Magma pancakes beneath Lake Toba

The tremendous amounts of lava that are emitted during super-eruptions accumulate over millions of years prior to the event in the Earth’s crust. These reservoirs consist of magma that intrudes into the crust in the form of numerous horizontally oriented sheets resting on top of each other like a pile of pancakes.

A team of geoscientists from Novosibirsk, Paris and Potsdam presents these results in the current issue of Science (2014/10/31). The scientists investigate the question on where the tremendous amounts of material that are ejected to from huge calderas during super-eruptions actually originate. Here we are not dealing with large volcanic eruptions of the size of Pinatubo of Mount St. Helens, here we are talking about extreme events: The Toba-caldera in the Sumatra subduction zone in Indonesia originated from one of the largest volcanic eruption in recent Earth history, about 74,000 years ago. It emitted the enormous amount of 2,800 cubic kilometers of volcanic material with a dramatic global impact on climate and environment. Hereby, the 80 km long Lake Toba was formed.

Geoscientists were interested in finding out: How can the gigantic amounts of eruptible material required to form such a super volcano accumulate in the Earth’s crust. Was this a singular event thousands of years ago or can it happen again?

Researchers from the GFZ German Research Centre for Geosciences successfully installed a seismometer network in the Toba area to investigate these questions and provided the data to all participating scientists via the GEOFON data archive. GFZ scientist, Christoph Sens-Schönfelder, a co-author of the study explains: “With a new seismological method we were able to investigate the internal structure of the magma reservoir beneath the Toba-caldera. We found that the middle crust below the Toba supervolcano is horizontally layered.” The answer thus lies in the structure of the magma reservoir. Here, below 7 kilometers the crust consists of many, mostly horizontal, magmatic intrusions still containing molten material.

New seismological technique

It was already suspected that the large volume of magma ejected during the supervolcanic eruption had slowly accumulated over the last few millions of years in the form of consequently emplaced intrusions. This could now be confirmed with the results of field measurements. The GFZ scientists used a novel seismological method for this purpose. Over a six-month period they recorded the ambient seismic noise, the natural vibrations which usually are regarded as disturbing signals. With a statistical approach they analyzed the data and discovered that the velocity of seismic waves beneath Toba depends on the direction in which the waves shear the Earth’s crust. Above 7 kilometers depth the deposits of the last eruption formed a zone of low velocities. Below this depth the seismic anisotropy is caused by horizontally layered intrusions that structure the reservoir like a pile of pancakes. This is reflected in the seismic data.

Supervolcanoes

Not only in Indonesia, but also in other parts of the world there are such supervoclcanoes, which erupt only every couple of hundred thousand years but then in gigantic eruptions. Because of their size those volcanoes do not build up mountains but manifest themselves with their huge carter formed during the eruption – the caldera. Other known supervolcanoes include the area of the Yellow-Stone-Park, volcanoes in the Andes, and the caldera of Lake-Taupo in New Zealand. The present study helps to better understand the processes that lead to such super-eruptions.

Textbook theory behind volcanoes may be wrong

In the typical textbook picture, volcanoes, such as those that are forming the Hawaiian islands, erupt when magma gushes out as narrow jets from deep inside Earth. But that picture is wrong, according to a new study from researchers at Caltech and the University of Miami in Florida.

New seismology data are now confirming that such narrow jets don’t actually exist, says Don Anderson, the Eleanor and John R. McMillian Professor of Geophysics, Emeritus, at Caltech. In fact, he adds, basic physics doesn’t support the presence of these jets, called mantle plumes, and the new results corroborate those fundamental ideas.

“Mantle plumes have never had a sound physical or logical basis,” Anderson says. “They are akin to Rudyard Kipling’s ‘Just So Stories’ about how giraffes got their long necks.”

Anderson and James Natland, a professor emeritus of marine geology and geophysics at the University of Miami, describe their analysis online in the September 8 issue of the Proceedings of the National Academy of Sciences.

According to current mantle-plume theory, Anderson explains, heat from Earth’s core somehow generates narrow jets of hot magma that gush through the mantle and to the surface. The jets act as pipes that transfer heat from the core, and how exactly they’re created isn’t clear, he says. But they have been assumed to exist, originating near where the Earth’s core meets the mantle, almost 3,000 kilometers underground-nearly halfway to the planet’s center. The jets are theorized to be no more than about 300 kilometers wide, and when they reach the surface, they produce hot spots.

While the top of the mantle is a sort of fluid sludge, the uppermost layer is rigid rock, broken up into plates that float on the magma-bearing layers. Magma from the mantle beneath the plates bursts through the plate to create volcanoes. As the plates drift across the hot spots, a chain of volcanoes forms-such as the island chains of Hawaii and Samoa.

“Much of solid-Earth science for the past 20 years-and large amounts of money-have been spent looking for elusive narrow mantle plumes that wind their way upward through the mantle,” Anderson says.

To look for the hypothetical plumes, researchers analyze global seismic activity. Everything from big quakes to tiny tremors sends seismic waves echoing through Earth’s interior. The type of material that the waves pass through influences the properties of those waves, such as their speeds. By measuring those waves using hundreds of seismic stations installed on the surface, near places such as Hawaii, Iceland, and Yellowstone National Park, researchers can deduce whether there are narrow mantle plumes or whether volcanoes are simply created from magma that’s absorbed in the sponge-like shallower mantle.

