Study of Chile earthquake finds new rock structure that affects earthquake rupture

Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images,  These images revealed a new and previously jknknown rock structure in the Chile fault line. -  Stephen Hicks, University of Liverpool
Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images, These images revealed a new and previously jknknown rock structure in the Chile fault line. – Stephen Hicks, University of Liverpool

Researchers from the University of Liverpool have found an unusual mass of rock deep in the active fault line beneath Chile which influenced the rupture size of a massive earthquake that struck the region in 2010.

The geological structure, which was not previously known about, is unusually dense and large for this depth in the Earth’s crust. The body was revealed using 3-D seismic images of Earth’s interior based on the monitoring of vibrations on the Pacific seafloor caused by aftershocks from the magnitude 8.8 Chile earthquake. This imaging works in a similar way to CT scans that are used in hospitals.

Analysis of the 2010 earthquake also revealed that this structure played a key role in the movement of the fault, causing the rupture to suddenly slow down.

Seismologists think that the block of rock was once part of Earth’s mantle and may have formed around 220 million years ago, during the period of time known as the Triassic.

Liverpool Seismologist, Stephen Hicks from the School of Environmental Sciences, who led the research, said: “It was previously thought that dense geological bodies in an active fault zone may cause more movement of the fault during an earthquake.”

“However, our research suggests that these blocks of rock may in fact cause the earthquake rupture to suddenly slow down. But this slowing down can generate stronger shaking at the surface, which is more damaging to man-made structures.”

“It is now clear that ancient geology plays a big role in the generation of future earthquakes and their subsequent aftershocks.”

Professor Andreas Rietbrock, head of the Earthquake Seismology and Geodynamics research group added: “This work has clearly shown the potential of 3D ‘seismic’ images to further our understanding of the earthquake rupture process.

We are currently establishing the Liverpool Earth Observatory (LEO), which will allow us together with our international partners, to carry out similar studies in other tectonically active regions such as northern Chile, Indonesia, New Zealand and the northwest coast United States. This work is vital for understanding risk exposure in these countries from both ground shaking and tsunamis.”

Chile is located on the Pacific Ring of Fire, where the sinking of tectonic plates generates many of the world’s largest earthquakes.

The 2010 magnitude 8.8 earthquake in Chile is one of the best-recorded earthquakes, giving seismologists the best insight to date into the ruptures of mega-quakes.

###

The research, funded by the Natural Environment Research Council, is published in the journal Earth and Planetary Science Letters.

Study of Chile earthquake finds new rock structure that affects earthquake rupture

Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images,  These images revealed a new and previously jknknown rock structure in the Chile fault line. -  Stephen Hicks, University of Liverpool
Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images, These images revealed a new and previously jknknown rock structure in the Chile fault line. – Stephen Hicks, University of Liverpool

Researchers from the University of Liverpool have found an unusual mass of rock deep in the active fault line beneath Chile which influenced the rupture size of a massive earthquake that struck the region in 2010.

The geological structure, which was not previously known about, is unusually dense and large for this depth in the Earth’s crust. The body was revealed using 3-D seismic images of Earth’s interior based on the monitoring of vibrations on the Pacific seafloor caused by aftershocks from the magnitude 8.8 Chile earthquake. This imaging works in a similar way to CT scans that are used in hospitals.

Analysis of the 2010 earthquake also revealed that this structure played a key role in the movement of the fault, causing the rupture to suddenly slow down.

Seismologists think that the block of rock was once part of Earth’s mantle and may have formed around 220 million years ago, during the period of time known as the Triassic.

Liverpool Seismologist, Stephen Hicks from the School of Environmental Sciences, who led the research, said: “It was previously thought that dense geological bodies in an active fault zone may cause more movement of the fault during an earthquake.”

“However, our research suggests that these blocks of rock may in fact cause the earthquake rupture to suddenly slow down. But this slowing down can generate stronger shaking at the surface, which is more damaging to man-made structures.”

“It is now clear that ancient geology plays a big role in the generation of future earthquakes and their subsequent aftershocks.”

