Study finds earlier peak for Spain’s glaciers

Jane Willenbring (upper right) takes samples to date a boulder in Spain's Bejar mountain range. Her findings helped show that ancient glaciers in the region reached their maximum size several thousands of years earlier than once believed. -  University of Pennsylvania
Jane Willenbring (upper right) takes samples to date a boulder in Spain’s Bejar mountain range. Her findings helped show that ancient glaciers in the region reached their maximum size several thousands of years earlier than once believed. – University of Pennsylvania

The last glacial maximum was a time when Earth’s far northern and far southern latitudes were largely covered in ice sheets and sea levels were low. Over much of the planet, glaciers were at their greatest extent roughly 20,000 years ago. But according to a study headed by University of Pennsylvania geologist Jane Willenbring, that wasn’t true in at least one part of southern Europe. Due to local effects of temperature and precipitation, the local glacial maximum occurred considerably earlier, around 26,000 years ago.

The finding sheds new light on how regional climate has varied over time, providing information that could lead to more-accurate global climate models, which predict what changes Earth will experience in the future.

Willenbring, an assistant professor in Penn’s Department of Earth and Environmental Science in the School of Arts and Sciences, teamed with researchers from Spain, the United Kingdom, China and the United States to pursue this study of the ancient glaciers of southern Europe.

“We wanted to unravel why and when glaciers grow and shrink,” Willenbring said.

In the study site in central Spain, it is relatively straightforward to discern the size of ancient glaciers, because the ice carried and dropped boulders at the margin. Thus a ring of boulders marks the edge of the old glacier.

It is not as easy to determine what caused the glacier to grow, however. Glaciers need both moisture and cold temperatures to expand. Studying the boulders that rim the ancient glaciers alone cannot distinguish these contributions. Caves, however, provide a way to differentiate the two factors. Stalagmites and stalactites – the stony projections that grow from the cave floor and ceiling, respectively – carry a record of precipitation because they grow as a result of dripping water.

“If you add the cave data to the data from the glaciers, it gives you a neat way of figuring out whether it was cold temperatures or higher precipitation that drove the glacier growth at the time,” Willenbring said.

The researchers conducted the study in three of Spain’s mountain ranges: the Bejár, Gredos and Guadarrama. The nearby Eagle Cave allowed them to obtain indirect precipitation data.

To ascertain the age of the boulders strewn by the glaciers and thus come up with a date when glaciers were at their greatest extent, Willenbring and colleagues used a technique known as cosmogenic nuclide exposure dating, which measures the chemical residue of supernova explosions. They also used standard radiometric techniques to date stalagmites from Eagle Cave, which gave them information about fluxes in precipitation during the time the glaciers covered the land.

“Previously, people believe the last glacial maximum was somewhere in the range of 19-23,000 years ago,” Willenbring said. “Our chronology indicates that’s more in the range of 25-29,000 years ago in Spain.”

The geologists found that, although temperatures were cool in the range of 19,000-23,000 years ago, conditions were also relatively dry, so the glaciers did not regain the size they had obtained several thousand years earlier, when rain and snowfall totals were higher. They reported their findings in the journal Scientific Reports.

Given the revised timeline in this region, Willenbring and colleagues determined that the increased precipitation resulted from changes in the intensity of the sun’s radiation on the Earth, which is based on the planet’s tilt in orbit. Such changes can impact patterns of wind, temperature and storms.

“That probably means there was a southward shift of the North Atlantic Polar Front, which caused storm tracks to move south, too,” Willenbring said. “Also, at this time there was a nice warm source of precipitation, unlike before and after when the ocean was colder.”

Willenbring noted that the new date for the glacier maximum in the Mediterranean region, which is several thousands of years earlier than the date the maximum was reached in central Europe, will help provide more context for creating accurate global climate models.

“It’s important for global climate models to be able to test under what conditions precipitation changes and when sources for that precipitation change,” she said. “That’s particularly true in some of these arid regions, like the American Southwest and the Mediterranean.”

