Nearby Georgia basin may amplify ground shaking from next quake

Tall buildings, bridges and other long-period structures in Greater Vancouver may experience greater shaking from large (M 6.8 +) earthquakes than previously thought due to the amplification of surface waves passing through the Georgia basin, according to two studies published by the Bulletin of the Seismological Society of America (BSSA). The basin will have the greatest impact on ground motion passing over it from earthquakes generated south and southwest of Vancouver.

“For very stiff soils, current building codes don’t include amplification of ground motion,” said lead author Sheri Molnar, a researcher at the University of British Columbia. “While the building codes say there should not be any increase or decrease in ground motion, our results show that there could be an average amplification of up to a factor of three or four in Greater Vancouver.”

The research provides the first detailed studies of 3D earthquake ground motion for a sedimentary basin in Canada. Since no large crustal earthquakes have occurred in the area since the installation of a local seismic network, these studies offer refined predictions of ground motion from large crustal earthquakes likely to occur.

Southwestern British Columbia is situated above the seismically active Cascadia subduction zone. A complex tectonic region, earthquakes occur in three zones: the thrust fault interface between the Juan de Fuca plate, which is sliding beneath the North America plate; within the over-riding North America plate; and within the subducting Juan de Fuca plate.

Molnar and her colleagues investigate the effect the three dimensional (3D) deep basin beneath Greater Vancouver has on the earthquake-generated waves that pass through it. The Georgia basin is one in a series of basins spanning form California to southern Alaska along the Pacific margin of the North America and is relatively wide and shallow. The basin is filled with sedimentary layers of silts, sands and glacial deposits.

While previous research suggested how approximately 100 meters of material near the surface would affect ground shaking, no studies had looked at the effect of the 3D basin structure on long period seismic waves.

To fill in that gap in knowledge, Molnar and colleagues performed numerical modeling of wave propagation, using various scenarios for both shallow quakes (5 km in depth) within the North America plate and deep quakes (40 – 55 km in depth) within the Juan de Fuca subducting plate, the latter being the most common type of earthquake. The authors did not focus on earthquakes generated by a megathrust rupture of the Cascadia subduction zone, a scenario studied previously by co-author Kim Olsen of San Diego State University.

For these two studies, the authors modeled 10 scenario earthquakes for the subducting plate and 8 shallow crustal earthquakes within the North America plate, assuming rupture sites based on known seismicity. The computational analyses suggest the basin distorts the seismic radiation pattern – how the energy moves through the basin – and produces a larger area of higher ground motions. Steep basin edges excite the seismic waves, amplifying the ground motion.

The largest surface waves generated across Greater Vancouver are associated with earthquakes located approximately 80 km or more, south-southwest of the city, suggest the authors.

“The results were an eye opener,” said Molnar. “Because of the 3D basin structure, there’s greater hazard since it will amplify ground shaking. Now we have a grasp of how much the basin increases ground shaking for the most likely future large earthquakes.”

In Greater Vancouver, there are more than 700 12-story and taller commercial and residential buildings, and large structures – high-rise buildings, bridges and pipelines – that are more affected by long period seismic waves, or long wavelength shaking. “That’s where these results have impact,” said Molnar.

Distant quakes trigger tremors at US waste-injection sites, says study

Large earthquakes from distant parts of the globe are setting off tremors around waste-fluid injection wells in the central United States, says a new study. Furthermore, such triggering of minor quakes by distant events could be precursors to larger events at sites where pressure from waste injection has pushed faults close to failure, say researchers.

Among the sites covered: a set of injection wells near Prague, Okla., where the study says a huge earthquake in Chile on Feb. 27, 2010 triggered a mid-size quake less than a day later, followed by months of smaller tremors. This culminated in probably the largest quake yet associated with waste injection, a magnitude 5.7 event which shook Prague on Nov. 6, 2011. Earthquakes off Japan in 2011, and Sumatra in 2012, similarly set off mid-size tremors around injection wells in western Texas and southern Colorado, says the study. The paper appears this week in the leading journal Science, along with a series of other articles on how humans may be influencing earthquakes.

