UW team explores large, restless volcanic field in Chile

If Brad Singer knew for sure what was happening three miles under an odd-shaped lake in the Andes, he might be less eager to spend a good part of his career investigating a volcanic field that has erupted 36 times during the last 25,000 years. As he leads a large scientific team exploring a region in the Andes called Laguna del Maule, Singer hopes the area remains quiet.

But the primary reason to expend so much effort on this area boils down to one fact: The rate of uplift is among the highest ever observed by satellite measurement for a volcano that is not actively erupting.

That uplift is almost definitely due to a large intrusion of magma — molten rock — beneath the volcanic complex. For seven years, an area larger than the city of Madison has been rising by 10 inches per year.

That rapid rise provides a major scientific opportunity: to explore a mega-volcano before it erupts. That effort, and the hazard posed by the restless magma reservoir beneath Laguna del Maule, are described in a major research article in the December issue of the Geological Society of America’s GSA Today.

“We’ve always been looking at these mega-eruptions in the rear-view mirror,” says Singer. “We look at the lava, dust and ash, and try to understand what happened before the eruption. Since these huge eruptions are rare, that’s usually our only option. But we look at the steady uplift at Laguna del Maule, which has a history of regular eruptions, combined with changes in gravity, electrical conductivity and swarms of earthquakes, and we suspect that conditions necessary to trigger another eruption are gathering force.”

Laguna del Maule looks nothing like a classic, cone-shaped volcano, since the high-intensity erosion caused by heavy rain and snow has carried most of the evidence to the nearby Pacific Ocean. But the overpowering reason for the absence of “typical volcano cones” is the nature of the molten rock underground. It’s called rhyolite, and it’s the most explosive type of magma on the planet.

The eruption of a rhyolite volcano is too quick and violent to build up a cone. Instead, this viscous, water-rich magma often explodes into vast quantities of ash that can form deposits hundreds of yards deep, followed by a slower flow of glassy magma that can be tens of yards tall and measure more than a mile in length.

The next eruption could be in the size range of Mount St. Helens — or it could be vastly bigger, Singer says. “We know that over the past million years or so, several eruptions at Laguna del Maule or nearby volcanoes have been more than 100 times larger than Mount St. Helens,” he says. “Those are rare, but they are possible.” Such a mega-eruption could change the weather, disrupt the ecosystem and damage the economy.

Trying to anticipate what Laguna del Maule holds in store, Singer is heading a new $3 million, five-year effort sponsored by the National Science Foundation to document its behavior before an eruption. With colleagues from Chile, Argentina, Canada, Singapore, and Cornell and Georgia Tech universities, he is masterminding an effort to build a scientific model of the underground forces that could lead to eruption. “This model should capture how this system has evolved in the crust at all scales, from the microscopic to basinwide, over the last 100,000 years,” Singer says. “It’s like a movie from the past to the present and into the future.”

Over the next five years, Singer says he and 30 colleagues will “throw everything, including the kitchen sink, at the problem — geology, geochemistry, geochronology and geophysics — to help measure, and then model, what’s going on.”

One key source of information on volcanoes is seismic waves. Ground shaking triggered by the movement of magma can signal an impending eruption. Team member Clifford Thurber, a seismologist and professor of geoscience at UW-Madison, wants to use distant earthquakes to locate the underground magma body.

As many as 50 seismometers will eventually be emplaced above and around the magma at Laguna del Maule, in the effort to create a 3-D image of Earth’s crust in the area.

By tracking multiple earthquakes over several years, Thurber and his colleagues want to pinpoint the size and location of the magma body — roughly estimated as an oval measuring five kilometers (3.1 miles) by 10 kilometers (6.2 miles).

Each seismometer will record the travel time of earthquake waves originating within a few thousand kilometers, Thurber explains. Since soft rock transmits sound less efficiently than hard rock, “we expect that waves that pass through the presumed magma body will be delayed,” Thurber says. “It’s very simple. It’s like a CT scan, except instead of density we are looking at seismic wave velocity.”

As Singer, who has been visiting Laguna del Maule since 1998, notes, “The rate of uplift — among the highest ever observed — has been sustained for seven years, and we have discovered a large, fluid-rich zone in the crust under the lake using electrical resistivity methods. Thus, there are not many possible explanations other than a big, active body of magma at a shallow depth.”

The expanding body of magma could freeze in place — or blow its top, he says. “One thing we know for sure is that the surface cannot continue rising indefinitely.”

Geologists discover ancient buried canyon in South Tibet

This photo shows the Yarlung Tsangpo Valley close to the Tsangpo Gorge, where it is rather narrow and underlain by only about 250 meters of sediments. The mountains in the upper left corner belong to the Namche Barwa massif. Previously, scientists had suspected that the debris deposited by a glacier in the foreground was responsible for the formation of the steep Tsangpo Gorge -- the new discoveries falsify this hypothesis. -  Ping Wang
This photo shows the Yarlung Tsangpo Valley close to the Tsangpo Gorge, where it is rather narrow and underlain by only about 250 meters of sediments. The mountains in the upper left corner belong to the Namche Barwa massif. Previously, scientists had suspected that the debris deposited by a glacier in the foreground was responsible for the formation of the steep Tsangpo Gorge — the new discoveries falsify this hypothesis. – Ping Wang

A team of researchers from Caltech and the China Earthquake Administration has discovered an ancient, deep canyon buried along the Yarlung Tsangpo River in south Tibet, north of the eastern end of the Himalayas. The geologists say that the ancient canyon–thousands of feet deep in places–effectively rules out a popular model used to explain how the massive and picturesque gorges of the Himalayas became so steep, so fast.