When glaciers were peaking in the Mediterranean around 26,000 years ago, the American Southwest was experiencing similar conditions. Areas that are now desert were moist. Large lakes abounded, including Lake Bonneville, which covered much of modern-day Utah. The state’s Great Salt Lake is what remains.

“Lakes in this area were really high for 5,000-10,000 years, and the cause for that has always been a mystery,” Willenbring said. “By looking at what was happening in the Mediterranean, we might eventually be able to say something about the conditions that led to these lakes in the Southwest, too.”

Borneo stalagmites provide new view of abrupt climate events over 100,000 years

Georgia Tech researchers Stacy Carolin (Ph.D. candidate), Jessica Moerman (Ph.D. candidate), Eleanor Middlemas (undergraduate), Danja Mewes (undergraduate) and two caving guides (Syria Lejau, Jenny Malang) climb out from Cobweb Cave in Gunung Mulu National Park after a day of rock and water sample collection during the Fall 2012 field trip. -  Credit: Kim Cobb
Georgia Tech researchers Stacy Carolin (Ph.D. candidate), Jessica Moerman (Ph.D. candidate), Eleanor Middlemas (undergraduate), Danja Mewes (undergraduate) and two caving guides (Syria Lejau, Jenny Malang) climb out from Cobweb Cave in Gunung Mulu National Park after a day of rock and water sample collection during the Fall 2012 field trip. – Credit: Kim Cobb

A new set of long-term climate records based on cave stalagmites collected from tropical Borneo shows that the western tropical Pacific responded very differently than other regions of the globe to abrupt climate change events. The 100,000-year climate record adds to data on past climate events, and may help scientists assess models designed to predict how the Earth’s climate will respond in the future.

The new record resulted from oxygen isotope analysis of more than 1,700 calcium carbonate samples taken from four stalagmites found in three different northern Borneo caves. The results suggest that climate feedbacks within the tropical regions may amplify and prolong abrupt climate change events that were first discovered in the North Atlantic.

The results were scheduled to be published June 6 in Science Express, the electronic advance online publication of the journal Science, and will appear later in an issue of printed publication. The research was supported by the National Science Foundation.

Today, relatively subtle changes in the tropical Pacific’s ocean and atmosphere have profound effects on global climate. However, there are few records of past climate changes in this key region that have the length, resolution and age controls needed to reveal the area’s response to abrupt climate change events.

“This is a new record from a very important area of the world,” said Kim Cobb, an associate professor in the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology. “This record will provide a new piece of the puzzle from the tropical Pacific showing us how that climate system has responded to forcing events over the past 100,000 years.”

Among the findings were some surprises that show just how complicated the Earth’s climate system can be. While the stalagmite record reflected responses to abrupt changes known as Heinrich events, another major type of event – known as Dansgaard-Oeschger excursions – left no evidence in the Borneo stalagmites. Both types of abrupt climate change events are prominently featured in a previously-published stalagmite climate record from China – which is only slightly north of Borneo.

“To my knowledge, this is the first record that so clearly shows sensitivity to one set of major abrupt climate change events and not another,” said Cobb. “These two types of abrupt change events appear to have different degrees of tropical Pacific involvement, and because the tropical Pacific speaks with such a loud voice when it does speak, we think this is extremely important for understanding the mechanisms underlying these events.”

The researchers were also surprised to discover a very large and abrupt signal in their stalagmite climate records precisely when super-volcano Toba erupted nearby, roughly 74,000 years ago.

The team recovered the stalagmites from caves in Gunung Mulu and Gunung Buda National Parks, in northern Borneo, which is located a few degrees north of the Equator in the western Pacific. Back at their Georgia Tech lab, they analyzed the stalagmites for the ratio of oxygen isotopes contained in samples of calcium carbonate, the material from which the stalagmites were formed. That ratio is set by the oxygen isotopes in rainfall at the site, as the water that seeped into the ground dissolved limestone rock and dripped into the caves to form the stalagmites. The stalagmites accumulate at a rate of roughly one centimeter every thousand years.

