Location of upwelling in Earth’s mantle discovered to be stable

This is a diagram showing a slice through the Earth's mantle, cutting across major mantle upwelling locations beneath Africa and the Pacific. -  C. Conrad (UH SOEST)
This is a diagram showing a slice through the Earth’s mantle, cutting across major mantle upwelling locations beneath Africa and the Pacific. – C. Conrad (UH SOEST)

A study published in Nature today shares the discovery that large-scale upwelling within Earth’s mantle mostly occurs in only two places: beneath Africa and the Central Pacific. More importantly, Clinton Conrad, Associate Professor of Geology at the University of Hawaii – Manoa’s School of Ocean and Earth Science and Technology (SOEST) and colleagues revealed that these upwelling locations have remained remarkably stable over geologic time, despite dramatic reconfigurations of tectonic plate motions and continental locations on the Earth’s surface. “For example,” said Conrad, “the Pangaea supercontinent formed and broke apart at the surface, but we think that the upwelling locations in the mantle have remained relatively constant despite this activity.”

Conrad has studied patterns of tectonic plates throughout his career, and has long noticed that the plates were, on average, moving northward. “Knowing this,” explained Conrad, “I was curious if I could determine a single location in the Northern Hemisphere toward which all plates are converging, on average.” After locating this point in eastern Asia, Conrad then wondered if other special points on Earth could characterize plate tectonics. “With some mathematical work, I described the plate tectonic ‘quadrupole’, which defines two points of ‘net convergence’ and two points of ‘net divergence’ of tectonic plate motions.”

When the researchers computed the plate tectonic quadruople locations for present-day plate motions, they found that the net divergence locations were consistent with the African and central Pacific locations where scientists think that mantle upwellings are occurring today. “This observation was interesting and important, and it made sense,” said Conrad. “Next, we applied this formula to the time history of plate motions and plotted the points – I was astonished to see that the points have not moved over geologic time!” Because plate motions are merely the surface expression of the underlying dynamics of the Earth’s mantle, Conrad and his colleagues were able to infer that upwelling flow in the mantle must also remain stable over geologic time. “It was as if I was seeing the ‘ghosts’ of ancient mantle flow patterns, recorded in the geologic record of plate motions!”

Earth’s mantle dynamics govern many aspects of geologic change on the Earth’s surface. This recent discovery that mantle upwelling has remained stable and centered on two locations (beneath Africa and the Central Pacific) provides a framework for understanding how mantle dynamics can be linked to surface geology over geologic time. For example, the researchers can now estimate how individual continents have moved relative to these two upwelling locations. This allows them to tie specific events that are observed in the geologic record to the mantle forces that ultimately caused these events.

More broadly, this research opens up a big question for solid earth scientists: What processes cause these two mantle upwelling locations to remain stable within a complex and dynamically evolving system such as the mantle? One notable observation is that the lowermost mantle beneath Africa and the Central Pacific seems to be composed of rock assemblages that are different than the rest of the mantle. Is it possible that these two anomalous regions at the bottom of the mantle are somehow organizing flow patterns for the rest of the mantle? How?

“Answering such questions is important because geologic features such as ocean basins, mountains belts, earthquakes and volcanoes ultimately result from Earth’s interior dynamics,” Conrad described. “Thus, it is important to understand the time-dependent nature of our planet’s interior dynamics in order to better understand the geological forces that affect the planetary surface that is our home.”

The mantle flow framework that can be defined as a result of this study allows geophysicists to predict surface uplift and subsidence patterns as a function of time. These vertical motions of continents and seafloor cause both local and global changes in sea level. In the future, Conrad wants to use this new understanding of mantle flow patterns to predict changes in sea level over geologic time. By comparing these predictions to observations of sea level change, he hopes to develop new constraints on the influence of mantle dynamics on sea level.

New ‘embryonic’ subduction zone found

A new subduction zone forming off the coast of Portugal heralds the beginning of a cycle that will see the Atlantic Ocean close as continental Europe moves closer to America.