No one has been able to detect the predicted narrow plumes, although the evidence has not been conclusive. The jets could have simply been too thin to be seen, Anderson says. Very broad features beneath the surface have been interpreted as plumes or super-plumes, but, still, they’re far too wide to be considered narrow jets.

But now, thanks in part to more seismic stations spaced closer together and improved theory, analysis of the planet’s seismology is good enough to confirm that there are no narrow mantle plumes, Anderson and Natland say. Instead, data reveal that there are large, slow, upward-moving chunks of mantle a thousand kilometers wide.

In the mantle-plume theory, Anderson explains, the heat that is transferred upward via jets is balanced by the slower downward motion of cooled, broad, uniform chunks of mantle. The behavior is similar to that of a lava lamp, in which blobs of wax are heated from below and then rise before cooling and falling. But a fundamental problem with this picture is that lava lamps require electricity, he says, and that is an outside energy source that an isolated planet like Earth does not have.

The new measurements suggest that what is really happening is just the opposite: Instead of narrow jets, there are broad upwellings, which are balanced by narrow channels of sinking material called slabs. What is driving this motion is not heat from the core, but cooling at Earth’s surface. In fact, Anderson says, the behavior is the regular mantle convection first proposed more than a century ago by Lord Kelvin. When material in the planet’s crust cools, it sinks, displacing material deeper in the mantle and forcing it upward.

“What’s new is incredibly simple: upwellings in the mantle are thousands of kilometers across,” Anderson says. The formation of volcanoes then follows from plate tectonics-the theory of how Earth’s plates move and behave. Magma, which is less dense than the surrounding mantle, rises until it reaches the bottom of the plates or fissures that run through them. Stresses in the plates, cracks, and other tectonic forces can squeeze the magma out, like how water is squeezed out of a sponge. That magma then erupts out of the surface as volcanoes. The magma comes from within the upper 200 kilometers of the mantle and not thousands of kilometers deep, as the mantle-plume theory suggests.

“This is a simple demonstration that volcanoes are the result of normal broad-scale convection and plate tectonics,” Anderson says. He calls this theory “top-down tectonics,” based on Kelvin’s initial principles of mantle convection. In this picture, the engine behind Earth’s interior processes is not heat from the core but cooling at the planet’s surface. This cooling and plate tectonics drives mantle convection, the cooling of the core, and Earth’s magnetic field. Volcanoes and cracks in the plate are simply side effects.

The results also have an important consequence for rock compositions-notably the ratios of certain isotopes, Natland says. According to the mantle-plume idea, the measured compositions derive from the mixing of material from reservoirs separated by thousands of kilometers in the upper and lower mantle. But if there are no mantle plumes, then all of that mixing must have happened within the upwellings and nearby mantle in Earth’s top 1,000 kilometers.

The paper is titled “Mantle updrafts and mechanisms of oceanic volcanism.”

Mantle plumes crack continents

In some parts of the Earth, material rises upwards like a column from the boundary layer of the Earth’s core and the lower mantel to just below the Earth’s crust hundreds of kilometres above. Halted by the resistance of the hard crust and lithospheric mantle, the flow of material becomes wider, taking on a mushroom-like shape. Specialists call these magma columns “mantle plumes” or simply “plumes”.

Are mantel plumes responsible for the African rift system?


Geologists believe that plumes are not just responsible for creating volcanoes outside of tectonically active areas – they can also break up continents. The scientists offer the Danakil Depression (the lowlands in the Ethiopia-Eritrea-Djibouti triangle) as an example of this. This “triple junction” is extremely tectonically and volcanically active. Geologists believe that the so-called Afar plume is rising up below it and has created a rift system that forks into the Red Sea, the Gulf of Aden and Africa’s Great Rift Valley. However, the sheer length of time required, geologically speaking, for this process to take place, means that nobody is able to confirm or disprove with absolute certainty that the force of a plume causes continental breakup.

Simulations becoming more realistic


Evgueni Burov, a Professor at the University of Paris VI, and Taras Gerya, Professor of Geophysics at ETH Zurich, have now taken a step closer to solving this geological mystery with a new computer model. Their paper has recently been published in the journal Nature. The two researchers conducted numerical experiments to reproduce the Earth’s surface in high-resolution 3D.

These simulations show that the rising flow of material is strong enough to cause continental breakup if the tectonic plate is under (weak) tensile stress. “The force exerted by a plume on a plate is actually too weak to break it up,” says Gerya. In experiments using simple models, the researchers allowed the plumes to hit an unstressed plate, which did not cause it to break, but merely formed a round hump. However, when the geophysicists modelled the same process with a plate under weak tensile stress, it broke apart, forming a crevice and rift system like the ones found around the world.

“The process can be compared to a taut piece of plastic film. Weak, pointed force is enough to tear the film, but if the film is not pulled taut, it is extremely difficult to tear.” This mechanism has already been proposed in the past as a possible model for explaining continental breakup, but had never been outlined in plausible terms before now.

First high-resolution simulations

“We are the first to create such a high-resolution model which demonstrates how a plume interacts with a plate under tensile stress,” says Gerya. Fast and powerful computers and stable algorithms programmed by the scientists themselves were required for the simulations. The researchers benefited from technical advances made and experience accumulated by the ETH professor in this field over the past ten years.