“Stalagmites are time capsules of climate signals from thousands of years in the past,” said Stacy Carolin, a Georgia Tech Ph.D. candidate who gathered and analyzed the stalagmites. “We have instrumental records of climate only for the past 100 years or so, and if we want to look deeper into the past, we have to find records like these that locked in climate signals we can extract today.”

In the laboratory, Carolin sawed each stalagmite in half, opening it like a hot dog bun. She then used a tiny drill bit to take samples of the calcium carbonate down the center at one-millimeter steps. Because the stalagmites grew at varying rates, each sample represented as little as 60 years of time, or as much as 200 years. The precise ages of the samples were determined by measuring uranium and thorium isotope ratios, an analysis done with the help of Jess F. Adkins, a professor at the California Institute of Technology and a co-author of the study.

Rainfall oxygen isotopic ratios are good indicators of the amount of rainfall occurring throughout the region, as determined by a modern-day calibration study recently published by another graduate student in Cobb’s lab.

Merging data from the four different stalagmites provided a record of precipitation trends in the western Pacific over the past 100,000 years. That information can be compared to stalagmite and ice core climate records obtained elsewhere in the world.

“This record, which spans the entire last glacial period, adds significantly to the understanding of how various climate forcings are felt by the western tropical Pacific,” Carolin added.

Climate scientists are interested in learning more about abrupt climate changes because they indicate that the climate system may have “tipping points.” So far, the climate system has responded to rising carbon dioxide levels at a fairly steady rate, but many scientists worry about possible nonlinear effects.

“As a society, we haven’t really thought enough about the fact that we are moving Earth’s climate system toward a new state very quickly,” said Cobb. “It’s important to remember that the climate system has important nonlinearities that are most evident in these abrupt climate events. Ultimately, we’d like to be able to reproduce the global signatures of these abrupt climate events with numerical models of the climate system, and investigate the physics that drive such events.”

For Carolin, studying the half-meter-long stalagmites brought an awareness that the Earth has not always been as we know it today.

“You have to be impressed with the scope of what you are studying, and recognize that the state our climate is in today is incredibly different from Earth’s climate during the last Ice Age,” she said. “As we consider how humans may be affecting climate, dissecting what was going on tens of thousands of years ago in all regions of the globe can help scientists better predict how the Earth will respond to modern climate forcings.”

Researchers use stalagmites to study past climate change

Stalagmites like these from northern Borneo are the ice cores of the tropics. -  Adkins/Caltech
Stalagmites like these from northern Borneo are the ice cores of the tropics. – Adkins/Caltech

There is an old trick for remembering the difference between stalactites and stalagmites in a cave: Stalactites hold tight to the ceiling while stalagmites might one day grow to reach the ceiling. Now, it seems, stalagmites might also fill a hole in our understanding of Earth’s climate system and how that system is likely to respond to the rapid increase in atmospheric carbon dioxide since preindustrial times.

Many existing historical climate records are biased to the high latitudes- coming from polar ice cores and North Atlantic deep ocean sediments. Yet a main driver of climate variability today is El Niño, which is a completely tropical phenomenon. All of this begs the question: How do we study such tropical climate influences? The answer: stalagmites.

“Stalagmites are the ice cores of the tropics,” says Jess Adkins, professor of geochemistry and global environmental science at the California Institute of Technology (Caltech). He and geochemist Kim Cobb of the Georgia Institute of Technology led a team that collected samples from stalagmites in caves in northern Borneo and measured their levels of oxygen isotopes to reconstruct a history of the tropical West Pacific’s climate over four glacial cycles during the late Pleistocene era (from 570,000 to 210,000 years ago).

The results appear in the May 3 issue of Science Express. The lead author of the paper, Nele Meckler, completed most of the work as a postdoctoral scholar at Caltech and is now at the Geological Institute of ETH Zürich.