Published in Geology, new research led by Monash University geologists has detected the first evidence that a passive margin in the Atlantic ocean is becoming active. Subduction zones, such as the one beginning near Iberia, are areas where one of the tectonic plates that cover the Earth’s surface dives beneath another plate into the mantle – the layer just below the crust.

Lead author Dr João Duarte, from the School of Geosciences said the team mapped the ocean floor and found it was beginning to fracture, indicating tectonic activity around the apparently passive South West Iberia plate margin.

“What we have detected is the very beginnings of an active margin – it’s like an embryonic subduction zone,” Dr Duarte said.

“Significant earthquake activity, including the 1755 quake which devastated Lisbon, indicated that there might be convergent tectonic movement in the area. For the first time, we have been able to provide not only evidences that this is indeed the case, but also a consistent driving mechanism.”

The incipient subduction in the Iberian zone could signal the start of a new phase of the Wilson Cycle – where plate movements break up supercontinents, like Pangaea, and open oceans, stabilise and then form new subduction zones which close the oceans and bring the scattered continents back together.

This break-up and reformation of supercontinents has happened at least three times, over more than four billion years, on Earth. The Iberian subduction will gradually pull Iberia towards the United States over approximately 220 million years.

The findings provide a unique opportunity to observe a passive margin becoming active – a process that will take around 20 million years. Even at this early phase the site will yield data that is crucial to refining the geodynamic models.

“Understanding these processes will certainly provide new insights on how subduction zones may have initiated in the past and how oceans start to close,” Dr Duarte said.

First risk assessment of shale gas fracking to biodiversity

Fracking, the controversial method of mining shale gas, is widespread across Pennsylvania, covering up to 280,000 km² of the Appalachian Basin. New research in the Annals of the New York Academy of Sciences explores the threat posed to biodiversity including pollution from toxic chemicals, the building of well pads and pipelines, and changes to wetlands.

“Shale gas has engendered a great deal of controversy, largely because of its impact on human health, but effects on biological diversity and resources have scarcely been addressed in the public debate,” said study author Erik Kiviat.

“This study indicated a wide range of potential impacts, some of which could be severe, including salinization of soils and surface waters and fragmentation of forests. The degree of industrialization of shale gas landscapes, and the 285,000 km² extent of the Marcellus and Utica shale gas region alone, should require great caution regarding impacts on biodiversity.”

USF researchers: Life-producing phosphorus carried to Earth by meteorites

This is Matthew Pasek, University of South Florida. -  USF/Aimee Blodgett
This is Matthew Pasek, University of South Florida. – USF/Aimee Blodgett

Scientists may not know for certain whether life exists in outer space, but new research from a team of scientists led by a University of South Florida astrobiologist now shows that one key element that produced life on Earth was carried here on meteorites.

In an article published in the new edition of the Proceedings of the National Academies of Sciences, USF Assistant Professor of Geology Matthew Pasek and researchers from the University of Washington and the Edinburg Centre for Carbon Innovation, revealed new findings that explain how the reactive phosphorus that was an essential component for creating the earliest life forms came to Earth.

The scientists found that during the Hadean and Archean eons – the first of the four principal eons of the Earth’s earliest history – the heavy bombardment of meteorites provided reactive phosphorus that when released in water could be incorporated into prebiotic molecules. The scientists documented the phosphorus in early Archean limestone, showing it was abundant some 3.5 billion years ago.

The scientists concluded that the meteorites delivered phosphorus in minerals that are not seen on the surface of the earth, and these minerals corroded in water to release phosphorus in a form seen only on the early earth.

The discovery answers one of the key questions for scientists trying to unlock the processes that gave rise to early life forms: Why don’t we see new life forms today?

“Meteorite phosphorus may have been a fuel that provided the energy and phosphorus necessary for the onset of life,” said Pasek, who studies the chemical composition of space and how it might have contributed to the origins of life. “If this meteoritic phosphorus is added to simple organic compounds, it can generate phosphorus biomolecules identical to those seen in life today.”