In the model, the deformations are created quickly from a geological point of view. Rift systems several kilometres deep and more than a thousand kilometres long can form after “just” two million years. The processes are therefore up to ten times faster than tectonic processes such as subduction and 50 times faster than the Alpine orogeny, for example.

Disputed idea


The idea of mantel plumes is widely disputed, with some researchers denying that they even exist. “I think it is much more likely that they do exist,” says Gerya. As is often the case in geology, especially when researching the Earth’s interior, such processes and phenomena like the existence of plumes cannot be observed directly. Furthermore, the periods over which geological processes take place are far too long for humans to experience first-hand. “So far, we have only been able to observe the effects that plumes have on the Earth’s surface and on the propagation of seismic waves in the Earth’s interior.”

The scientists are therefore reliant on good, realistic models that show the processes in a geological time lapse. How realistic the calculated simulations are depends on the parameters used. The plume-plate interaction model incorporated physical laws, the characteristics of materials in the Earth’s crust and mantle, and temperature and pressure conditions. “We know the rules, but humans generally lack the intuition to identify how they interact on geological timescales.”

Gas-charged fluids creating seismicity associated with a Louisiana sinkhole

Natural earthquakes and nuclear explosions produce seismic waves that register on seismic monitoring networks around the globe, allowing the scientific community to pinpoint the location of the events. In order to distinguish seismic waves produced by a variety of activities – from traffic to mining to explosions – scientists study the seismic waves generated by as many types of events as possible.

In August 2012, the emergence of a very large sinkhole at the Napoleonville Salt Dome in Louisiana offered University of California, Berkeley scientists the opportunity to detect, locate and analyze a rich sequence of 62 seismic events that occurred one day prior to its discovery.

In June 2012, residents of Bayou Corne reported frequent tremors and unusual gas bubbling in local surface water. The U.S. Geological Survey installed a temporary network of seismic stations, and on August 3, a large sinkhole was discovered close to the western edge of the salt dome.

In this study published by the Bulletin of the Seismological Society of America (BSSA), co-authors Douglas Dreger and Avinash Nayak, evaluated the data recorded by the seismic network during the 24 hours prior to the discovery of the sinkhole. They implemented a waveform scanning approach to continuously detect, locate and analyze the source of the seismic events at the sinkhole, which are located to the edge of the salt dome and above and to the west of the cavern near the sinkhole.

The point-source equivalent force system describing the motions at the seismic source (called moment tensor) showed similarities to seismic events produced by explosions and active geothermal and volcanic environments. But at the sinkhole, an influx of natural gas rather than hot magma may be responsible for elevating the pore pressure enough to destabilize pre-existing zones of weakness, such as fractures or faults at the edge of the salt dome.

New evidence for oceans of water deep in the Earth

Researchers from Northwestern University and the University of New Mexico report evidence for potentially oceans worth of water deep beneath the United States. Though not in the familiar liquid form — the ingredients for water are bound up in rock deep in the Earth’s mantle — the discovery may represent the planet’s largest water reservoir.

The presence of liquid water on the surface is what makes our “blue planet” habitable, and scientists have long been trying to figure out just how much water may be cycling between Earth’s surface and interior reservoirs through plate tectonics.

Northwestern geophysicist Steve Jacobsen and University of New Mexico seismologist Brandon Schmandt have found deep pockets of magma located about 400 miles beneath North America, a likely signature of the presence of water at these depths. The discovery suggests water from the Earth’s surface can be driven to such great depths by plate tectonics, eventually causing partial melting of the rocks found deep in the mantle.

The findings, to be published June 13 in the journal Science, will aid scientists in understanding how the Earth formed, what its current composition and inner workings are and how much water is trapped in mantle rock.

“Geological processes on the Earth’s surface, such as earthquakes or erupting volcanoes, are an expression of what is going on inside the Earth, out of our sight,” said Jacobsen, a co-author of the paper. “I think we are finally seeing evidence for a whole-Earth water cycle, which may help explain the vast amount of liquid water on the surface of our habitable planet. Scientists have been looking for this missing deep water for decades.”

Scientists have long speculated that water is trapped in a rocky layer of the Earth’s mantle located between the lower mantle and upper mantle, at depths between 250 miles and 410 miles. Jacobsen and Schmandt are the first to provide direct evidence that there may be water in this area of the mantle, known as the “transition zone,” on a regional scale. The region extends across most of the interior of the United States.

Schmandt, an assistant professor of geophysics at the University of New Mexico, uses seismic waves from earthquakes to investigate the structure of the deep crust and mantle. Jacobsen, an associate professor of Earth and planetary sciences at Northwestern’s Weinberg College of Arts and Sciences, uses observations in the laboratory to make predictions about geophysical processes occurring far beyond our direct observation.

The study combined Jacobsen’s lab experiments in which he studies mantle rock under the simulated high pressures of 400 miles below the Earth’s surface with Schmandt’s observations using vast amounts of seismic data from the USArray, a dense network of more than 2,000 seismometers across the United States.

Jacobsen’s and Schmandt’s findings converged to produce evidence that melting may occur about 400 miles deep in the Earth. H2O stored in mantle rocks, such as those containing the mineral ringwoodite, likely is the key to the process, the researchers said.