“I was extremely surprised when my colleagues, Jing Liu-Zeng and Dirk Scherler, showed me the evidence for this canyon in southern Tibet,” says Jean-Philippe Avouac, the Earle C. Anthony Professor of Geology at Caltech. “When I first saw the data, I said, ‘Wow!’ It was amazing to see that the river once cut quite deeply into the Tibetan Plateau because it does not today. That was a big discovery, in my opinion.”

Geologists like Avouac and his colleagues, who are interested in tectonics–the study of the earth’s surface and the way it changes–can use tools such as GPS and seismology to study crustal deformation that is taking place today. But if they are interested in studying changes that occurred millions of years ago, such tools are not useful because the activity has already happened. In those cases, rivers become a main source of information because they leave behind geomorphic signatures that geologists can interrogate to learn about the way those rivers once interacted with the land–helping them to pin down when the land changed and by how much, for example.

“In tectonics, we are always trying to use rivers to say something about uplift,” Avouac says. “In this case, we used a paleocanyon that was carved by a river. It’s a nice example where by recovering the geometry of the bottom of the canyon, we were able to say how much the range has moved up and when it started moving.”

The team reports its findings in the current issue of Science.

Last year, civil engineers from the China Earthquake Administration collected cores by drilling into the valley floor at five locations along the Yarlung Tsangpo River. Shortly after, former Caltech graduate student Jing Liu-Zeng, who now works for that administration, returned to Caltech as a visiting associate and shared the core data with Avouac and Dirk Scherler, then a postdoc in Avouac’s group. Scherler had previously worked in the far western Himalayas, where the Indus River has cut deeply into the Tibetan Plateau, and immediately recognized that the new data suggested the presence of a paleocanyon.

Liu-Zeng and Scherler analyzed the core data and found that at several locations there were sedimentary conglomerates, rounded gravel and larger rocks cemented together, that are associated with flowing rivers, until a depth of 800 meters or so, at which point the record clearly indicated bedrock. This suggested that the river once carved deeply into the plateau.

To establish when the river switched from incising bedrock to depositing sediments, they measured two isotopes, beryllium-10 and aluminum-26, in the lowest sediment layer. The isotopes are produced when rocks and sediment are exposed to cosmic rays at the surface and decay at different rates once buried, and so allowed the geologists to determine that the paleocanyon started to fill with sediment about 2.5 million years ago.

The researchers’ reconstruction of the former valley floor showed that the slope of the river once increased gradually from the Gangetic Plain to the Tibetan Plateau, with no sudden changes, or knickpoints. Today, the river, like most others in the area, has a steep knickpoint where it meets the Himalayas, at a place known as the Namche Barwa massif. There, the uplift of the mountains is extremely rapid (on the order of 1 centimeter per year, whereas in other areas 5 millimeters per year is more typical) and the river drops by 2 kilometers in elevation as it flows through the famous Tsangpo Gorge, known by some as the Yarlung Tsangpo Grand Canyon because it is so deep and long.

Combining the depth and age of the paleocanyon with the geometry of the valley, the geologists surmised that the river existed in this location prior to about 3 million years ago, but at that time, it was not affected by the Himalayas. However, as the Indian and Eurasian plates continued to collide and the mountain range pushed northward, it began impinging on the river. Suddenly, about 2.5 million years ago, a rapidly uplifting section of the mountain range got in the river’s way, damming it, and the canyon subsequently filled with sediment.

“This is the time when the Namche Barwa massif started to rise, and the gorge developed,” says Scherler, one of two lead authors on the paper and now at the GFZ German Research Center for Geosciences in Potsdam, Germany.

That picture of the river and the Tibetan Plateau, which involves the river incising deeply into the plateau millions of years ago, differs quite a bit from the typically accepted geologic vision. Typically, geologists believe that when rivers start to incise into a plateau, they eat at the edges, slowly making their way into the plateau over time. However, the rivers flowing across the Himalayas all have strong knickpoints and have not incised much at all into the Tibetan Plateau. Therefore, the thought has been that the rapid uplift of the Himalayas has pushed the rivers back, effectively pinning them, so that they have not been able to make their way into the plateau. But that explanation does not work with the newly discovered paleocanyon.

The team’s new hypothesis also rules out a model that has been around for about 15 years, called tectonic aneurysm, which suggests that the rapid uplift seen at the Namche Barwa massif was triggered by intense river incision. In tectonic aneurysm, a river cuts down through the earth’s crust so fast that it causes the crust to heat up, making a nearby mountain range weaker and facilitating uplift.

The model is popular among geologists, and indeed Avouac himself published a modeling paper in 1996 that showed the viability of the mechanism. “But now we have discovered that the river was able to cut into the plateau way before the uplift happened,” Avouac says, “and this shows that the tectonic aneurysm model was actually not at work here. The rapid uplift is not a response to river incision.”