Pasek said the research provides a plausible answer: The conditions under which life arose on the earth billions of years ago are no longer present today.

“The present research shows that this is indeed the case: Phosphorus chemistry on the early earth was substantially different billions of years ago than it is today,” he added.

The research team reached their conclusion after examining earth core samples from Australia, Zimbabwe, West Virginia, Wyoming and in Avon Park, Florida

Previous research had showed that before the emergence of modern DNA-RNA-protein life that is known today, the earliest biological forms evolved from RNA alone. What has stumped scientists, however, was understanding how those early RNA -based life forms synthesized environmental phosphorus, which in its current form is relatively insoluble and unreactive.

Meteorites would have provided reactive phosphorus in the form of the iron-nickel phosphide mineral schreibersite, which in water released soluble and reactive phosphite. Phosphite is the salt scientists believe could have been incorporated into prebiotic molecules.

Of all of the samples analyzed, only the oldest, the Coonterunah carbonate samples from the early Archean of Australia, showed the presence of phosphite, Other natural sources of phosphite include lightning strikes, geothermal fluids and possibly microbial activity under extremely anaerobic condition, but no other terrestrial sources of phosphite have been identified and none could have produced the quantities of phosphite needed to be dissolved in early Earth oceans that gave rise to life, the researchers concluded.

The scientists said meteorite phosphite would have been abundant enough to adjust the chemistry of the oceans, with its chemical signature later becoming trapped in marine carbonate where it was preserved.

It is still possible, the researchers noted, that other natural sources of phosphite could be identified, such as in hydrothermal systems. While that might lead to reducing the total meteoric mass necessary to provide enough phosphite, the researchers said more work would need to be done to determine the exact contribution of separate sources to what they are certain was an essential ingredient to early life.

Syracuse University professor argues Earth’s mantle affects long-term sea-level rise estimates

Robert Moucha is an assistant professor of Earth Sciences in Syracuse University's College of Arts and Sciences. -  SU News
Robert Moucha is an assistant professor of Earth Sciences in Syracuse University’s College of Arts and Sciences. – SU News

From Virginia to Florida, there is a prehistoric shoreline that, in some parts, rests more than 280 feet above modern sea level. The shoreline was carved by waves more than 3 million years ago-possible evidence of a once higher sea level, triggered by ice-sheet melting. But new findings by a team of researchers, including Robert Moucha, assistant professor of Earth Sciences in Syracuse University’s College of Arts and Sciences, reveal that the shoreline has been uplifted by more than 210 feet, meaning less ice melted than expected.

Equally compelling is the fact that the shoreline is not flat, as it should be, but is distorted, reflecting the pushing motion of the Earth’s mantle.

This is big news, says Moucha, for scientists who use the coastline to predict future sea-level rise. It’s also a cautionary tale for those who rely almost exclusively on cycles of glacial advance and retreat to study sea-level changes.

“Three million years ago, the average global temperature was two to three degrees Celsius higher, while the amount of carbon dioxide in the atmosphere was comparable to that of today,” says Moucha, who contributed to a paper on the subject in the May 15th issue of Science Express. “If we can estimate the height of the sea from 3 million years ago, we can then relate it to the amount of ice sheets that melted. This period also serves as a window into what we may expect in the future.”

Moucha and his colleagues-led by David Rowley, professor of geophysical sciences at the University of Chicago-have been using computer modeling to pinpoint exactly what melted during this interglacial period, some 3 million years ago. So far, evidenced is stacked in favor of Greenland, West Antarctica, and the sprawling East Antarctica ice sheet, but the new shoreline uplift implies that East Antarctica may have melted some or not at all. “It’s less than previous estimates had implied,” says Rowley, the article’s lead author.

Moucha’s findings show that the jagged shoreline may have been caused by the interplay between the Earth’s surface and its mantle-a process known as dynamic topography. Advanced modeling suggests that the shoreline, referred to as the Orangeburg Scarp, may have shifted as much as 196 feet. Modeling also accounts for other effects, such as the buildup of offshore sediments and glacial retreats.