“Melting of rock at this depth is remarkable because most melting in the mantle occurs much shallower, in the upper 50 miles,” said Schmandt, a co-author of the paper. “If there is a substantial amount of H2O in the transition zone, then some melting should take place in areas where there is flow into the lower mantle, and that is consistent with what we found.”

If just one percent of the weight of mantle rock located in the transition zone is H2O, that would be equivalent to nearly three times the amount of water in our oceans, the researchers said.

This water is not in a form familiar to us — it is not liquid, ice or vapor. This fourth form is water trapped inside the molecular structure of the minerals in the mantle rock. The weight of 250 miles of solid rock creates such high pressure, along with temperatures above 2,000 degrees Fahrenheit, that a water molecule splits to form a hydroxyl radical (OH), which can be bound into a mineral’s crystal structure.

Schmandt and Jacobsen’s findings build on a discovery reported in March in the journal Nature in which scientists discovered a piece of the mineral ringwoodite inside a diamond brought up from a depth of 400 miles by a volcano in Brazil. That tiny piece of ringwoodite — the only sample in existence from within the Earth — contained a surprising amount of water bound in solid form in the mineral.

“Whether or not this unique sample is representative of the Earth’s interior composition is not known, however,” Jacobsen said. “Now we have found evidence for extensive melting beneath North America at the same depths corresponding to the dehydration of ringwoodite, which is exactly what has been happening in my experiments.”

For years, Jacobsen has been synthesizing ringwoodite, colored sapphire-like blue, in his Northwestern lab by reacting the green mineral olivine with water at high-pressure conditions. (The Earth’s upper mantle is rich in olivine.) He found that more than one percent of the weight of the ringwoodite’s crystal structure can consist of water — roughly the same amount of water as was found in the sample reported in the Nature paper.

“The ringwoodite is like a sponge, soaking up water,” Jacobsen said. “There is something very special about the crystal structure of ringwoodite that allows it to attract hydrogen and trap water. This mineral can contain a lot of water under conditions of the deep mantle.”

For the study reported in Science, Jacobsen subjected his synthesized ringwoodite to conditions around 400 miles below the Earth’s surface and found it forms small amounts of partial melt when pushed to these conditions. He detected the melt in experiments conducted at the Advanced Photon Source of Argonne National Laboratory and at the National Synchrotron Light Source of Brookhaven National Laboratory.

Jacobsen uses small gem diamonds as hard anvils to compress minerals to deep-Earth conditions. “Because the diamond windows are transparent, we can look into the high-pressure device and watch reactions occurring at conditions of the deep mantle,” he said. “We used intense beams of X-rays, electrons and infrared light to study the chemical reactions taking place in the diamond cell.”

Jacobsen’s findings produced the same evidence of partial melt, or magma, that Schmandt detected beneath North America using seismic waves. Because the deep mantle is beyond the direct observation of scientists, they use seismic waves — sound waves at different speeds — to image the interior of the Earth.

“Seismic data from the USArray are giving us a clearer picture than ever before of the Earth’s internal structure beneath North America,” Schmandt said. “The melting we see appears to be driven by subduction — the downwelling of mantle material from the surface.”

The melting the researchers have detected is called dehydration melting. Rocks in the transition zone can hold a lot of H2O, but rocks in the top of the lower mantle can hold almost none. The water contained within ringwoodite in the transition zone is forced out when it goes deeper (into the lower mantle) and forms a higher-pressure mineral called silicate perovskite, which cannot absorb the water. This causes the rock at the boundary between the transition zone and lower mantle to partially melt.

“When a rock with a lot of H2O moves from the transition zone to the lower mantle it needs to get rid of the H2O somehow, so it melts a little bit,” Schmandt said. “This is called dehydration melting.”

“Once the water is released, much of it may become trapped there in the transition zone,” Jacobsen added.

Just a little bit of melt, about one percent, is detectible with the new array of seismometers aimed at this region of the mantle because the melt slows the speed of seismic waves, Schmandt said.

Earthquake simulation tops 1 quadrillion flops

This shows a visualization of vibrations inside the Merapi volcano (island of Java) computed with the earthquake simulation software SeisSol. -  Alex Breuer (TUM) / Christian Pelties (LMU)
This shows a visualization of vibrations inside the Merapi volcano (island of Java) computed with the earthquake simulation software SeisSol. – Alex Breuer (TUM) / Christian Pelties (LMU)

Geophysicists use the SeisSol earthquake simulation software to investigate rupture processes and seismic waves beneath the Earth’s surface. Their goal is to simulate earthquakes as accurately as possible to be better prepared for future events and to better understand the fundamental underlying mechanisms. However, the calculations involved in this kind of simulation are so complex that they push even super computers to their limits.

In a collaborative effort, the workgroups led by Dr. Christian Pelties at the Department of Geo and Environmental Sciences at LMU and Professor Michael Bader at the Department of Informatics at TUM have optimized the SeisSol program for the parallel architecture of the Garching supercomputer “SuperMUC”, thereby speeding up calculations by a factor of five.

Using a virtual experiment they achieved a new record on the SuperMUC: To simulate the vibrations inside the geometrically complex Merapi volcano on the island of Java, the supercomputer executed 1.09 quadrillion floating point operations per second. SeisSol maintained this unusually high performance level throughout the entire three hour simulation run using all of SuperMUC’s 147,456 processor cores.