The other lead author on the paper, “Tectonic control of the Yarlung Tsangpo Gorge, revealed by a 2.5 Myr old buried canyon in Southern Tibet,” is Ping Wang of the State Key Laboratory of Earthquake Dynamics, in Beijing, China. Additional authors include Jürgen Mey, of the University of Potsdam, in Germany; and Yunda Zhang and Dingguo Shi of the Chengdu Engineering Corporation, in China. The work was supported by the National Natural Science Foundation of China, the State Key Laboratory for Earthquake Dynamics, and the Alexander von Humboldt Foundation.

Prehistoric landslide discovery rivals largest known on surface of Earth

David Hacker, Ph.D., points to pseudotachylyte layers and veins within the Markagunt gravity slide. -  Photo courtesy of David Hacker
David Hacker, Ph.D., points to pseudotachylyte layers and veins within the Markagunt gravity slide. – Photo courtesy of David Hacker

A catastrophic landslide, one of the largest known on the surface of the Earth, took place within minutes in southwestern Utah more than 21 million years ago, reports a Kent State University geologist in a paper being to be published in the November issue of the journal Geology.

The Markagunt gravity slide, the size of three Ohio counties, is one of the two largest known continental landslides (larger slides exist on the ocean floors). David Hacker, Ph.D., associate professor of geology at the Trumbull campus, and two colleagues discovered and mapped the scope of the Markagunt slide over the past two summers.

His colleagues and co-authors are Robert F. Biek of the Utah Geological Survey and Peter D. Rowley of Geologic Mapping, Inc. of New Harmony, Utah.

Geologists had known about smaller portions of the Markagunt slide before the recent mapping showed its enormous extent. Hiking through the wilderness areas of the Dixie National Forest and Bureau of Land Management land, Hacker identified features showing that the Markagunt landslide was much bigger than previously known.

The landslide took place in an area between what is now Bryce Canyon National Park and the town of Beaver, Utah. It covered about 1,300 square miles, an area as big as Ohio’s Cuyahoga, Portage and Summit counties combined.

Its rival in size, the “Heart Mountain slide,” which took place around 50 million years ago in northwest Wyoming, was discovered in the 1940s and is a classic feature in geology textbooks.

The Markagunt could prove to be much larger than the Heart Mountain slide, once it is mapped in greater detail.

“Large-scale catastrophic collapses of volcanic fields such as these are rare but represent the largest known landslides on the surface of the Earth,” the authors wrote.

The length of the landslide – over 55 miles – also shows that it was as fast moving as it was massive, Hacker said. Evidence showing that the slide was catastrophic – occurring within minutes – included the presence of pseudotachylytes, rocks that were melted into glass by the immense friction. Any animals living in its path would have been quickly overrun.

Evidence of the slide is not readily apparent to visitors today. “Looking at it, you wouldn’t even recognize it as a landslide,” he said. But internal features of the slide, exposed in outcrops, yielded evidence such as jigsaw puzzle rock fractures and shear zones, along with the pseudotachylytes.

Hacker, who studies catastrophic geological events, said the slide originated when a volcanic field consisting of many strato-volcanoes, a type similar to Mount St. Helens in the Cascade Mountains, which erupted in 1980, collapsed and produced the massive landslide.

The collapse may have been caused by the vertical inflation of deeper magma chambers that fed the volcanoes. Hacker has spent many summers in Utah mapping geologic features of the Pine Valley Mountains south of the Markagunt where he has found evidence of similar, but smaller slides from magma intrusions called laccoliths.

What is learned about the mega-landslide could help geologists better understand these extreme types of events. The Markagunt and the Heart Mountain slides document for the first time how large portions of ancient volcanic fields have collapsed, Hacker said, representing “a new class of hazards in volcanic fields.”

While the Markagunt landslide was a rare event, it shows the magnitude of what could happen in modern volcanic fields like the Cascades. “We study events from the geologic past to better understand what could happen in the future,” he said.

The next steps in the research, conducted with his co-authors on the Geology paper, will be to continue mapping the slide, collect samples from the base for structural analysis and date the pseudotachylytes.

Hacker, who earned his Ph.D. in geology at Kent State, joined the faculty in 2000 after working for an environmental consulting company. He is co-author of the book “Earth’s Natural Hazards: Understanding Natural Disasters and Catastrophes,” published in 2010.

View the abstract of the Geology paper, available online now.

Learn more about research at Kent State: http://www.kent.edu/research

Climate change was not to blame for the collapse of the Bronze Age

Scientists will have to find alternative explanations for a huge population collapse in Europe at the end of the Bronze Age as researchers prove definitively that climate change – commonly assumed to be responsible – could not have been the culprit.

Archaeologists and environmental scientists from the University of Bradford, University of Leeds, University College Cork, Ireland (UCC), and Queen’s University Belfast have shown that the changes in climate that scientists believed to coincide with the fall in population in fact occurred at least two generations later.

Their results, published this week in Proceedings of the National Academy of Sciences, show that human activity starts to decline after 900BC, and falls rapidly after 800BC, indicating a population collapse. But the climate records show that colder, wetter conditions didn’t occur until around two generations later.