“Dynamic topography is a very important contributor to Earth’s surface evolution,” says Rowley. “With this work, we can demonstrate that even small-scale features, long considered outside the realm of mantle influence, are reflective of mantle contributions.”

Moucha’s involvement with the project grew out of a series of papers he published as a postdoctoral fellow at the Canadian Institute for Advance Research in Montreal. In one paper from 2008, he drew on elements of the North American East Coast and African West Coast to build a case against the existence of stable continental platforms.

“The North American East Coast has always been thought of as a passive margin,” says Moucha, referring to large areas usually bereft of tectonic activity. “[With Rowley], we’ve challenged the traditional view of passive margins by showing that through observations and numerical simulations, they are subject to long-term deformation, in response to mantle flow.”

Central to Moucha’s argument is the fact that viscous mantle flows everywhere, all the time. As a result, it’s nearly impossible to find what he calls “stable reference points” on the Earth’s surface to accurately measure global sea-level rise. “If one incorrectly assumed that a particular margin is a stable reference frame when, in actuality, it has subsided, his or her assumption would lead to a sea-level rise and, ultimately, to an increase in ice-sheet melt,” says Moucha, who joined SU’s faculty in 2011.

Another consideration is the size of the ice sheet. Between periods of glacial activity (such as the one from 3 million years ago and the one we are in now), ice sheets are generally smaller. Jerry Mitrovica, professor of geophysics at Harvard University who also contributed to the paper, says the same mantle processes that drive plate tectonics also deform elevations of ancient shorelines. “You can’t ignore this, or your estimate of the size of the ancient ice sheets will be wrong,” he says.

Moucha puts it this way: “Because ice sheets have mass and mass results in gravitational attraction, the sea level actually falls near the melting ice sheet and rises when it’s further away. This variability has enabled us to unravel which ice sheet contributed to sea-level rise and how much of [the sheet] melted.”

The SU geophysicist credits much of the group’s success to state-of-the-art seismic tomography, a geological imaging technique led by Nathan Simmons at California’s Lawrence Livermore National Laboratory. “Nathan, who co-authored the paper, provided me with seismic tomography data, from which I used high-performance computing to model mantle flow,” says Moucha. “A few million years may have taken us a day to render, but a billion years may have taken several weeks or more.”

Moucha and his colleagues hope to apply their East Coast model to the Appalachian Mountains, which are also considered a type of passive geology. Although they have been tectonically quiet for more than 200 million years, the Appalachians are beginning to show signs of wear and tear: rugged peaks, steep slopes, landslides and waterfalls-possible evidence of erosion, triggered by dynamic topography.

“Scientists such as Rob, who produce increasingly accurate models of dynamic topography for the past, are going to be at the front line of this important research area,” says Mitrovica.

Adds Rowley: “Rob Moucha has demonstrated that dynamic topography is a very important contributor to Earth’s surface evolution. ? His study of mantle contributions is appealing on a large number of fronts that I, among others of our collaboration, hope to pursue.”

Comprehensive analysis of impact spherules supports theory of cosmic impact 12,800 years ago

This is UCSB Earth Sciences professor emeritus James Kennett. -  Courtesy photo
This is UCSB Earth Sciences professor emeritus James Kennett. – Courtesy photo

About 12,800 years ago when the Earth was warming and emerging from the last ice age, a dramatic and anomalous event occurred that abruptly reversed climatic conditions back to near-glacial state. According to James Kennett, UC Santa Barbara emeritus professor in earth sciences, this climate switch fundamentally — and remarkably — occurred in only one year, heralding the onset of the Younger Dryas cool episode.

The cause of this cooling has been much debated, especially because it closely coincided with the abrupt extinction of the majority of the large animals then inhabiting the Americas, as well as the disappearance of the prehistoric Clovis culture, known for its big game hunting.