Complete parallelization

This was possible only following the extensive optimization and the complete parallelization of the 70,000 lines of SeisSol code, allowing a peak performance of up to 1.42 petaflops. This corresponds to 44.5 percent of Super MUC’s theoretically available capacity, making SeisSol one of the most efficient simulation programs of its kind worldwide.

“Thanks to the extreme performance now achievable, we can run five times as many models or models that are five times as large to achieve significantly more accurate results. Our simulations are thus inching ever closer to reality,” says the geophysicist Dr. Christian Pelties. “This will allow us to better understand many fundamental mechanisms of earthquakes and hopefully be better prepared for future events.”

The next steps are earthquake simulations that include rupture processes on the meter scale as well as the resultant destructive seismic waves that propagate across hundreds of kilometers. The results will improve the understanding of earthquakes and allow a better assessment of potential future events.

“Speeding up the simulation software by a factor of five is not only an important step for geophysical research,” says Professor Michael Bader of the Department of Informatics at TUM. “We are, at the same time, preparing the applied methodologies and software packages for the next generation of supercomputers that will routinely host the respective simulations for diverse geoscience applications.”

Scientists reconstruct ancient impact that dwarfs dinosaur-extinction blast

A graphical representation of the size of the asteroid thought to have killed the dinosaurs, and the crater it created, compared to an asteroid thought to have hit the Earth 3.26 billion years ago and the size of the crater it may have generated. A new study reveals the power and scale of the event some 3.26 billion years ago which scientists think created geological features found in a South African region known as the Barberton greenstone belt. -  American Geophysical Union
A graphical representation of the size of the asteroid thought to have killed the dinosaurs, and the crater it created, compared to an asteroid thought to have hit the Earth 3.26 billion years ago and the size of the crater it may have generated. A new study reveals the power and scale of the event some 3.26 billion years ago which scientists think created geological features found in a South African region known as the Barberton greenstone belt. – American Geophysical Union

Picture this: A massive asteroid almost as wide as Rhode Island and about three to five times larger than the rock thought to have wiped out the dinosaurs slams into Earth. The collision punches a crater into the planet’s crust that’s nearly 500 kilometers (about 300 miles) across: greater than the distance from Washington, D.C. to New York City, and up to two and a half times larger in diameter than the hole formed by the dinosaur-killing asteroid. Seismic waves bigger than any recorded earthquakes shake the planet for about half an hour at any one location – about six times longer than the huge earthquake that struck Japan three years ago. The impact also sets off tsunamis many times deeper than the one that followed the Japanese quake.

Although scientists had previously hypothesized enormous ancient impacts, much greater than the one that may have eliminated the dinosaurs 65 million years ago, now a new study reveals the power and scale of a cataclysmic event some 3.26 billion years ago which is thought to have created geological features found in a South African region known as the Barberton greenstone belt. The research has been accepted for publication in Geochemistry, Geophysics, Geosystems, a journal of the American Geophysical Union.

The huge impactor – between 37 and 58 kilometers (23 to 36 miles) wide – collided with the planet at 20 kilometers per second (12 miles per second). The jolt, bigger than a 10.8 magnitude earthquake, propelled seismic waves hundreds of kilometers through the Earth, breaking rocks and setting off other large earthquakes. Tsunamis thousands of meters deep – far bigger than recent tsunamis generated by earthquakes — swept across the oceans that covered most of the Earth at that time.

“We knew it was big, but we didn’t know how big,” Donald Lowe, a geologist at Stanford University and a co-author of the study, said of the asteroid.

Lowe, who discovered telltale rock formations in the Barberton greenstone a decade ago, thought their structure smacked of an asteroid impact. The new research models for the first time how big the asteroid was and the effect it had on the planet, including the possible initiation of a more modern plate tectonic system that is seen in the region, according to Lowe.

The study marks the first time scientists have mapped in this way an impact that occurred more than 3 billion years ago, Lowe added, and is likely one of the first times anyone has modeled any impact that occurred during this period of the Earth’s evolution.

The impact would have been catastrophic to the surface environment. The smaller, dino-killing asteroid crash is estimated to have released more than a billion times more energy than the bombs that destroyed Hiroshima and Nagasaki. The more ancient hit now coming to light would have released much more energy, experts said.

The sky would have become red hot, the atmosphere would have been filled with dust and the tops of oceans would have boiled, the researchers said. The impact sent vaporized rock into the atmosphere, which encircled the globe and condensed into liquid droplets before solidifying and falling to the surface, according to the researchers.

The impact may have been one of dozens of huge asteroids that scientists think hit the Earth during the tail end of the Late Heavy Bombardment period, a major period of impacts that occurred early in the Earth’s history – around 3 billion to 4 billion years ago.

Many of the sites where these asteroids landed were destroyed by erosion, movement of the Earth’s crust and other forces as the Earth evolved, but geologists have found a handful of areas in South Africa, and Western Australia that still harbor evidence of these impacts that occurred between 3.23 billion and 3.47 billion years ago. The study’s co-authors think the asteroid hit the Earth thousands of kilometers away from the Barberton Greenstone Belt, although they can’t pinpoint the exact location.

“We can’t go to the impact sites. In order to better understand how big it was and its effect we need studies like this,” said Lowe. Scientists must use the geological evidence of these impacts to piece together what happened to the Earth during this time, Lowe said.