Throughout Earth’s history, global climate has shifted between periods of glacial cooling that led to ice ages, and interglacial periods of relative warmth, such as the present. Past studies from high latitudes have indicated that about 430,000 years ago-at a point known as the Mid-Brunhes Event (MBE)-peak temperatures and levels of atmospheric carbon dioxide in interglacial cycles were suddenly bumped up by about a third. But no one has known whether this was also the case closer to the equator.

By studying the records from tropical stalagmites, Adkins and his team found no evidence of such a bump. Instead, precipitation levels remained the same across the glacial cycles, indicating that the tropics did not experience a major shift in peak interglacial conditions following the MBE. “The stalagmite records have glacial cycles in them, but the warm times-the interglacials-don’t change in the same way as they do at high latitudes,” Adkins says. “We don’t know what that tells us yet, but this is the first time the difference has been recorded.”

At the same time, some changes did appear in the climate records from both the high latitudes and the tropics. The researchers found that extreme drying in the tropics coincided with abrupt climate changes in the North Atlantic, at the tail end of glacial periods. It is thought that these rapid climate changes, known as Heinrich events, are triggered by large ice sheets suddenly plunging into the ocean.

“In the tropics, we see these events as very sharp periods of drying in the stalagmite record,” Adkins says. “We think that these droughts indicate that the tropics experienced a more El Niño-like climate at those times, causing them to dry out.” During El Niño events, warm waters from the tropics, near Borneo, shift toward the center of the Pacific Ocean, often delivering heavier rainfall than usual to the western United States while leaving Indonesia and its neighbors extremely dry and prone to forest fires.

The fact that the tropics responded to Heinrich events, but not to the shift that affected the high latitudes following the MBE, suggests that the climate system has two modes of responding to significant changes. “It makes you wonder if maybe the climate system cares about what sort of hammer you hit it with,” Adkins says. “If you nudge the system consistently over long timescales, the tropics seem to be able to continue independently of the high latitudes. But if you suddenly whack the climate system with a big hammer, the impact spreads out and shows up in the tropics.”

This work raises questions about the future in light of recent increases in atmospheric carbon dioxide: Is this increase more like a constant push? Or is it a whack with a big hammer? A case could be made for either one of these scenarios, says Adkins, but he adds that it would be easiest to argue that the forcing is more like a sudden whack, since the amount of carbon dioxide in the atmosphere has increased at such an unprecedented rate.

Stalagmite reveals carbon footprint of early Native Americans

This stalagmite, found in a West Virginia cave, showed a major change in the carbon record at about 100 B.C. -  Courtesy Gregory Springer, Ohio University
This stalagmite, found in a West Virginia cave, showed a major change in the carbon record at about 100 B.C. – Courtesy Gregory Springer, Ohio University

A new study led by Ohio University scientists suggests that early Native Americans left a bigger carbon footprint than previously thought, providing more evidence that humans impacted global climate long before the modern industrial era.

Chemical analysis of a stalagmite found in the mountainous Buckeye Creek basin of West Virginia suggests that native people contributed a significant level of greenhouse gases to the atmosphere through land use practices. The early Native Americans burned trees to actively manage the forests to yield the nuts and fruit that were a large part of their diets.

“They had achieved a pretty sophisticated level of living that I don’t think people have fully appreciated,” said Gregory Springer, an associate professor of geological sciences at Ohio University and lead author of the study, which was published a recent issue of the journal The Holocene. “They were very advanced, and they knew how to get the most out of the forests and landscapes they lived in. This was all across North America, not just a few locations.”

Initially, Springer and research collaborators from University of Texas at Arlington and University of Minnesota were studying historic drought cycles in North America using carbon isotopes in stalagmites. To their surprise, the carbon record contained evidence of a major change in the local ecosystem beginning at 100 B.C. This intrigued the team because an archeological excavation in a nearby cave had yielded evidence of a Native American community there 2,000 years ago.

Springer recruited two Ohio University graduate students to examine stream sediments, and with the help of Harold Rowe of University of Texas at Arlington, the team found very high levels of charcoal beginning 2,000 years ago, as well as a carbon isotope history similar to the stalagmite.