Fluctuations in levels of human activity through time are reflected by the numbers of radiocarbon dates for a given period. The team used new statistical techniques to analyse more than 2000 radiocarbon dates, taken from hundreds of archaeological sites in Ireland, to pinpoint the precise dates that Europe’s Bronze Age population collapse occurred.

The team then analysed past climate records from peat bogs in Ireland and compared the archaeological data to these climate records to see if the dates tallied. That information was then compared with evidence of climate change across NW Europe between 1200 and 500 BC.

“Our evidence shows definitively that the population decline in this period cannot have been caused by climate change,” says Ian Armit, Professor of Archaeology at the University of Bradford, and lead author of the study.

Graeme Swindles, Associate Professor of Earth System Dynamics at the University of Leeds, added, “We found clear evidence for a rapid change in climate to much wetter conditions, which we were able to precisely pinpoint to 750BC using statistical methods.”

According to Professor Armit, social and economic stress is more likely to be the cause of the sudden and widespread fall in numbers. Communities producing bronze needed to trade over very large distances to obtain copper and tin. Control of these networks enabled the growth of complex, hierarchical societies dominated by a warrior elite. As iron production took over, these networks collapsed, leading to widespread conflict and social collapse. It may be these unstable social conditions, rather than climate change, that led to the population collapse at the end of the Bronze Age.

According to Katharina Becker, Lecturer in the Department of Archaeology at UCC, the Late Bronze Age is usually seen as a time of plenty, in contrast to an impoverished Early Iron Age. “Our results show that the rich Bronze Age artefact record does not provide the full picture and that crisis began earlier than previously thought,” she says.

“Although climate change was not directly responsible for the collapse it is likely that the poor climatic conditions would have affected farming,” adds Professor Armit. “This would have been particularly difficult for vulnerable communities, preventing population recovery for several centuries.”

The findings have significance for modern day climate change debates which, argues Professor Armit, are often too quick to link historical climate events with changes in population.

“The impact of climate change on humans is a huge concern today as we monitor rising temperatures globally,” says Professor Armit.

“Often, in examining the past, we are inclined to link evidence of climate change with evidence of population change. Actually, if you have high quality data and apply modern analytical techniques, you get a much clearer picture and start to see the real complexity of human/environment relationships in the past.”

Groundwater warming up in synch

For their study, the researchers were able to fall back on uninterrupted long-term temperature measurements of groundwater flows around the cities of Cologne and Karlsruhe, where the operators of the local waterworks have been measuring the temperature of the groundwater, which is largely uninfluenced by humans, for forty years. This is unique and a rare commodity for the researchers. “For us, the data was a godsend,” stresses Peter Bayer, a senior assistant at ETH Zurich’s Geological Institute. Even with some intensive research, they would not have been able to find a comparable series of measurements. Evidently, it is less interesting or too costly for waterworks to measure groundwater temperatures systematically for a lengthy period of time. “Or the data isn’t digitalised and only archived on paper,” suspects the hydrogeologist.

Damped image of atmospheric warming

Based on the readings, the researchers were able to demonstrate that the groundwater is not just warming up; the warming stages observed in the atmosphere are also echoed. “Global warming is reflected directly in the groundwater, albeit damped and with a certain time lag,” says Bayer, summarising the main results that the project has yielded. The researchers published their study in the journal Hydrology and Earth System Sciences.

The data also reveals that the groundwater close to the surface down to a depth of around sixty metres has warmed up statistically significantly in the course of global warming over the last forty years. This water heating follows the warming pattern of the local and regional climate, which in turn mirrors that of global warming.

The groundwater reveals how the atmosphere has made several temperature leaps at irregular intervals. These “regime shifts” can also be observed in the global climate, as the researchers write in their study. Bayer was surprised at how quickly the groundwater responded to climate change.

Heat exchange with the subsoil

The earth’s atmosphere has warmed up by an average of 0.13 degrees Celsius per decade in the last fifty years. And this warming doesn’t stop at the subsoil, either, as other climate scientists have demonstrated in the last two decades with drillings all over the world. However, the researchers only tended to consider soils that did not contain any water or where there were no groundwater flow.

While the fact that the groundwater has not escaped climate change was revealed by researchers from Eawag and ETH Zurich in a study published three years ago, it only concerned “artificial” groundwater. In order to enhance it, river water is trickled off in certain areas. The temperature profile of the groundwater generated as a result thus matches that of the river water.

The new study, however, examines groundwater that has barely been influenced by humans. According to Bayer, it is plausible that the natural groundwater flow is also warming up in the course of climate change. “The difference in temperature between the atmosphere and the subsoil balances out naturally.” The energy transfer takes place via thermal conduction and the groundwater flow, much like a heat exchanger, which enables the heat transported to spread in the subsoil and level out.

The consequences of these findings, however, are difficult to gauge. The warmer temperatures might influence subterranean ecosystems on the one hand and groundwater-dependent biospheres on the other, which include cold areas in flowing waters where the groundwater discharges. For cryophilic organisms such as certain fish, groundwater warming could have negative consequences.