The study’s findings have important implications for understanding the early Earth and how the planet formed. The impact may have disrupted the Earth’s crust and the tectonic regime that characterized the early planet, leading to the start of a more modern plate tectonic system, according to the paper’s co-authors.

The pummeling the planet endured was “much larger than any ordinary earthquake,” said Norman Sleep, a physicist at Stanford University and co-author of the study. He used physics, models, and knowledge about the formations in the Barberton greenstone belt, other earthquakes and other asteroid impact sites on the Earth and the moon to calculate the strength and duration of the shaking that the asteroid produced. Using this information, Sleep recreated how waves traveled from the impact site to the Barberton greenstone belt and caused the geological formations.

The geological evidence found in the Barberton that the paper investigates indicates that the asteroid was “far larger than anything in the last billion years,” said Jay Melosh, a professor at Purdue University in West Lafayette, Indiana, who was not involved in the research.

The Barberton greenstone belt is an area 100 kilometers (62 miles) long and 60 kilometers (37 miles) wide that sits east of Johannesburg near the border with Swaziland. It contains some of the oldest rocks on the planet.

The model provides evidence for the rock formations and crustal fractures that scientists have discovered in the Barberton greenstone belt, said Frank Kyte, a geologist at UCLA who was not involved in the study.

“This is providing significant support for the idea that the impact may have been responsible for this major shift in tectonics,” he said.

Reconstructing the asteroid’s impact could also help scientists better understand the conditions under which early life on the planet evolved, the paper’s authors said. Along with altering the Earth itself, the environmental changes triggered by the impact may have wiped out many microscopic organisms living on the developing planet, allowing other organisms to evolve, they said.

“We are trying to understand the forces that shaped our planet early in its evolution and the environments in which life evolved,” Lowe said.

Hot mantle drives elevation, volcanism along mid-ocean ridges

Scientists have found that temperature deep in Earth's mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth's crust. -  Dalton Lab / Brown University
Scientists have found that temperature deep in Earth’s mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth’s crust. – Dalton Lab / Brown University

Scientists have shown that temperature differences deep within Earth’s mantle control the elevation and volcanic activity along mid-ocean ridges, the colossal mountain ranges that line the ocean floor. The findings, published April 4 in the journal Science, shed new light on how temperature in the depths of the mantle influences the contours of the Earth’s crust.

Mid-ocean ridges form at the boundaries between tectonic plates, circling the globe like seams on a baseball. As the plates move apart, magma from deep within the Earth rises up to fill the void, creating fresh crust as it cools. The crust formed at these seams is thicker in some places than others, resulting in ridges with widely varying elevations. In some places, the peaks are submerged miles below the ocean surface. In other places – Iceland, for example – the ridge tops are exposed above the water’s surface.

“These variations in ridge depth require an explanation,” said Colleen Dalton, assistant professor of geological sciences at Brown and lead author of the new research. “Something is keeping them either sitting high or sitting low.”

That something, the study found, is the temperature of rocks deep below Earth’s surface.

By analyzing the speeds of seismic waves generated by earthquakes, the researchers show that mantle temperature along the ridges at depths extending below 400 kilometers varies by as much as 250 degrees Celsius. High points on the ridges tend to be associated with higher mantle temperatures, while low points are associated with a cooler mantle. The study also showed that volcanic hot spots along the ridge – volcanoes near Iceland as well as the islands of Ascension, Tristan da Cunha, and elsewhere – all sit above warm spots in Earth’s mantle.

“It is clear from our results that what’s being erupted at the ridges is controlled by temperature deep in the mantle,” Dalton said. “It resolves a long-standing controversy and has not been shown definitively before.”

A CAT scan of the Earth


The mid-ocean ridges provide geologists with a window to the interior of the Earth. The ridges form when mantle material melts, rises into the cracks between tectonic plates, and solidifies again. The characteristics of the ridges provide clues about the properties of the mantle below.

For example, a higher ridge elevation suggests a thicker crust, which in turn suggests that a larger volume of magma was erupted at the surface. This excess molten rock can be caused by very hot temperatures in the mantle. The problem is that hot mantle is not the only way to produce excess magma. The chemical composition of the rocks in Earth’s mantle also controls how much melt is produced. For certain rock compositions, it is possible to generate large volumes of molten rock under cooler conditions. For many decades it has not been clear whether mid-ocean ridge elevations are caused by variations in the temperature of the mantle or variations in the rock composition of the mantle.

To distinguish between these two possibilities, Dalton and her colleagues introduced two additional data sets. One was the chemistry of basalts, the rock that forms from solidification of magma at the mid-ocean ridge. The chemical composition of basalts differs depending upon the temperature and composition of the mantle material from which they’re derived. The authors analyzed the chemistry of nearly 17,000 basalts formed along mid-ocean ridges around the globe.

The other data set was seismic wave tomography. During earthquakes, seismic waves are sent pulsing through the rocks in the crust and mantle. By measuring the velocity of those waves, scientists can gather data about the characteristics of the rocks through which they traveled. “It’s like performing a CAT scan of the inside of the Earth,” Dalton said.

Seismic wave speeds are especially sensitive to the temperature of rocks. In general, waves propagate more quickly in cooler rocks and more slowly in hotter rocks.