“What then did cause the extinction of most of these big animals, including mammoths, mastodons, giant ground sloths, American camel and horse, and saber- toothed cats?” asked Kennett, pointing to Charles Darwin’s 1845 assessment of the significance of climate change. “Did these extinctions result from human overkill, climatic change or some catastrophic event?” The long debate that has followed, Kennett noted, has recently been stimulated by a growing body of evidence in support of a theory that a major cosmic impact event was involved, a theory proposed by the scientific team that includes Kennett himself.

Now, in one of the most comprehensive related investigations ever, the group has documented a wide distribution of microspherules widely distributed in a layer over 50 million square kilometers on four continents, including North America, including Arlington Canyon on Santa Rosa Island in the Channel Islands. This layer — the Younger Dryas Boundary (YDB) layer — also contains peak abundances of other exotic materials, including nanodiamonds and other unusual forms of carbon such as fullerenes, as well as melt-glass and iridium. This new evidence in support of the cosmic impact theory appeared recently in a paper in the Proceedings of the National Academy of the Sciences.

This cosmic impact, said Kennett, caused major environmental degradation over wide areas through numerous processes that include continent-wide wildfires and a major increase in atmospheric dust load that blocked the sun long enough to cause starvation of larger animals.

Investigating 18 sites across North America, Europe and the Middle East, Kennett and 28 colleagues from 24 institutions analyzed the spherules, tiny spheres formed by the high temperature melting of rocks and soils that then cooled or quenched rapidly in the atmosphere. The process results from enormous heat and pressures in blasts generated by the cosmic impact, somewhat similar to those produced during atomic explosions, Kennett explained.

But spherules do not form from cosmic collisions alone. Volcanic activity, lightning strikes, and coal seam fires all can create the tiny spheres. So to differentiate between impact spherules and those formed by other processes, the research team utilized scanning electron microscopy and energy dispersive spectrometry on nearly 700 spherule samples collected from the YDB layer. The YDB layer also corresponds with the end of the Clovis age, and is commonly associated with other features such as an overlying “black mat” — a thin, dark carbon-rich sedimentary layer — as well as the youngest known Clovis archeological material and megafaunal remains, and abundant charcoal that indicates massive biomass burning resulting from impact.

The results, according to Kennett, are compelling. Examinations of the YDB spherules revealed that while they are consistent with the type of sediment found on the surface of the earth in their areas at the time of impact, they are geochemically dissimilar from volcanic materials. Tests on their remanent magnetism — the remaining magnetism after the removal of an electric or magnetic influence — also demonstrated that the spherules could not have formed naturally during lightning strikes.

“Because requisite formation temperatures for the impact spherules are greater than 2,200 degrees Celsius, this finding precludes all but a high temperature cosmic impact event as a natural formation mechanism for melted silica and other minerals,” Kennett explained. Experiments by the group have for the first time demonstrated that silica-rich spherules can also form through high temperature incineration of plants, such as oaks, pines, and reeds, because these are known to contain biologically formed silica.

Additionally, according to the study, the surface textures of these spherules are consistent with high temperatures and high-velocity impacts, and they are often fused to other spherules. An estimated 10 million metric tons of impact spherules were deposited across nine countries in the four continents studied. However, the true breadth of the YDB strewnfield is unknown, indicating an impact of major proportions.

“Based on geochemical measurements and morphological observations, this paper offers compelling evidence to reject alternate hypotheses that YDB spherules formed by volcanic or human activity; from the ongoing natural accumulation of space dust; lightning strikes; or by slow geochemical accumulation in sediments,” said Kennett.

“This evidence continues to point to a major cosmic impact as the primary cause for the tragic loss of nearly all of the remarkable American large animals that had survived the stresses of many ice age periods only to be knocked out quite recently by this catastrophic event.”

Earth’s iron core is surprisingly weak, Stanford researchers say

The massive ball of iron sitting at the center of Earth is not quite as “rock-solid” as has been thought, say two Stanford mineral physicists. By conducting experiments that simulate the immense pressures deep in the planet’s interior, the researchers determined that iron in Earth’s inner core is only about 40 percent as strong as previous studies estimated.