Consequences difficult to gauge

Higher groundwater temperatures also influence the water’s chemical composition, especially the chemical equilibria of nitrate or carbonate. After all, chemical reactions usually take place more quickly at higher temperatures. Bacterial activity might also increase at rising water temperatures. If the groundwater becomes warmer, undesirable bacteria such as gastro-intestinal disease pathogens might multiply more effectively. However, the scientists can also imagine positive effects. “The groundwater’s excess heat could be used geothermally for instance,” adds Kathrin Menberg, the first author of the study.

Massive geographic change may have triggered explosion of animal life

A new analysis from The University of Texas at Austin's Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. -  Ian Dalziel
A new analysis from The University of Texas at Austin’s Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. – Ian Dalziel

A new analysis of geologic history may help solve the riddle of the “Cambrian explosion,” the rapid diversification of animal life in the fossil record 530 million years ago that has puzzled scientists since the time of Charles Darwin.

A paper by Ian Dalziel of The University of Texas at Austin’s Jackson School of Geosciences, published in the November issue of Geology, a journal of the Geological Society of America, suggests a major tectonic event may have triggered the rise in sea level and other environmental changes that accompanied the apparent burst of life.

The Cambrian explosion is one of the most significant events in Earth’s 4.5-billion-year history. The surge of evolution led to the sudden appearance of almost all modern animal groups. Fossils from the Cambrian explosion document the rapid evolution of life on Earth, but its cause has been a mystery.

The sudden burst of new life is also called “Darwin’s dilemma” because it appears to contradict Charles Darwin’s hypothesis of gradual evolution by natural selection.

“At the boundary between the Precambrian and Cambrian periods, something big happened tectonically that triggered the spreading of shallow ocean water across the continents, which is clearly tied in time and space to the sudden explosion of multicellular, hard-shelled life on the planet,” said Dalziel, a research professor at the Institute for Geophysics and a professor in the Department of Geological Sciences.

Beyond the sea level rise itself, the ancient geologic and geographic changes probably led to a buildup of oxygen in the atmosphere and a change in ocean chemistry, allowing more complex life-forms to evolve, he said.

The paper is the first to integrate geological evidence from five present-day continents — North America, South America, Africa, Australia and Antarctica — in addressing paleogeography at that critical time.

Dalziel proposes that present-day North America was still attached to the southern continents until sometime into the Cambrian period. Current reconstructions of the globe’s geography during the early Cambrian show the ancient continent of Laurentia — the ancestral core of North America — as already having separated from the supercontinent Gondwanaland.

In contrast, Dalziel suggests the development of a deep oceanic gateway between the Pacific and Iapetus (ancestral Atlantic) oceans isolated Laurentia in the early Cambrian, a geographic makeover that immediately preceded the global sea level rise and apparent explosion of life.

“The reason people didn’t make this connection before was because they hadn’t looked at all the rock records on the different present-day continents,” he said.

The rock record in Antarctica, for example, comes from the very remote Ellsworth Mountains.

“People have wondered for a long time what rifted off there, and I think it was probably North America, opening up this deep seaway,” Dalziel said. “It appears ancient North America was initially attached to Antarctica and part of South America, not to Europe and Africa, as has been widely believed.”

Although the new analysis adds to evidence suggesting a massive tectonic shift caused the seas to rise more than half a billion years ago, Dalziel said more research is needed to determine whether this new chain of paleogeographic events can truly explain the sudden rise of multicellular life in the fossil record.

“I’m not claiming this is the ultimate explanation of the Cambrian explosion,” Dalziel said. “But it may help to explain what was happening at that time.”


To read the paper go to http://geology.gsapubs.org/content/early/2014/09/25/G35886.1.abstract

Study of Chile earthquake finds new rock structure that affects earthquake rupture

Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images,  These images revealed a new and previously jknknown rock structure in the Chile fault line. -  Stephen Hicks, University of Liverpool
Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images, These images revealed a new and previously jknknown rock structure in the Chile fault line. – Stephen Hicks, University of Liverpool

Researchers from the University of Liverpool have found an unusual mass of rock deep in the active fault line beneath Chile which influenced the rupture size of a massive earthquake that struck the region in 2010.

The geological structure, which was not previously known about, is unusually dense and large for this depth in the Earth’s crust. The body was revealed using 3-D seismic images of Earth’s interior based on the monitoring of vibrations on the Pacific seafloor caused by aftershocks from the magnitude 8.8 Chile earthquake. This imaging works in a similar way to CT scans that are used in hospitals.

Analysis of the 2010 earthquake also revealed that this structure played a key role in the movement of the fault, causing the rupture to suddenly slow down.

Seismologists think that the block of rock was once part of Earth’s mantle and may have formed around 220 million years ago, during the period of time known as the Triassic.

Liverpool Seismologist, Stephen Hicks from the School of Environmental Sciences, who led the research, said: “It was previously thought that dense geological bodies in an active fault zone may cause more movement of the fault during an earthquake.”

“However, our research suggests that these blocks of rock may in fact cause the earthquake rupture to suddenly slow down. But this slowing down can generate stronger shaking at the surface, which is more damaging to man-made structures.”

“It is now clear that ancient geology plays a big role in the generation of future earthquakes and their subsequent aftershocks.”

Professor Andreas Rietbrock, head of the Earthquake Seismology and Geodynamics research group added: “This work has clearly shown the potential of 3D ‘seismic’ images to further our understanding of the earthquake rupture process.