Dalton and her colleagues combined the seismic data from hundreds of earthquakes with data on elevation and rock chemistry from the ridges. Correlations among the three data sets revealed that temperature deep in the mantle varied between around 1,300 and 1,550 degrees Celsius underneath about 61,000 kilometers of ridge terrain. “It turned out,” said Dalton, “that seismic tomography was the smoking gun. The only plausible explanation for the seismic wave speeds is a very large temperature range.”

The study showed that as ridge elevation falls, so does mantle temperature. The coolest point beneath the ridges was found near the lowest point, an area of very deep and rugged seafloor known as the Australian-Antarctic discordance in the Indian Ocean. The hottest spot was near Iceland, which is also the ridges’ highest elevation point.

Iceland is also where scientists have long debated whether a mantle plume – a vertical jet of hot rock originating from deep in the Earth – intersects the mid-ocean ridge. This study provides strong support for a mantle plume located beneath Iceland. In fact, this study showed that all regions with above-average temperature are located near volcanic hot spots, which points to mantle plumes as the culprit for the excess volume of magma in these areas.

Understanding a churning planet


Despite being made of solid rock, Earth’s mantle doesn’t sit still. It undergoes convection, a slow churning of material from the depths of the Earth toward the surface and back again.

“Convection is why we have plate tectonics and earthquakes,” Dalton said. “It’s also responsible for almost all volcanism at the surface. So understanding mantle convection is crucial to understanding many fundamental questions about the Earth.”

Two factors influence how that convection works: variations in the composition of the mantle and variations in its temperature. This work, says Dalton, points to temperature as a primary factor in how convection is expressed on the surface.

“We get consistent and coherent temperature measurements from the mantle from three independent datasets,” Dalton said. “All of them suggest that what we see at the surface is due to temperature, and that composition is only a secondary factor. What is surprising is that the data require the temperature variations to exist not only near the surface but also many hundreds of kilometers deep inside the Earth.”

The findings from this study will also be useful in future research using seismic waves, Dalton says. Because the temperature readings as indicated by seismology were backed up by the other datasets, they can be used to calibrate seismic readings for places where geochemical samples aren’t available. This makes it possible to estimate temperature deep in Earth’s mantle all over the globe.

That will help geologists gain a new insights into how processes deep within the Earth mold the ground beneath our feet.

New study reveals insights on plate tectonics, the forces behind earthquakes, volcanoes

The Earth's outer layer is broken into moving, interacting plates whose motion at the surface generates most earthquakes, creates volcanoes and builds mountains. In this image, the orange layer represents the deformable, warm asthenosphere in which there is active mantle flow. The green layer is the lithospheric plate, which forms at the mid ocean ridge, then cools down and thickness as it moves away from the ridge. The cooling of the plate overprints a compositional boundary that forms at the ridge by dehydration melting and is preserved as the plate ages. The more easily deformable, hydrated rocks align with mantle flow. The directions of past and present-day mantle flow can be detected by seismic waves, and changes in the alignment of the rocks inside and at the bottom of the plate can be used to identify layering. -  Nicholas Schmerr/University of Maryland
The Earth’s outer layer is broken into moving, interacting plates whose motion at the surface generates most earthquakes, creates volcanoes and builds mountains. In this image, the orange layer represents the deformable, warm asthenosphere in which there is active mantle flow. The green layer is the lithospheric plate, which forms at the mid ocean ridge, then cools down and thickness as it moves away from the ridge. The cooling of the plate overprints a compositional boundary that forms at the ridge by dehydration melting and is preserved as the plate ages. The more easily deformable, hydrated rocks align with mantle flow. The directions of past and present-day mantle flow can be detected by seismic waves, and changes in the alignment of the rocks inside and at the bottom of the plate can be used to identify layering. – Nicholas Schmerr/University of Maryland

The Earth’s outer layer is made up of a series of moving, interacting plates whose motion at the surface generates earthquakes, creates volcanoes and builds mountains. Geoscientists have long sought to understand the plates’ fundamental properties and the mechanisms that cause them to move and drift, and the questions have become the subjects of lively debate.

A study published online Feb. 27 by the journal Science is a significant step toward answering those questions.

Researchers led by Caroline Beghein, assistant professor of earth, planetary and space sciences in UCLA’s College of Letters and Science, used a technique called seismic tomography to study the structure of the Pacific Plate – one of eight to 12 major plates at the surface of the Earth. The technique enabled them to determine the plate’s thickness, and to image the interior of the plate and the underlying mantle (the layer between the Earth’s crust and outer core), which they were able to relate to the direction of flow of rocks in the mantle.

“Rocks deform and flow slowly inside the Earth’s mantle, which makes the plates move at the surface,” said Beghein, the paper’s lead author. “Our research enables us to image the interior of the plate and helps us figure out how it formed and evolved.” The findings might apply to other oceanic plates as well.

Even with the new findings, Beghein said, the fundamental properties of plates “are still somewhat enigmatic.”

Seismic tomography is similar to commonly used medical imaging techniques like computed tomography, or CT, scans. But instead of using X-rays, seismic tomography employs recordings of the seismic waves generated by earthquakes, allowing scientists to detect variations in the speed of seismic waves inside the Earth. Those variations can reveal different layers within the mantle, and can help scientists determine the temperature and chemistry of the mantle rocks by comparing observed variations in wave speed with predictions from other types of geophysical data.