This evidence suggests that Native Americans significantly altered the local ecosystem by clearing and burning forests, probably to make fields and enhance the growth of nut trees, Springer said. This picture conflicts with the popular notion that early Native Americans had little impact on North American landscapes. They were better land stewards than the European colonialists who followed, he said, but they apparently cleared more land and burned more forest than previously thought.

“Long before we were burning fossil fuels, we were already pumping greenhouse gasses into the atmosphere. It wasn’t at the same level as today, but it sets the stage,” Springer said.

This long-ago land clearing would have impacted global climate, Springer added. Ongoing clearing and burning of the Amazon rainforest, for example, is one of the world’s largest sources of greenhouse gas emissions. Prehistoric burning by Native Americans was less intense, but a non-trivial source of greenhouse gases to the atmosphere, he said.

Stalagmites May Predict Next Big One along the New Madrid Seismic Zone





Small white stalagmites lining caves in the Midwest may help scientists chronicle the history of the New Madrid Seismic Zone – and even predict when the next big earthquake may strike
Small white stalagmites lining caves in the Midwest may help scientists chronicle the history of the New Madrid Seismic Zone – and even predict when the next big earthquake may strike

Small white stalagmites lining caves in the Midwest may help scientists chronicle the history of the New Madrid Seismic Zone (NMSZ) – and even predict when the next big earthquake may strike, say researchers at the Illinois State Geological Survey and the University of Illinois at Urbana-Champaign.



While the 1811-12, magnitude 8 New Madrid earthquakes altered the course of the Mississippi River and rung church bells in major cities along the East Coast, records of the seismic zone’s previous movements are scarce. Thick layers of sediment have buried the trace of the NMSZ and scientists must search for rare sand blows and liquefaction features, small mounds of liquefied sand that squirt to the surface through fractures during earthquakes, to record past events. That’s where the stalagmites come in.



The sand blows are few and far between, said Keith Hackley, an isotope geochemist with the Illinois State Geological Survey. In contrast, caves throughout the region are lined with abundant stalagmites, which could provide a better record of past quakes. “We’re trying to see if the initiation of these stalagmites might be fault-induced, recording very large earthquakes that have occurred along the NMSZ,” he said.



Hackley and co-workers used U-Th dating techniques to determine the age of stalagmites from Illinois Caverns and Fogelpole Cave in southwestern Illinois. They discovered that some of the young stalagmites began to form at the time of the 1811-12 earthquakes.



Hackley is scheduled to present preliminary results of the study in a poster on Sunday, 5 October, at the 2008 Joint Meeting of the Geological Society of America (GSA), Soil Science Society of America (SSSA), American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and Gulf Coast Association of Geological Societies (GCAGS), in Houston, Texas, USA.


Water slowly trickles through crevices in the ceiling of a cave and drips onto the floor. Each calcium carbonate-loaded drip falls on the last, and a stalagmite slowly grows from the bottom up. Time is typically recorded in alternating light and dark layers – each pair represents a year.



When a large earthquake shakes the ground, old cracks may seal and new ones open. As a result, some groundwater seeping through the cave ceiling traces a new pattern of drips – and, eventually, stalagmites – on the cave floor. Thus it is possible that each new generation of stalagmites records the latest earthquake.



The scientists use fine drills, much like those used by dentists, to burrow into the stalagmites to collect material for dating. In addition to the 1811-12 earthquakes, their investigation has recorded seven historic earthquakes dating as far back as almost 18,000 years before the present. Understanding the NMSZ’s past, including whether quakes recur with any regularity, will help the scientists predict the potential timing of future quakes.



In coming months, Hackley and his colleagues plan to expand the study, collecting stalagmites from caves across Indiana, Missouri and Kentucky. They hope that the new data will help to fill in more of the missing history of the NMSZ.