We are currently establishing the Liverpool Earth Observatory (LEO), which will allow us together with our international partners, to carry out similar studies in other tectonically active regions such as northern Chile, Indonesia, New Zealand and the northwest coast United States. This work is vital for understanding risk exposure in these countries from both ground shaking and tsunamis.”

Chile is located on the Pacific Ring of Fire, where the sinking of tectonic plates generates many of the world’s largest earthquakes.

The 2010 magnitude 8.8 earthquake in Chile is one of the best-recorded earthquakes, giving seismologists the best insight to date into the ruptures of mega-quakes.


The research, funded by the Natural Environment Research Council, is published in the journal Earth and Planetary Science Letters.

New study finds oceans arrived early to Earth

In this illustration of the early solar system, the dashed white line represents the snow line -- the transition from the hotter inner solar system, where water ice is not stable (brown) to the outer Solar system, where water ice is stable (blue). Two possible ways that the inner solar system received water are: water molecules sticking to dust grains inside the 'snow line' (as shown in the inset) and carbonaceous chondrite material flung into the inner solar system by the effect of gravity from protoJupiter. With either scenario, water must accrete to the inner planets within the first ca. 10 million years of solar system formation. -  Illustration by Jack Cook, Woods Hole Oceanographic Institution
In this illustration of the early solar system, the dashed white line represents the snow line — the transition from the hotter inner solar system, where water ice is not stable (brown) to the outer Solar system, where water ice is stable (blue). Two possible ways that the inner solar system received water are: water molecules sticking to dust grains inside the ‘snow line’ (as shown in the inset) and carbonaceous chondrite material flung into the inner solar system by the effect of gravity from protoJupiter. With either scenario, water must accrete to the inner planets within the first ca. 10 million years of solar system formation. – Illustration by Jack Cook, Woods Hole Oceanographic Institution

Earth is known as the Blue Planet because of its oceans, which cover more than 70 percent of the planet’s surface and are home to the world’s greatest diversity of life. While water is essential for life on the planet, the answers to two key questions have eluded us: where did Earth’s water come from and when?

While some hypothesize that water came late to Earth, well after the planet had formed, findings from a new study led by scientists at the Woods Hole Oceanographic Institution (WHOI) significantly move back the clock for the first evidence of water on Earth and in the inner solar system.

“The answer to one of the basic questions is that our oceans were always here. We didn’t get them from a late process, as was previously thought,” said Adam Sarafian, the lead author of the paper published Oct. 31, 2014, in the journal Science and a MIT/WHOI Joint Program student in the Geology and Geophysics Department.

One school of thought was that planets originally formed dry, due to the high-energy, high-impact process of planet formation, and that the water came later from sources such as comets or “wet” asteroids, which are largely composed of ices and gases.

“With giant asteroids and meteors colliding, there’s a lot of destruction,” said Horst Marschall, a geologist at WHOI and coauthor of the paper. “Some people have argued that any water molecules that were present as the planets were forming would have evaporated or been blown off into space, and that surface water as it exists on our planet today, must have come much, much later—hundreds of millions of years later.”

The study’s authors turned to another potential source of Earth’s water— carbonaceous chondrites. The most primitive known meteorites, carbonaceous chondrites, were formed in the same swirl of dust, grit, ice and gasses that gave rise to the sun some 4.6 billion years ago, well before the planets were formed.

“These primitive meteorites resemble the bulk solar system composition,” said WHOI geologist and coauthor Sune Nielsen. “They have quite a lot of water in them, and have been thought of before as candidates for the origin of Earth’s water.

In order to determine the source of water in planetary bodies, scientists measure the ratio between the two stable isotopes of hydrogen: deuterium and hydrogen. Different regions of the solar system are characterized by highly variable ratios of these isotopes. The study’s authors knew the ratio for carbonaceous chondrites and reasoned that if they could compare that to an object that was known to crystallize while Earth was actively accreting then they could gauge when water appeared on Earth.

To test this hypothesis, the research team, which also includes Francis McCubbin from the Institute of Meteoritics at the University of New Mexico and Brian Monteleone of WHOI, utilized meteorite samples provided by NASA from the asteroid 4-Vesta. The asteroid 4-Vesta, which formed in the same region of the solar system as Earth, has a surface of basaltic rock—frozen lava. These basaltic meteorites from 4-Vesta are known as eucrites and carry a unique signature of one of the oldest hydrogen reservoirs in the solar system. Their age—approximately 14 million years after the solar system formed—makes them ideal for determining the source of water in the inner solar system at a time when Earth was in its main building phase. The researchers analyzed five different samples at the Northeast National Ion Microprobe Facility—a state-of-the-art national facility housed at WHOI that utilizes secondary ion mass spectrometers. This is the first time hydrogen isotopes have been measured in eucrite meteorites.

The measurements show that 4-Vesta contains the same hydrogen isotopic composition as carbonaceous chondrites, which is also that of Earth. That, combined with nitrogen isotope data, points to carbonaceous chondrites as the most likely common source of water.

“The study shows that Earth’s water most likely accreted at the same time as the rock. The planet formed as a wet planet with water on the surface,” Marschall said.