Seismologists often use other types of seismic data to identify this layering: They detect seismic waves that bounce off the interface that separates two layers. In their study, Beghein and co-authors compared the layering they observed using seismic tomography with the layers revealed by these other types of data. Comparing results from the different methods is a continuing challenge for geoscientists, but it is an important part of helping them understand the Earth’s structure.

“We overcame this challenge by trying to push the observational science to the highest resolutions, allowing us to more readily compare observations across datasets,” said Nicholas Schmerr, the study’s co-author and an assistant research scientist in geology at the University of Maryland.

The researchers were the first to discover that the Pacific Plate is formed by a combination of mechanisms: The plate thickens as the rocks of the mantle cool, the chemical makeup of the rocks that form the plate changes with depth, and the mechanical behavior of the rocks change with depth and their proximity to where the plate is being formed at the mid-ocean ridge.

“By modeling the behavior of seismic waves in Earth’s mantle, we discovered a transition inside the plate from the top, where the rocks didn’t deform or flow very much, to the bottom of the plate, where they are more strongly deformed by tectonic forces,” Beghein said. “This transition corresponds to a boundary between the layers that we can image with seismology and that we attribute to changes in rock composition.”

Oceanic plates form at ocean ridges and disappear into the Earth’s mantle, a process known as subduction. Among geoscientists, there is still considerable debate about what drives this evolution. Beghein and her research team advanced our understanding of how oceanic plates form and evolve as they age by using and comparing two sets of seismic data; the study revealed the presence of a compositional boundary inside the plate that appears to be linked to the formation of the plate itself.

Volcanoes, including Mt. Hood, can go from dormant to active quickly

Mount Hood, in the Oregon Cascades, doesn't have a highly explosive history. -  Photo courtesy Alison M Koleszar
Mount Hood, in the Oregon Cascades, doesn’t have a highly explosive history. – Photo courtesy Alison M Koleszar

A new study suggests that the magma sitting 4-5 kilometers beneath the surface of Oregon’s Mount Hood has been stored in near-solid conditions for thousands of years, but that the time it takes to liquefy and potentially erupt is surprisingly short – perhaps as little as a couple of months.

The key, scientists say, is to elevate the temperature of the rock to more than 750 degrees Celsius, which can happen when hot magma from deep within the Earth’s crust rises to the surface. It is the mixing of the two types of magma that triggered Mount Hood’s last two eruptions – about 220 and 1,500 years ago, said Adam Kent, an Oregon State University geologist and co-author of the study.

Results of the research, which was funded by the National Science Foundation, were published this week in the journal Nature.

“If the temperature of the rock is too cold, the magma is like peanut butter in a refrigerator,” Kent said. “It just isn’t very mobile. For Mount Hood, the threshold seems to be about 750 degrees (C) – if it warms up just 50 to 75 degrees above that, it greatly increases the viscosity of the magma and makes it easier to mobilize.”

Thus the scientists are interested in the temperature at which magma resides in the crust, they say, since it is likely to have important influence over the timing and types of eruptions that could occur. The hotter magma from down deep warms the cooler magma stored at 4-5 kilometers, making it possible for both magmas to mix and to be transported to the surface to eventually produce an eruption.

The good news, Kent said, is that Mount Hood’s eruptions are not particularly violent. Instead of exploding, the magma tends to ooze out the top of the peak. A previous study by Kent and OSU postdoctoral researcher Alison Koleszar found that the mixing of the two magma sources – which have different compositions – is both a trigger to an eruption and a constraining factor on how violent it can be.

“What happens when they mix is what happens when you squeeze a tube of toothpaste in the middle,” said Kent, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “A big glob kind of plops out the top, but in the case of Mount Hood – it doesn’t blow the mountain to pieces.”

The collaborative study between Oregon State and the University of California, Davis is important because little was known about the physical conditions of magma storage and what it takes to mobilize the magma. Kent and UC-Davis colleague Kari Cooper, also a co-author on the Nature article, set out to find if they could determine how long Mount Hood’s magma chamber has been there, and in what condition.

When Mount Hood’s magma first rose up through the crust into its present-day chamber, it cooled and formed crystals. The researchers were able to document the age of the crystals by the rate of decay of naturally occurring radioactive elements. However, the growth of the crystals is also dictated by temperature – if the rock is too cold, they don’t grow as fast.

Thus the combination of the crystals’ age and apparent growth rate provides a geologic fingerprint for determining the approximate threshold for making the near-solid rock viscous enough to cause an eruption. The diffusion rate of the element strontium, which is also sensitive to temperature, helped validate the findings.

“What we found was that the magma has been stored beneath Mount Hood for at least 20,000 years – and probably more like 100,000 years,” Kent said. “And during the time it’s been there, it’s been in cold storage – like the peanut butter in the fridge – a minimum of 88 percent of the time, and likely more than 99 percent of the time.”

In other words – even though hot magma from below can quickly mobilize the magma chamber at 4-5 kilometers below the surface, most of the time magma is held under conditions that make it difficult for it to erupt.

“What is encouraging from another standpoint is that modern technology should be able to detect when magma is beginning to liquefy, or mobilize,” Kent said, “and that may give us warning of a potential eruption. Monitoring gases, utilizing seismic waves and studying ground deformation through GPS are a few of the techniques that could tell us that things are warming.”

The researchers hope to apply these techniques to other, larger volcanoes to see if they can determine their potential for shifting from cold storage to potential eruption, a development that might bring scientists a step closer to being able to forecast volcanic activity.