for more than ten years in his laboratory at UNIGE, one of the world’s few labs in this field. «The zircon crystals that are found in solidified magma hold key information about the injection of molten rock into a magma chamber before it freezes underground,» explains the professor. Zircon contains radioactive elements that enable researchers to determine its age. As part of the study, the team from the Section of Earth and Environmental Sciences of UNIGE paired data collected using natural samples and numerical simulation. As Guy Simpson, a researcher at UNIGE further explains: «Modelling meant that we could establish how the age of crystallised zircon in a cooled magma reservoir depends on the flow rate of injected magma and the size of the reservoir.»

Applications for society and industry


In the Nature article, the researchers propose a model that is capable of determining with unprecedented accuracy the age, volume and injection rate of magma that has accumulated at inaccessible depths. As a result, they have established that the formation of Earth’s crust, volcanic super eruptions and mineral deposits occur under very specific yet different conditions. Professor Luca Caricchi adds: «When we determine the age of a family of zircons from a small sample of solidified magmatic rock, using results from the mathematical model we have developed, we can tell what the size of the entire magma chamber was, as well as how fast the magma reservoir grew». The professor continues: «This information means that we can determine the probability of an explosive volcanic eruption of a certain size to occur. In addition, the model will be of interest to industry because we will be able to identify new areas of our planet that are home to large amounts of natural resources such as copper and gold.»

Rewriting the history of volcanic forcing during the past 2,000 years

Locations of Antarctic ice core sites used for volcanic sulfate aerosol deposition reconstruction (right); a  DRI scientist examines a freshly drilled ice core in the field before ice cores are analyzed in DRI's ultra-trace ice core analytical laboratory. -  M. Sigl
Locations of Antarctic ice core sites used for volcanic sulfate aerosol deposition reconstruction (right); a DRI scientist examines a freshly drilled ice core in the field before ice cores are analyzed in DRI’s ultra-trace ice core analytical laboratory. – M. Sigl

A team of scientists led by Michael Sigl and Joe McConnell of Nevada’s Desert Research Institute (DRI) has completed the most accurate and precise reconstruction to date of historic volcanic sulfate emissions in the Southern Hemisphere.

The new record, described in a manuscript published today in the online edition of Nature Climate Change, is derived from a large number of individual ice cores collected at various locations across Antarctica and is the first annually resolved record extending through the Common Era (the last 2,000 years of human history).

“This record provides the basis for a dramatic improvement in existing reconstructions of volcanic emissions during recent centuries and millennia,” said the report’s lead author Michael Sigl, a postdoctoral fellow and specialist in DRI’s unique ultra-trace ice core analytical laboratory, located on the Institute’s campus in Reno, Nevada.

These reconstructions are critical to accurate model simulations used to assess past natural and anthropogenic climate forcing. Such model simulations underpin environmental policy decisions including those aimed at regulating greenhouse gas and aerosol emissions to mitigate projected global warming.

Powerful volcanic eruptions are one of the most significant causes of climate variability in the past because of the large amounts of sulfur dioxide they emit, leading to formation of microscopic particles known as volcanic sulfate aerosols. These aerosols reflect more of the sun’s radiation back to space, cooling the Earth. Past volcanic events are measured through sulfate deposition records found in ice cores and have been linked to short-term global and regional cooling.

This effort brought together the most extensive array of ice core sulfate data in the world, including the West Antarctic Ice Sheet (WAIS) Divide ice core – arguably the most detailed record of volcanic sulfate in the Southern Hemisphere. In total, the study incorporated 26 precisely synchronized ice core records collected in an array of 19 sites from across Antarctica.

“This work is the culmination of more than a decade of collaborative ice core collection and analysis in our lab here at DRI,” said Joe McConnell, a DRI research professor who developed the continuous-flow analysis system used to analyze the ice cores.

McConnell, a member of several research teams that collected the cores (including the 2007-2009 Norwegian-American Scientific Traverse of East Antarctica and the WAIS Divide project that reached a depth of 3,405 meters in 2011), added, “The new record identifies 116 individual volcanic events during the last 2000 years.”

“Our new record completes the period from years 1 to 500 AD, for which there were no reconstructions previously, and significantly improves the record for years 500 to 1500 AD,” Sigl added. This new record also builds on DRI’s previous work as part of the international Past Global Changes (PAGES) effort to help reconstruct an accurate 2,000-year-long global temperature for individual continents.

This study involved collaborating researchers from the United States, Japan, Germany, Norway, Australia, and Italy. International collaborators contributed ice core samples for analysis at DRI as well as ice core measurements and climate modeling.

According to Yuko Motizuki from RIKEN (Japan’s largest comprehensive research institution), “The collaboration between DRI, National Institute of Polar Research (NIPR), and RIKEN just started in the last year, and we were very happy to be able to use the two newly obtained ice core records taken from Dome Fuji, where the volcanic signals are clearly visible. This is because precipitation on the site mainly contains stratospheric components.” Dr. Motizuki analyzed the samples collected by the Japanese Antarctic Research Expedition.

Simulations of volcanic sulfate transport performed with a coupled aerosol-climate model were compared to the ice core observations and used to investigate spatial patterns of sulfate deposition to Antarctica.