While the findings don’t preclude a late addition of water on Earth, it shows that it wasn’t necessary since the right amount and composition of water was present at a very early stage.

“An implication of that is that life on our planet could have started to begin very early,” added Nielsen. “Knowing that water came early to the inner solar system also means that the other inner planets could have been wet early and evolved life before they became the harsh environments they are today.

Rare 2.5-billion-year-old rocks reveal hot spot of sulfur-breathing bacteria

Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. -  Alan J. Kaufman
Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. – Alan J. Kaufman

Wriggle your toes in a marsh’s mucky bottom sediment and you’ll probably inhale a rotten egg smell, the distinctive odor of hydrogen sulfide gas. That’s the biochemical signature of sulfur-using bacteria, one of Earth’s most ancient and widespread life forms.

Among scientists who study the early history of our 4.5 billion-year-old planet, there is a vigorous debate about the evolution of sulfur-dependent bacteria. These simple organisms arose at a time when oxygen levels in the atmosphere were less than one-thousandth of what they are now. Living in ocean waters, they respired (or breathed in) sulfate, a form of sulfur, instead of oxygen. But how did that sulfate reach the ocean, and when did it become abundant enough for living things to use it?

New research by University of Maryland geology doctoral student Iadviga Zhelezinskaia offers a surprising answer. Zhelezinskaia is the first researcher to analyze the biochemical signals of sulfur compounds found in 2.5 billion-year-old carbonate rocks from Brazil. The rocks were formed on the ocean floor in a geologic time known as the Neoarchaean Eon. They surfaced when prospectors drilling for gold in Brazil punched a hole into bedrock and pulled out a 590-foot-long core of ancient rocks.

In research published Nov. 7, 2014 in the journal Science, Zhelezinskaia and three co-authors–physicist John Cliff of the University of Western Australia and geologists Alan Kaufman and James Farquhar of UMD–show that bacteria dependent on sulfate were plentiful in some parts of the Neoarchaean ocean, even though sea water typically contained about 1,000 times less sulfate than it does today.

“The samples Iadviga measured carry a very strong signal that sulfur compounds were consumed and altered by living organisms, which was surprising,” says Farquhar. “She also used basic geochemical models to give an idea of how much sulfate was in the oceans, and finds the sulfate concentrations are very low, much lower than previously thought.”

Geologists study sulfur because it is abundant and combines readily with other elements, forming compounds stable enough to be preserved in the geologic record. Sulfur has four naturally occurring stable isotopes–atomic signatures left in the rock record that scientists can use to identify the elements’ different forms. Researchers measuring sulfur isotope ratios in a rock sample can learn whether the sulfur came from the atmosphere, weathering rocks or biological processes. From that information about the sulfur sources, they can deduce important information about the state of the atmosphere, oceans, continents and biosphere when those rocks formed.

Farquhar and other researchers have used sulfur isotope ratios in Neoarchaean rocks to show that soon after this period, Earth’s atmosphere changed. Oxygen levels soared from just a few parts per million to almost their current level, which is around 21 percent of all the gases in the atmosphere. The Brazilian rocks Zhelezinskaia sampled show only trace amounts of oxygen, a sign they were formed before this atmospheric change.

With very little oxygen, the Neoarchaean Earth was a forbidding place for most modern life forms. The continents were probably much drier and dominated by volcanoes that released sulfur dioxide, carbon dioxide, methane and other greenhouse gases. Temperatures probably ranged between 0 and 100 degrees Celsius (32 to 212 degrees Fahrenheit), warm enough for liquid oceans to form and microbes to grow in them.

Rocks 2.5 billion years old or older are extremely rare, so geologists’ understanding of the Neoarchaean are based on a handful of samples from a few small areas, such as Western Australia, South Africa and Brazil. Geologists theorize that Western Australia and South Africa were once part of an ancient supercontinent called Vaalbara. The Brazilian rock samples are comparable in age, but they may not be from the same supercontinent, Zhelezinskaia says.

Most of the Neoarchaean rocks studied are from Western Australia and South Africa and are black shale, which forms when fine dust settles on the sea floor. The Brazilian prospector’s core contains plenty of black shale and a band of carbonate rock, formed below the surface of shallow seas, in a setting that probably resembled today’s Bahama Islands. Black shale usually contains sulfur-bearing pyrite, but carbonate rock typically does not, so geologists have not focused on sulfur signals in Neoarchaean carbonate rocks until now.

Zhelezinskaia “chose to look at a type of rock that others generally avoided, and what she saw was spectacularly different,” said Kaufman. “It really opened our eyes to the implications of this study.”

The Brazilian carbonate rocks’ isotopic ratios showed they formed in ancient seabed containing sulfate from atmospheric sources, not continental rock. And the isotopic ratios also showed that Neoarchaean bacteria were plentiful in the sediment, respiring sulfate and emitted hydrogen sulfide–the same process that goes on today as bacteria recycle decaying organic matter into minerals and gases.

How could the sulfur-dependent bacteria have thrived during a geologic time when sulfur levels were so low? “It seems that they were in shallow water, where evaporation may have been high enough to concentrate the sulfate, and that would make it abundant enough to support the bacteria,” says Zhelezinskaia.