Professor Andreas Rietbrock, head of the Earthquake Seismology and Geodynamics research group added: “This work has clearly shown the potential of 3D ‘seismic’ images to further our understanding of the earthquake rupture process.

We are currently establishing the Liverpool Earth Observatory (LEO), which will allow us together with our international partners, to carry out similar studies in other tectonically active regions such as northern Chile, Indonesia, New Zealand and the northwest coast United States. This work is vital for understanding risk exposure in these countries from both ground shaking and tsunamis.”

Chile is located on the Pacific Ring of Fire, where the sinking of tectonic plates generates many of the world’s largest earthquakes.

The 2010 magnitude 8.8 earthquake in Chile is one of the best-recorded earthquakes, giving seismologists the best insight to date into the ruptures of mega-quakes.

###

The research, funded by the Natural Environment Research Council, is published in the journal Earth and Planetary Science Letters.

The breathing sand

An Eddy Correlation Lander analyzes the strength of the oxygen fluxes at the bottom of the North Sea. -  Photo: ROV-Team, GEOMAR
An Eddy Correlation Lander analyzes the strength of the oxygen fluxes at the bottom of the North Sea. – Photo: ROV-Team, GEOMAR

A desert at the bottom of the sea? Although the waters of the North Sea exchange about every two to three years, there is evidence of decreasing oxygen content. If lower amounts of this gas are dissolved in seawater, organisms on and in the seabed produce less energy – with implications for larger creatures and the biogeochemical cycling in the marine ecosystem. Since nutrients, carbon and oxygen circulate very well and are processed quickly in the permeable, sandy sediments that make up two-thirds of the North Sea, measurements of metabolic rates are especially difficult here. Using the new Aquatic Eddy Correlation technique, scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel, Leibniz Institute of Freshwater Ecology and Inland Fisheries, the University of Southern Denmark, the University of Koblenz-Landau, the Scottish Marine Institute and Aarhus University were able to demonstrate how oxygen flows at the ground of the North Sea. Their methods and results are presented in the Journal of Geophysical Research: Oceans.

“The so-called ‘Eddy Correlation’ technique detects the flow of oxygen through these small turbulences over an area of several square meters. It considers both the mixing of sediments by organisms living in it and the hydrodynamics of the water above the rough sea floor”, Dr. Peter Linke, a marine biologist at GEOMAR, explains. “Previous methods overlooked only short periods or disregarded important parameters. Now we can create a more realistic picture.” The new method also takes into account the fact that even small objects such as shells or ripples shaped by wave action or currents are able to impact the oxygen exchange in permeable sediments.

On the expedition CE0913 with the Irish research vessel CELTIC EXPLORER, scientists used the underwater robot ROV KIEL 6000 to place three different instruments within the “Tommeliten” area belonging to Norway: Two “Eddy Correlation Landers” recorded the strength of oxygen fluxes over three tidal cycles. Information about the distribution of oxygen in the sediment was collected with a “Profiler Lander”, a seafloor observatory with oxygen sensors and flow meters. A “Benthic chamber” isolated 314 square centimetres of sediment and took samples from the overlying water over a period of 24 hours to determine the oxygen consumption of the sediment.

“The combination of traditional tools with the ‘Eddy Correlation’ technique has given us new insights into the dynamics of the exchange of substances between the sea water and the underlying sediment. A variety of factors determine the timing and amount of oxygen available. Currents that provide the sandy sediment with oxygen, but also the small-scale morphology of the seafloor, ensure that small benthic organisms are able to process carbon or other nutrients. The dependencies are so complex that they can be decrypted only by using special methods”, Dr. Linke summarizes. Therefore, detailed measurements in the water column and at the boundary to the seafloor as well as model calculations are absolutely necessary to understand basic functions and better estimate future changes in the cycle of materials. “With conventional methods, for example, we would never have been able to find that the loose sandy sediment stores oxygen brought in by the currents for periods of less water movement and less oxygen introduction.”

Original publication:
McGinnis, D. F., S. Sommer, A. Lorke, R. N. Glud, P. Linke (2014): Quantifying tidally driven benthic oxygen exchange across permeable sediments: An aquatic eddy correlation study. Journal of Geophysical Research: Oceans, doi:10.1002/2014JC010303.