“The fluids are driving the faults to their tipping point,” said lead author Nicholas van der Elst, a postdoctoral researcher at Columba University’s Lamont-Doherty Earth Observatory. “The remote triggering by big earthquakes is an indication the area is critically stressed.”

Tremors triggered by distant large earthquakes have been identified before, especially in places like Yellowstone National Park and some volcanically active subduction zones offshore, where subsurface water superheated by magma can weaken faults, making them highly vulnerable to seismic waves passing by from somewhere else. The study in Science adds a new twist by linking this natural phenomenon to faults that have been weakened by human activity.

A surge in U.S. energy production in the last decade or so has sparked what appears to be a rise in small to mid-sized earthquakes in the United States. Large amounts of water are used both to crack open rocks to release natural gas through hydrofracking, and to coax oil and gas from underground wells using conventional techniques. After the gas and oil have been extracted, the brine and chemical-laced water must be disposed of, and is often pumped back underground elsewhere, sometimes causing earthquakes.

From a catalog of past earthquake recordings, van der Elst and his colleagues found that faults near wastewater-injection sites in and around Prague, Snyder, Tex., and Trinidad, Colo., were approaching a critical state when big earthquakes far away triggered a rise in local earthquakes. Injection at the three sites had been ongoing for years, and the researchers hypothesize that passing surface waves from the big events caused small pressure changes on faults, triggering smaller earthquakes.

“These passing seismic waves are like a stress test,” said study coauthor Heather Savage, a geophysicist at Lamont-Doherty. “If the number of small earthquakes increases, it could indicate that faults are becoming critically stressed and might soon host a larger earthquake.”

The 2010 magnitude 8.8 Chile quake, which killed more than 500 people, sent surface waves rippling across the planet, triggering a magnitude 4.1 quake near Prague 16 hours later, the study says. The activity near Prague continued until the magnitude 5.7 quake on Nov. 6, 2011 that destroyed 14 homes and injured two people. A study earlier this year led by seismologist Katie Keranen, also a coauthor of the new study, now at Cornell University, found that the first rupture occurred less than 650 feet away from active injection wells. In April 2012, a magnitude 8.6 earthquake off Sumatra triggered another swarm of earthquakes in the same place. The pumping of fluid into the field continues to this day, along with a pattern of small quakes.

The 2010 Chile quake also set off a swarm of earthquakes on the Colorado-New Mexico border, in Trinidad, near wells where wastewater used to extract methane from coal beds had been injected, the study says. The swarm was followed more than a year later, on Aug. 22 2011, by a magnitude 5.3 quake that damaged dozens of buildings. A steady series of earthquakes had already struck Trinidad in the past, including a magnitude 4.6 quake in 2001 that the U.S. Geological Survey (USGS) has investigated for links to wastewater injection.

The new study found also that Japan’s devastating magnitude 9.0 earthquake on March 11, 2011 triggered a swarm of earthquakes in the west Texas town of Snyder, where injection of fluid to extract oil from the nearby Cogdell fields has been setting off earthquakes for years, according to a 1989 study in the Bulletin of the Seismological Society of America. About six months after the Japan quake, a magnitude 4.5 quake struck Snyder.

The idea that seismic activity can be triggered by separate earthquakes taking place faraway was once controversial. One of the first cases to be documented was the magnitude 7.3 earthquake that shook California’s Mojave Desert in 1992, near the town of Landers, setting off a series of distant events in regions with active hot springs, geysers and volcanic vents. The largest was a magnitude 5.6 quake beneath Little Skull Mountain in southern Nevada, 150 miles away; the farthest, a series of tiny earthquakes north of Yellowstone caldera, according to a 1993 study in Science led by USGS geophysicist David Hill.