Zhelezinskaia is now analyzing carbonate rocks of the same age from Western Australia and South Africa, to see if the pattern holds true for rocks formed in other shallow water environments. If it does, the results may change scientists’ understanding of one of Earth’s earliest biological processes.

“There is an ongoing debate about when sulfate-reducing bacteria arose and how that fits into the evolution of life on our planet,” says Farquhar. “These rocks are telling us the bacteria were there 2.5 billion years ago, and they were doing something significant enough that we can see them today.”


This research was supported by the Fulbright Program (Grantee ID 15110620), the NASA Astrobiology Institute (Grant No. NNA09DA81A) and the National Science Foundation Frontiers in Earth-System Dynamics program (Grant No. 432129). The content of this article does not necessarily reflect the views of these organizations.

“Large sulfur isotope fractionations associated with Neoarchaean microbial sulfate reductions,” Iadviga Zhelezinskaia, Alan J. Kaufman, James Farquhar and John Cliff, was published Nov. 7, 2014 in Science. Download the abstract after 2 p.m. U.S. Eastern time, Nov. 6, 2014: http://www.sciencemag.org/lookup/doi/10.1126/science.1256211

James Farquhar home page


Alan J. Kaufman home page


Iadviga Zhelezinskaia home page


Media Relations Contact: Abby Robinson, 301-405-5845, abbyr@umd.edu

Writer: Heather Dewar

New study shows 3 abrupt pulse of CO2 during last deglaciation

A new study shows that the rise of atmospheric carbon dioxide that contributed to the end of the last ice age more than 10,000 years ago did not occur gradually, but was characterized by three “pulses” in which C02 rose abruptly.

Scientists are not sure what caused these abrupt increases, during which C02 levels rose about 10-15 parts per million – or about 5 percent per episode – over a period of 1-2 centuries. It likely was a combination of factors, they say, including ocean circulation, changing wind patterns, and terrestrial processes.

The finding is important, however, because it casts new light on the mechanisms that take the Earth in and out of ice age regimes. Results of the study, which was funded by the National Science Foundation, appear this week in the journal Nature.

“We used to think that naturally occurring changes in carbon dioxide took place relatively slowly over the 10,000 years it took to move out of the last ice age,” said Shaun Marcott, lead author on the article who conducted his study as a post-doctoral researcher at Oregon State University. “This abrupt, centennial-scale variability of CO2 appears to be a fundamental part of the global carbon cycle.”

Some previous research has hinted at the possibility that spikes in atmospheric carbon dioxide may have accelerated the last deglaciation, but that hypothesis had not been resolved, the researchers say. The key to the new finding is the analysis of an ice core from the West Antarctic that provided the scientists with an unprecedented glimpse into the past.

Scientists studying past climate have been hampered by the limitations of previous ice cores. Cores from Greenland, for example, provide unique records of rapid climate events going back 120,000 years – but high concentrations of impurities don’t allow researchers to accurately determine atmospheric carbon dioxide records. Antarctic ice cores have fewer impurities, but generally have had lower “temporal resolution,” providing less detailed information about atmospheric CO2.

However, a new core from West Antarctica, drilled to a depth of 3,405 meters in 2011 and spanning the last 68,000 years, has “extraordinary detail,” said Oregon State paleoclimatologist Edward Brook, a co-author on the Nature study and an internationally recognized ice core expert. Because the area where the core was taken gets high annual snowfall, he said, the new ice core provides one of the most detailed records of atmospheric CO2.

“It is a remarkable ice core and it clearly shows distinct pulses of carbon dioxide increase that can be very reliably dated,” Brook said. “These are some of the fastest natural changes in CO2 we have observed, and were probably big enough on their own to impact the Earth’s climate.

“The abrupt events did not end the ice age by themselves,” Brook added. “That might be jumping the gun a bit. But it is fair to say that the natural carbon cycle can change a lot faster than was previously thought – and we don’t know all of the mechanisms that caused that rapid change.”

The researchers say that the increase in atmospheric CO2 from the peak of the last ice age to complete deglaciation was about 80 parts per million, taking place over 10,000 years. Thus, the finding that 30-45 ppm of the increase happened in just a few centuries was significant.

The overall rise of atmospheric carbon dioxide during the last deglaciation was thought to have been triggered by the release of CO2 from the deep ocean – especially the Southern Ocean. However, the researchers say that no obvious ocean mechanism is known that would trigger rises of 10-15 ppm over a time span as short as one to two centuries.

“The oceans are simply not thought to respond that fast,” Brook said. “Either the cause of these pulses is at least part terrestrial, or there is some mechanism in the ocean system we don’t yet know about.”

One reason the researchers are reluctant to pin the end of the last ice age solely on CO2 increases is that other processes were taking place, according to Marcott, who recently joined the faculty of the University of Wisconsin-Madison.

“At the same time CO2 was increasing, the rate of methane in the atmosphere was also increasing at the same or a slightly higher rate,” Marcott said. “We also know that during at least two of these pulses, the Atlantic Meridional Overturning Circulation changed as well. Changes in the ocean circulation would have affected CO2 – and indirectly methane, by impacting global rainfall patterns.”

“The Earth is a big coupled system,” he added, “and there are many pieces to the puzzle. The discovery of these strong, rapid pulses of CO2 is an important piece.”