This is the first time scientists have been able to experimentally measure the effect of such intense pressure – as high as 3 million times the pressure Earth’s atmosphere exerts at sea level – in a laboratory. A paper presenting the results of their study is available online in Nature Geoscience.

“The strength of iron under these extreme pressures is startlingly weak,” said Arianna Gleason, a postdoctoral researcher in the department of Geological and Environmental Sciences, and lead author of the paper. Wendy Mao, an assistant professor in the department, is the co-author.

“This strength measurement can help us understand how the core deforms over long time scales, which influences how we think about Earth’s evolution and planetary evolution in general,” Gleason said.

Until now, almost all of what is known about Earth’s inner core came from studies tracking seismic waves as they travel from the surface of the planet through the interior. Those studies have shown that the travel time through the inner core isn’t the same in every direction, indicating that the inner core itself is not uniform. Over time and subjected to great pressure, the core has developed a sort of fabric as grains of iron elongate and align lengthwise in parallel formations.

The ease and speed with which iron grains in the inner core can deform and align would have influenced the evolution of the early Earth and development of the geomagnetic field. The field is generated by the circulation of liquid iron in the outer core around the solid inner core and shields Earth from the full intensity of solar radiation. Without the geomagnetic field, life – at least as we know it – would not be possible on Earth.

“The development of the inner core would certainly have some effect on the geomagnetic field, but just what effect and the magnitude of the effect, we can’t say,” said Mao. “That is very speculative.”

Gleason and Mao conducted their experiments using a diamond anvil cell – a device that can exert immense pressure on tiny samples clenched between two diamonds. They subjected minute amounts of pure iron to pressures between 200 and 300 gigapascals (equivalent to the pressure of 2 million to 3 million Earth atmospheres). Previous experimental studies were conducted in the range of only 10 gigapascals.

“We really pushed the limit here in terms of experimental conditions,” Gleason said. “Pioneering advancements in pressure-generation techniques and improvements in detector sensitivity, for example, used at large X-ray synchrotron facilities, such as Argonne National Lab, have allowed us to make these new measurements.”

In addition to intense pressures, the inner core also has extreme temperatures. The boundary between the inner and outer core has temperatures comparable to the surface of the sun. Simultaneously simulating both the pressure and temperature at the inner core isn’t yet possible in the laboratory, though Gleason and Mao are working on that for future studies. (For this study, Gleason mathematically extrapolated from their pressure data to factor in the effect of temperature.)

Gleason and Mao expect their findings will help other researchers set more realistic variables for conducting their own experiments.

“People modeling the inner core haven’t had many experimental constraints, because it’s so difficult to make measurements under those conditions,” Mao said. “There really weren’t constraints on how strong the core was, so this is really a fundamental new constraint.”

Scientist finds topography of Eastern Seaboard muddles ancient sea level changes

The distortion of the ancient shoreline and flooding surface of the U.S. Atlantic Coastal Plain are the direct result of fluctuations in topography in the region and could have implications on understanding long-term climate change, according to a new study.

Sedimentary rocks from Virginia through Florida show marine flooding during the mid-Pliocene Epoch, which correlates to approximately 4 million years ago. Several wave-cut scarps, (rock exposures) which originally would have been horizontal, are now draped over a warped surface with up to 60 meters variation.

Nathan Simmons of Lawrence Livermore National Laboratory and colleagues from the University of Chicago, Université du Québec à Montréal, Syracuse University, Harvard University and the University of Texas at Austin modeled the active topography using mantle convection simulations that predict the amplitude and broad spatial distribution of this distortion. The results imply that dynamic topography and, to a lesser extent, glacial adjustment, account for the current architecture of the coastal plain and nearby shelf.

The results appear in the May 16 edition of Science Express, and will appear at a later date in Science Magazine,

“Our simulations of dynamic topography of the Eastern Seaboard have implications for inferences of global long-term sea-level change,” Simmons said.

The eastern coast of the United States is considered an archetypal Atlantic-type or passive-type continental margin.