View abstract, paper 147-8, at “Paleo-Seismic Activity from the New Madrid Seismic Zone Recorded in Stalagmites. A New Tool for Paleo-Seismic History

New climate record shows century-long droughts in eastern North America





The stalagmite, which is 7.9 inches long, was collected from a site in Buckeye Creek Cave, West Virginia. It is 7,000 years old.photo by: Greg Springer, Ohio University
The stalagmite, which is 7.9 inches long, was collected from a site in Buckeye Creek Cave, West Virginia. It is 7,000 years old.photo by: Greg Springer, Ohio University

Weak sun created cool oceans, lowered rainfall seven times in 7,000 years



A stalagmite in a West Virginia cave has yielded the most detailed geological record to date on climate cycles in eastern North America over the past 7,000 years. The new study confirms that during periods when Earth received less solar radiation, the Atlantic Ocean cooled, icebergs increased and precipitation fell, creating a series of century-long droughts.



A research team led by Ohio University geologist Gregory Springer examined the trace metal strontium and carbon and oxygen isotopes in the stalagmite, which preserved climate conditions averaged over periods as brief as a few years. The scientists found evidence of at least seven major drought periods during the Holocene era, according to an article published online in the journal Geophysical Research Letters.



“This really nails down the idea of solar influence on continental drought,” said Springer, an assistant professor of geological sciences.



Geologist Gerald Bond suggested that every 1,500 years, weak solar activity caused by fluctuations in the sun’s magnetic fields cools the North Atlantic Ocean and creates more icebergs and ice rafting, or the movement of sediment to ocean floors. Other scientists have sought more evidence of these so-called “Bond events” and have studied their possible impact on droughts and precipitation. But studies to date have been hampered by incomplete, less detailed records, Springer said.



The stalagmites from the Buckeye Creek Cave provide an excellent record of climate cycles, he said, because West Virginia is affected by the jet streams and moisture from the Gulf of Mexico and the Pacific Ocean.



Other studies have gleaned climate cycle data from lakes, but fish and other critters tend to churn the sediment, muddying the geological record there, said study co-author Harold Rowe, an assistant professor of geological sciences at the University of Texas at Arlington.



“(The caves) haven’t been disturbed by anything. We can see what happened on the scale of a few decades. In lakes of the Appalachian region, you’re looking more at the scale of a millennium,” Rowe said.





Ohio University undergraduate student Cory Frederick is seen next to a typical group of stalagmites in Bone-Norman Cave, West Virginia. (Not collected for study.)photo by: Greg Springer, Ohio University
Ohio University undergraduate student Cory Frederick is seen next to a typical group of stalagmites in Bone-Norman Cave, West Virginia. (Not collected for study.)photo by: Greg Springer, Ohio University

Strontium occurs naturally in the soil, and rain washes the element through the limestone. During dry periods, it is concentrated in stalagmites, making them good markers of drought, Rowe explained. Carbon isotopes also record drought, Springer added, because drier soils slow biological activity. This causes the soil to “breathe less, changing the mix of light and heavy carbon atoms in it,” he said.



In the recent study, the scientists cut and polished the stalagmite, examined the growth layers and then used a drill to take 200 samples along the growth axis. They weighed and analyzed the metals and isotopes to determine their concentrations over time.



The data are consistent with the Bond events, which showed the connection between weak solar activity and ice rafting, the researchers said. But the study also confirmed that this climate cycle triggers droughts, including some that were particularly pronounced during the mid-Holocene period, about 6,300 to 4,200 years ago. These droughts lasted for decades or even entire centuries.



Though modern records show that a cooling North Atlantic Ocean actually increases moisture and precipitation, the historic climate events were different, Springer said. In the past, the tropical regions of the Atlantic Ocean also grew colder, creating a drier climate and prompting the series of droughts, he explained.



The climate record suggests that North America could face a major drought event again in 500 to 1,000 years, though Springer said that manmade global warming could offset the cycle.



“Global warming will leave things like this in the dust. The natural oscillations here are nothing like what we would expect to see with global warming,” he said.



Though some climate and drought records exist for the Western and Midwest areas of North America, the eastern Appalachian region hasn’t been studied much to date, Rowe said. The research team plans to examine additional stalagmite records from West Virginia and Tennessee to paint a better picture of North American climate cycles.