Links:

GEOMAR Helmholtz Centre for Ocean Research Kiel

Eddy correlation information page

Leibniz Institute of Freshwater Ecology and Inland Fisheries, IGB

University of Southern Denmark

University of Koblenz-Landau

Scottish Marine Institute

Aarhus University

Images:
High resolution images can be downloaded at http://www.geomar.de/n2110-e.

Video footage is available on request.

Contact:
Dr. Peter Linke (GEOMAR FB2-MG), Tel. 0431 600-2115, plinke@geomar.de

Maike Nicolai (GEOMAR, Kommunikation & Medien), Tel. 0431 600-2807, mnicolai@geomar.de

The breathing sand

An Eddy Correlation Lander analyzes the strength of the oxygen fluxes at the bottom of the North Sea. -  Photo: ROV-Team, GEOMAR
An Eddy Correlation Lander analyzes the strength of the oxygen fluxes at the bottom of the North Sea. – Photo: ROV-Team, GEOMAR

A desert at the bottom of the sea? Although the waters of the North Sea exchange about every two to three years, there is evidence of decreasing oxygen content. If lower amounts of this gas are dissolved in seawater, organisms on and in the seabed produce less energy – with implications for larger creatures and the biogeochemical cycling in the marine ecosystem. Since nutrients, carbon and oxygen circulate very well and are processed quickly in the permeable, sandy sediments that make up two-thirds of the North Sea, measurements of metabolic rates are especially difficult here. Using the new Aquatic Eddy Correlation technique, scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel, Leibniz Institute of Freshwater Ecology and Inland Fisheries, the University of Southern Denmark, the University of Koblenz-Landau, the Scottish Marine Institute and Aarhus University were able to demonstrate how oxygen flows at the ground of the North Sea. Their methods and results are presented in the Journal of Geophysical Research: Oceans.

“The so-called ‘Eddy Correlation’ technique detects the flow of oxygen through these small turbulences over an area of several square meters. It considers both the mixing of sediments by organisms living in it and the hydrodynamics of the water above the rough sea floor”, Dr. Peter Linke, a marine biologist at GEOMAR, explains. “Previous methods overlooked only short periods or disregarded important parameters. Now we can create a more realistic picture.” The new method also takes into account the fact that even small objects such as shells or ripples shaped by wave action or currents are able to impact the oxygen exchange in permeable sediments.

On the expedition CE0913 with the Irish research vessel CELTIC EXPLORER, scientists used the underwater robot ROV KIEL 6000 to place three different instruments within the “Tommeliten” area belonging to Norway: Two “Eddy Correlation Landers” recorded the strength of oxygen fluxes over three tidal cycles. Information about the distribution of oxygen in the sediment was collected with a “Profiler Lander”, a seafloor observatory with oxygen sensors and flow meters. A “Benthic chamber” isolated 314 square centimetres of sediment and took samples from the overlying water over a period of 24 hours to determine the oxygen consumption of the sediment.

“The combination of traditional tools with the ‘Eddy Correlation’ technique has given us new insights into the dynamics of the exchange of substances between the sea water and the underlying sediment. A variety of factors determine the timing and amount of oxygen available. Currents that provide the sandy sediment with oxygen, but also the small-scale morphology of the seafloor, ensure that small benthic organisms are able to process carbon or other nutrients. The dependencies are so complex that they can be decrypted only by using special methods”, Dr. Linke summarizes. Therefore, detailed measurements in the water column and at the boundary to the seafloor as well as model calculations are absolutely necessary to understand basic functions and better estimate future changes in the cycle of materials. “With conventional methods, for example, we would never have been able to find that the loose sandy sediment stores oxygen brought in by the currents for periods of less water movement and less oxygen introduction.”

Original publication:
McGinnis, D. F., S. Sommer, A. Lorke, R. N. Glud, P. Linke (2014): Quantifying tidally driven benthic oxygen exchange across permeable sediments: An aquatic eddy correlation study. Journal of Geophysical Research: Oceans, doi:10.1002/2014JC010303.