“Both observations and model results show that not all eruptions lead to the same spatial pattern of sulfate deposition,” said Matthew Toohey from the German institute GEOMAR Helmholtz Centre for Ocean Research Kiel. He added, “Spatial variability in sulfate deposition means that the accuracy of volcanic sulfate reconstructions depends strongly on having a sufficient number of ice core records from as many different regions of Antarctica as possible.”

With such an accurately synchronized and robust array, Sigl and his colleagues were able to revise reconstructions of past volcanic aerosol loading that are widely used today in climate model simulations. Most notably, the research found that the two largest volcanic eruptions in recent Earth history (Samalas in 1257 and Kuwae in 1458) deposited 30 to 35 percent less sulfate in Antarctica, suggesting that these events had a weaker cooling effect on global climate than previously thought.

Rewriting the history of volcanic forcing during the past 2,000 years

Locations of Antarctic ice core sites used for volcanic sulfate aerosol deposition reconstruction (right); a  DRI scientist examines a freshly drilled ice core in the field before ice cores are analyzed in DRI's ultra-trace ice core analytical laboratory. -  M. Sigl
Locations of Antarctic ice core sites used for volcanic sulfate aerosol deposition reconstruction (right); a DRI scientist examines a freshly drilled ice core in the field before ice cores are analyzed in DRI’s ultra-trace ice core analytical laboratory. – M. Sigl

A team of scientists led by Michael Sigl and Joe McConnell of Nevada’s Desert Research Institute (DRI) has completed the most accurate and precise reconstruction to date of historic volcanic sulfate emissions in the Southern Hemisphere.

The new record, described in a manuscript published today in the online edition of Nature Climate Change, is derived from a large number of individual ice cores collected at various locations across Antarctica and is the first annually resolved record extending through the Common Era (the last 2,000 years of human history).

“This record provides the basis for a dramatic improvement in existing reconstructions of volcanic emissions during recent centuries and millennia,” said the report’s lead author Michael Sigl, a postdoctoral fellow and specialist in DRI’s unique ultra-trace ice core analytical laboratory, located on the Institute’s campus in Reno, Nevada.

These reconstructions are critical to accurate model simulations used to assess past natural and anthropogenic climate forcing. Such model simulations underpin environmental policy decisions including those aimed at regulating greenhouse gas and aerosol emissions to mitigate projected global warming.

Powerful volcanic eruptions are one of the most significant causes of climate variability in the past because of the large amounts of sulfur dioxide they emit, leading to formation of microscopic particles known as volcanic sulfate aerosols. These aerosols reflect more of the sun’s radiation back to space, cooling the Earth. Past volcanic events are measured through sulfate deposition records found in ice cores and have been linked to short-term global and regional cooling.

This effort brought together the most extensive array of ice core sulfate data in the world, including the West Antarctic Ice Sheet (WAIS) Divide ice core – arguably the most detailed record of volcanic sulfate in the Southern Hemisphere. In total, the study incorporated 26 precisely synchronized ice core records collected in an array of 19 sites from across Antarctica.

“This work is the culmination of more than a decade of collaborative ice core collection and analysis in our lab here at DRI,” said Joe McConnell, a DRI research professor who developed the continuous-flow analysis system used to analyze the ice cores.

McConnell, a member of several research teams that collected the cores (including the 2007-2009 Norwegian-American Scientific Traverse of East Antarctica and the WAIS Divide project that reached a depth of 3,405 meters in 2011), added, “The new record identifies 116 individual volcanic events during the last 2000 years.”

“Our new record completes the period from years 1 to 500 AD, for which there were no reconstructions previously, and significantly improves the record for years 500 to 1500 AD,” Sigl added. This new record also builds on DRI’s previous work as part of the international Past Global Changes (PAGES) effort to help reconstruct an accurate 2,000-year-long global temperature for individual continents.

This study involved collaborating researchers from the United States, Japan, Germany, Norway, Australia, and Italy. International collaborators contributed ice core samples for analysis at DRI as well as ice core measurements and climate modeling.

According to Yuko Motizuki from RIKEN (Japan’s largest comprehensive research institution), “The collaboration between DRI, National Institute of Polar Research (NIPR), and RIKEN just started in the last year, and we were very happy to be able to use the two newly obtained ice core records taken from Dome Fuji, where the volcanic signals are clearly visible. This is because precipitation on the site mainly contains stratospheric components.” Dr. Motizuki analyzed the samples collected by the Japanese Antarctic Research Expedition.

Simulations of volcanic sulfate transport performed with a coupled aerosol-climate model were compared to the ice core observations and used to investigate spatial patterns of sulfate deposition to Antarctica.

“Both observations and model results show that not all eruptions lead to the same spatial pattern of sulfate deposition,” said Matthew Toohey from the German institute GEOMAR Helmholtz Centre for Ocean Research Kiel. He added, “Spatial variability in sulfate deposition means that the accuracy of volcanic sulfate reconstructions depends strongly on having a sufficient number of ice core records from as many different regions of Antarctica as possible.”

With such an accurately synchronized and robust array, Sigl and his colleagues were able to revise reconstructions of past volcanic aerosol loading that are widely used today in climate model simulations. Most notably, the research found that the two largest volcanic eruptions in recent Earth history (Samalas in 1257 and Kuwae in 1458) deposited 30 to 35 percent less sulfate in Antarctica, suggesting that these events had a weaker cooling effect on global climate than previously thought.