“The highlight is that mantle flow is a major component in distorting the Earth’s surface over geologic time, even in so-called ‘passive’ continental margins,” Simmons said. “Reconstructing long-term global sea-level change based on stratigraphic relations must account for this effect. In other words, did the water level change or did the ground move? This could have implications on understanding very long-term climate change.”

The mantle is not a passive player in determining long-term sea level changes. Mantle flow influences surface topography, through perturbations of the dynamic topography, in a manner that varies both spatially and temporally. As a result, it is it difficult to invert for the global long-term sea level signal and, in turn, the size of the Antarctic Ice Sheet, using east coast shoreline data.

Simmons said the new results provide another powerful piece of evidence that mantle flow is intimately involved in shaping the Earth’s surface and must be considered when attempting to unravel numerous long-term Earth processes such as sea-level variations over millions of years.

GOCE Earth explorer satellite to look at the Earth’s surface and core





GOCE positioned on the rotary table for alignment check, during launch campaign at the Plesetsk Cosmodrome. - Credits: ESA
GOCE positioned on the rotary table for alignment check, during launch campaign at the Plesetsk Cosmodrome. – Credits: ESA

The European Space Agency is about to launch the most sophisticated mission ever to investigate the Earth’s gravitational field and to map the reference shape of our planet – the geoid – with unprecedented resolution and accuracy.



The Gravity field and steady-state Ocean Circulation Explorer (GOCE) will be placed onto a low altitude near sun-synchronous orbit by a Russian Rockot vehicle launched from the Plesetsk Cosmodrome in Northern Russia, some 800 km north of Moscow. Lift-off is scheduled to take place at 16:21 CEST (14:21 UTC) on Wednesday 10 September. The launcher is operated by Eurockot Launch Services, a joint venture between EADS Astrium and the Khrunichev Space Centre (Russia).



ESA’s 1-tonne spacecraft carries a set of six state-of-the-art high-sensitivity accelerometers to measure the components of the gravity field along all three axes. The data collected will provide a high-resolution map of the geoid (the reference surface of the planet) and of gravitational anomalies. Such a map will not only greatly improve our knowledge and understanding of the Earth’s internal structure, but will also be used as a much better reference for ocean and climate studies, including sea-level changes, oceanic circulation and ice caps dynamics survey. Numerous applications are expected in climatology, oceanography and geophysics, as well as for geodetic and positioning activities.



To make this mission possible, ESA, its industrial partners (45 European companies led by Thales Alenia Space) and the science community had to overcome an impressive technical challenge by designing a satellite that will orbit the Earth close enough to gather high-accuracy gravitational data while being able to filter out disturbances caused by the remaining traces of the atmosphere in low Earth orbit (at an altitude of only 260 km). This resulted in a slender 5-m-long arrowhead shape for aerodynamics with low power ion thrusters to compensate for the atmospheric drag.


GOCE is the first Core Mission of the Earth Explorer programme undertaken by ESA in 1999 to foster research on the Earth’s atmosphere, biosphere, hydrosphere, cryosphere and interior, on their interactions and on the impact of human activities on these natural processes. It will be the first in a whole series of Earth Explorer missions with five launches to take place within the next two years.



Two more Core Missions, selected to address specific topics of major public concern are already under development: ADM-Aeolus for atmospheric dynamics (2010), and EarthCARE to investigate the Earth’s radiative balance (2013). Three smaller Earth Explorer Opportunity Missions are also in preparation: CryoSat-2 to measure ice sheet thickness (2009), SMOS to study soil moisture and ocean salinity (2009) and Swarm to survey the evolution of the magnetic field (2010).



On the occasion of the launch of GOCE, ESA will open a Press Centre at ESA/ESRIN in Frascati, Italy from 14:00 to 20:00, hosting a launch event from 15:30 to 18:15.



A live televised transmission of the launch will bring images from Plesetsk and from mission control at ESA/ESOC in Darmstadt, Germany to broadcasters (further details on the TV transmission at http://television.esa.int). ESA senior management and programme specialists will be on hand at ESRIN for explanations and interviews. The general public can also follow the video transmission web-streamed at: http://www.esa.int/goce.