Links:

GEOMAR Helmholtz Centre for Ocean Research Kiel

Eddy correlation information page

Leibniz Institute of Freshwater Ecology and Inland Fisheries, IGB

University of Southern Denmark

University of Koblenz-Landau

Scottish Marine Institute

Aarhus University

Images:
High resolution images can be downloaded at http://www.geomar.de/n2110-e.

Video footage is available on request.

Contact:
Dr. Peter Linke (GEOMAR FB2-MG), Tel. 0431 600-2115, plinke@geomar.de

Maike Nicolai (GEOMAR, Kommunikation & Medien), Tel. 0431 600-2807, mnicolai@geomar.de

Scientists discover carbonate rocks are unrecognized methane sink

Since the first undersea methane seep was discovered 30 years ago, scientists have meticulously analyzed and measured how microbes in the seafloor sediments consume the greenhouse gas methane as part of understanding how the Earth works.

The sediment-based microbes form an important methane “sink,” preventing much of the chemical from reaching the atmosphere and contributing to greenhouse gas accumulation. As a byproduct of this process, the microbes create a type of rock known as authigenic carbonate, which while interesting to scientists was not thought to be involved in the processing of methane.

That is no longer the case. A team of scientists has discovered that these authigenic carbonate rocks also contain vast amounts of active microbes that take up methane. The results of their study, which was funded by the National Science Foundation, were reported today in the journal Nature Communications.

“No one had really examined these rocks as living habitats before,” noted Andrew Thurber, an Oregon State University marine ecologist and co-author on the paper. “It was just assumed that they were inactive. In previous studies, we had seen remnants of microbes in the rocks – DNA and lipids – but we thought they were relics of past activity. We didn’t know they were active.

“This goes to show how the global methane process is still rather poorly understood,” Thurber added.

Lead author Jeffrey Marlow of the California Institute of Technology and his colleagues studied samples from authigenic compounds off the coasts of the Pacific Northwest (Hydrate Ridge), northern California (Eel River Basin) and central America (the Costa Rica margin). The rocks range in size and distribution from small pebbles to carbonate “pavement” stretching dozens of square miles.

“Methane-derived carbonates represent a large volume within many seep systems and finding active methane-consuming archaea and bacteria in the interior of these carbonate rocks extends the known habitat for methane-consuming microorganisms beyond the relatively thin layer of sediment that may overlay a carbonate mound,” said Marlow, a geobiology graduate student in the lab of Victoria Orphan of Caltech.

These assemblages are also found in the Gulf of Mexico as well as off Chile, New Zealand, Africa, Europe – “and pretty much every ocean basin in the world,” noted Thurber, an assistant professor (senior research) in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The study is important, scientists say, because the rock-based microbes potentially may consume a huge amount of methane. The microbes were less active than those found in the sediment, but were more abundant – and the areas they inhabit are extensive, making their importance potential enormous. Studies have found that approximately 3-6 percent of the methane in the atmosphere is from marine sources – and this number is so low due to microbes in the ocean sediments consuming some 60-90 percent of the methane that would otherwise escape.

Now those ratios will have to be re-examined to determine how much of the methane sink can be attributed to microbes in rocks versus those in sediments. The distinction is important, the researchers say, because it is an unrecognized sink for a potentially very important greenhouse gas.

“We found that these carbonate rocks located in areas of active methane seeps are themselves more active,” Thurber said. “Rocks located in comparatively inactive regions had little microbial activity. However, they can quickly activate when methane becomes available.

“In some ways, these rocks are like armies waiting in the wings to be called upon when needed to absorb methane.”

The ocean contains vast amounts of methane, which has long been a concern to scientists. Marine reservoirs of methane are estimated to total more than 455 gigatons and may be as much as 10,000 gigatons carbon in methane. A gigaton is approximate 1.1 billion tons.

By contrast, all of the planet’s gas and oil deposits are thought to total about 200-300 gigatons of carbon.