In 2002, the magnitude 7.9 Denali earthquake in Alaska triggered a series of earthquakes at Yellowstone, nearly 2,000 miles away, throwing off the schedules of some of its most predictable geysers, according to a 2004 study in Geology led by Stephan Husen, a seismologist at the Swiss Federal Institute of Technology in Z├╝rich. The Denali quake also triggered bursts of slow tremors in and around California’s San Andreas, San Jacinto and Calaveras faults, according to a 2008 study in Science led by USGS geophysicist Joan Gomberg.

“We’ve known for at least 20 years that shaking from large, distant earthquakes can trigger seismicity in places with naturally high fluid pressure, like hydrothermal fields,” said study coauthor Geoffrey Abers, a seismologist at Lamont-Doherty. “We’re now seeing earthquakes in places where humans are raising pore pressure.”

The new study may be the first to find evidence of triggered earthquakes on faults critically stressed by waste injection. If it can be replicated and extended to other sites at risk of manmade earthquakes it could “help us understand where the stresses are,” said William Ellsworth, an expert on human-induced earthquakes with the USGS who was not involved in the study.

In the same issue of Science, Ellsworth reviews the recent upswing in earthquakes in the central United States. The region averaged 21 small to mid-sized earthquakes each year from the late 1960s through 2000. But in 2001, that number began to climb, reaching a high of 188 earthquakes in 2011, he writes. The risk of setting off earthquakes by injecting fluid underground has been known since at least the 1960s, when injection at the Rocky Mountain Arsenal near Denver was suspended after a magnitude 4.8 quake or greater struck nearby-the largest tied to wastewater disposal until the one near Prague, Okla. In a report last year, the National Academy of Sciences called for further research to “understand, limit and respond [to]” seismic events induced by human activity.

Big quakes spark jolts worldwide





This map of the world shows seismic stations that detected more than twice the normal number of small, nearby earthquakes after the passage of what are known as 'surface waves' from major quakes that were centered hundreds to thousands of miles away and occurred from 1992 through 2006. A new study co-authored by University of Utah seismologist Kris Pankow found that at least 12 of the 15 major earthquakes (greater than magnitude-7) during 1992-2006 triggered small quakes in distant parts of the world. Scientists once believed big quakes could not trigger distant tremors. - Credit: Aaron Velasco, University of Texas at El Paso.
This map of the world shows seismic stations that detected more than twice the normal number of small, nearby earthquakes after the passage of what are known as ‘surface waves’ from major quakes that were centered hundreds to thousands of miles away and occurred from 1992 through 2006. A new study co-authored by University of Utah seismologist Kris Pankow found that at least 12 of the 15 major earthquakes (greater than magnitude-7) during 1992-2006 triggered small quakes in distant parts of the world. Scientists once believed big quakes could not trigger distant tremors. – Credit: Aaron Velasco, University of Texas at El Paso.

Triggered tremors occur even on the opposite side of the Earth



Until 1992, when California’s magnitude-7.3 Landers earthquake set off small jolts as far away as Yellowstone National Park, scientists did not believe large earthquakes sparked smaller tremors at distant locations. Now, a definitive study shows large earthquakes routinely trigger smaller jolts worldwide, including on the opposite side of the planet and in areas not prone to quakes.



“Previously it was thought seismically active regions or geothermal areas were most vulnerable to large earthquake triggers,” says Kris Pankow, a seismologist at the University of Utah Seismograph Stations and a co-author of the new study.



But Pankow and colleagues analyzed 15 major earthquakes stronger than magnitude-7.0 since 1992, and found that at least 12 of them triggered small quakes hundreds and even thousands of miles away, according to the findings published online Sunday, May 25, 2008 in the journal Nature Geoscience.



“We conclude that dynamic triggering is a ubiquitous phenomenon,” they wrote.



Pankow conducted the study with seismologist Aaron Velasco and undergraduate student Stephen Hernandez, both at the University of Texas at El Paso; and seismologist Tom Parsons, of U.S. Geological Survey in Menlo Park, Calif.