Collaborators on the study also included Lawrence Edwards, Ben Hardt and Hai Cheng of the University of Minnesota.

Cave Records Provide Clues To Climate Change





A close up of one of the stalagmites analyzed in the study. (Credit: Jud Partin)
A close up of one of the stalagmites analyzed in the study. (Credit: Jud Partin)

When Georgia Tech Assistant Professor Kim Cobb and graduate student Jud Partin wanted to understand the mechanisms that drove the abrupt climate change events that occurred thousands of years ago, they didn’t drill for ice cores from the glaciers of Greenland or the icy plains of Antarctica, as is customary for paleoclimatolgists. Instead, they went underground.



Growing inside the caves of the tropical Pacific island of Borneo are some of the keys to understanding how the Earth’s climate suddenly changed – several times – over the last 25,000 years. By analyzing stalagmites, the pilar-like rock formations that stem from the ground in caves, they were able to produce a high-resolution and continuous record of the climate over this equatorial rainforest.



“These stalagmites are, in essence, tropical ice cores forming over thousands of years,” said Partin. “Each layer of the rock contains important chemical traces that help us determine what was going on in the climate thousands of years ago, much like the ice cores drilled from Greenland or Antarctica.”



The tropical Pacific currently plays a powerful role in shaping year-to-year climate variations around the globe (as evidenced by the number of weather patterns influenced by the Pacific’s El Nino), but its role in past climate change is less understood. Partin and Cobb’s results suggest that the tropical Pacific played a much more active role in some of the abrupt climate change events of Earth’s past than was once thought and may even have played a leading role in some of these changes.



Polar ice cores reveal that the Northern Hemisphere and the Southern Hemisphere each have their own distinct patterns of abrupt climate change; the tropical Pacific may provide the mechanistic link between the two systems. Understanding how the climate changes occurred and what they looked like is important to helping scientists put into context the current trends in today’s climate.



The research team collected stalagmites from the Gunung Buda cave system in Borneo in 2003, 2005 and 2006. Analyzing three stalagmites from two separate caves allowed the pair to create a near-continuous record of the climate from 25,000 years ago to the present. While this study is not the first to use stalagmites to examine climate over this time period, it is the first to do so in the tropical Pacific. Typically, in these types of studies, only one stalagmite is analyzed, but Partin and Cobb compared their three stalagmite records to isolate shared climate-related signals.


Stalagmites are formed as rain water, mixed with calcium carbonate and other elements, makes its way through the ground and onto the cave floor. As this solution drips over time, it hardens in layers, creating a column of rock.



Partin and Cobb cut open each stalagmite and took 1,300 measurements of their chemical content to determine the relative moisture of the climate at various periods in history starting from the oldest layers at the bottom to the present at the top. They dated the rocks by analyzing the radioactive decay of uranium and thorium, and determined the amount of precipitation at given times by measuring the ratio of oxygen isotopes.



“Our records contain signatures of both Northern and Southern Hemisphere climate influences as the Earth emerged from the last ice age, which makes sense given its equatorial location,” said Cobb. “However, tropical Pacific climate was not a simple linear combination of high-latitude climate events. It reflects the complexity of mechanisms linking high and low latitude climate.”



For example, Partin and Cobb’s records suggest that the tropical Pacific began drying about 20,000 years ago and that this trend may have pre-conditioned the North Atlantic for an abrupt climate change event that occurred about 16,500 years ago, known as the Heinrich 1 event.



“In addition, the Borneo records indicate that the tropical Pacific began to get wetter before the North Atlantic recovered from the Heinrich 1 event 14,000 years ago. Perhaps the tropical Pacific is again driving that trend,” said Partin.



“Currently our knowledge of how these dramatic climate changes occurred comes from just a few sites,” said Cobb. “As more studies are done from caves around the world, hopefully we’ll be able to piece together a more complete picture of these changes. Understanding how the dominoes fell is very important to our understanding of our current warming trend.”



These findings are published in the Sept 27, 2007 issue of the journal Nature.