They analyzed data from more than 500 seismic recording stations five hours before and five hours after earthquakes that registered more than 7.0 on the “moment magnitude” scale, which scientists say is the most accurate scale for large earthquakes. (The frequently cited Richter scale measures only relatively small, nearby quakes).



The data – obtained from the Incorporated Research Institutions for Seismology, a consortium of universities – included 15 major earthquakes from 1992 through 2006, including the 1992 Landers quake in California 800 miles southwest of Yellowstone, the magnitude-7.9 Denali fault quake in Alaska in 2002, and the magnitude-9.2 Sumatra-Andaman Islands quake near Indonesia in 2004 that generated a catastrophic tsunami blamed for most of the quake’s 227,898 deaths in South Asia and East Africa.



Scientists previously noted that those three major quakes triggered not only nearby aftershocks, but small quakes at great distances. The new study is the first to systematically analyze all the world’s big quakes during 1992-2006 and find that most of them triggered distant, smaller tremors. These are different than aftershocks, which occur fairly close to the main quake. After the devastating 2004 Sumatra earthquake, triggered quakes even occurred in Ecuador, on the opposite side of the Earth.

Earthquakes Release Waves of Energy



When an earthquake begins, energy is released in the form of shock waves that move through the ground. The first waves are called P or pressure waves, which move at high speed with an up-and-down motion. The next waves are S or shear waves. These move from side to side, causing much damage from an earthquake. The next waves are two types of surface waves: Love waves move in a shearing fashion, followed by Rayleigh waves, which have a rolling motion.



Pankow and colleagues showed that magnitude-4 or smaller seismic events often are triggered when either Love or Rayleigh waves from a major quake pass a given point.



“We can recognize the different kinds of waves as they pass and can filter out everything except the small seismic events, which are presumed to be local small earthquakes,” says Pankow.



There are about 600 small seismic events around the Earth every five minutes. For five hours after the arrival of Love waves from a major quake, the researchers saw a 37 percent increase in the number of small quakes worldwide. And after Rayleigh waves from the same large quake followed the Love waves, the number of small quakes worldwide shot up by 60 percent during the five hours after the major quake.



“It is interesting that Rayleigh and Love waves, two very different types of surface waves, are both able to trigger these events,” says Pankow.



In addition to the 1992 Landers, 2002 Denali and 2004 Sumatra-Andaman Islands quakes, the other 12 major quakes in the study (and their moment magnitudes) were: 1998 Balleny Island near Antarctica (8.1), 1999 Izmit, Turkey (7.6), 1999 Hector Mine, Calif. (7.1), 2000 New Ireland, Papua New Guinea (8.0), 2001 Peru (8.4), 2001 Kunlun, China (7.8), 2003 Hokkaido, Japan (8.3), 2003 Siberia, Russia (7.3), 2004 Macquarie Ridge, near New Zealand (8.1), 2005 Sumatra, Indonesia (8.7), 2006 Java, Indonesia (7.7) and 2006 Kuril Islands, Russia (8.3).



Only the Hector Mine, Siberia, and Kuril Islands quakes did not show triggering events in the study. But it is known from previous studies that the Hector Mine earthquake indeed triggered smaller quakes near California’s Salton Sea. Those were not included in the study, because they were within about 680 miles of the main shock’s epicenter. Researchers excluded triggered quakes within that distance to avoid counting aftershocks in the same category as more distant triggered quakes.



How do the surface waves trigger small earthquakes at distant locations?



“The physical mechanism is not known,” says Pankow. “It has been proposed that the passage of the waves may change the water flow in a fault, possibly increasing the number of conduits that water can flow through which could cause the fault to slip.”



Other theories are that surface waves may increase the strain on a fault, or loosen a fault so that it prematurely breaks or slides, she adds.



The study was funded by the United States Geological Survey and the National Science Foundation, Pankow says.