Scientists discover carbonate rocks are unrecognized methane sink

Since the first undersea methane seep was discovered 30 years ago, scientists have meticulously analyzed and measured how microbes in the seafloor sediments consume the greenhouse gas methane as part of understanding how the Earth works.

The sediment-based microbes form an important methane “sink,” preventing much of the chemical from reaching the atmosphere and contributing to greenhouse gas accumulation. As a byproduct of this process, the microbes create a type of rock known as authigenic carbonate, which while interesting to scientists was not thought to be involved in the processing of methane.

That is no longer the case. A team of scientists has discovered that these authigenic carbonate rocks also contain vast amounts of active microbes that take up methane. The results of their study, which was funded by the National Science Foundation, were reported today in the journal Nature Communications.

“No one had really examined these rocks as living habitats before,” noted Andrew Thurber, an Oregon State University marine ecologist and co-author on the paper. “It was just assumed that they were inactive. In previous studies, we had seen remnants of microbes in the rocks – DNA and lipids – but we thought they were relics of past activity. We didn’t know they were active.

“This goes to show how the global methane process is still rather poorly understood,” Thurber added.

Lead author Jeffrey Marlow of the California Institute of Technology and his colleagues studied samples from authigenic compounds off the coasts of the Pacific Northwest (Hydrate Ridge), northern California (Eel River Basin) and central America (the Costa Rica margin). The rocks range in size and distribution from small pebbles to carbonate “pavement” stretching dozens of square miles.

“Methane-derived carbonates represent a large volume within many seep systems and finding active methane-consuming archaea and bacteria in the interior of these carbonate rocks extends the known habitat for methane-consuming microorganisms beyond the relatively thin layer of sediment that may overlay a carbonate mound,” said Marlow, a geobiology graduate student in the lab of Victoria Orphan of Caltech.

These assemblages are also found in the Gulf of Mexico as well as off Chile, New Zealand, Africa, Europe – “and pretty much every ocean basin in the world,” noted Thurber, an assistant professor (senior research) in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The study is important, scientists say, because the rock-based microbes potentially may consume a huge amount of methane. The microbes were less active than those found in the sediment, but were more abundant – and the areas they inhabit are extensive, making their importance potential enormous. Studies have found that approximately 3-6 percent of the methane in the atmosphere is from marine sources – and this number is so low due to microbes in the ocean sediments consuming some 60-90 percent of the methane that would otherwise escape.

Now those ratios will have to be re-examined to determine how much of the methane sink can be attributed to microbes in rocks versus those in sediments. The distinction is important, the researchers say, because it is an unrecognized sink for a potentially very important greenhouse gas.

“We found that these carbonate rocks located in areas of active methane seeps are themselves more active,” Thurber said. “Rocks located in comparatively inactive regions had little microbial activity. However, they can quickly activate when methane becomes available.

“In some ways, these rocks are like armies waiting in the wings to be called upon when needed to absorb methane.”

The ocean contains vast amounts of methane, which has long been a concern to scientists. Marine reservoirs of methane are estimated to total more than 455 gigatons and may be as much as 10,000 gigatons carbon in methane. A gigaton is approximate 1.1 billion tons.

By contrast, all of the planet’s gas and oil deposits are thought to total about 200-300 gigatons of carbon.

New map uncovers thousands of unseen seamounts on ocean floor

This is a gravity model of the North Atlantic; red dots are earthquakes. Quakes are often related to seamounts. -  David Sandwell, SIO
This is a gravity model of the North Atlantic; red dots are earthquakes. Quakes are often related to seamounts. – David Sandwell, SIO

Scientists have created a new map of the world’s seafloor, offering a more vivid picture of the structures that make up the deepest, least-explored parts of the ocean.

The feat was accomplished by accessing two untapped streams of satellite data.

Thousands of previously uncharted mountains rising from the seafloor, called seamounts, have emerged through the map, along with new clues about the formation of the continents.

Combined with existing data and improved remote sensing instruments, the map, described today in the journal Science, gives scientists new tools to investigate ocean spreading centers and little-studied remote ocean basins.

Earthquakes were also mapped. In addition, the researchers discovered that seamounts and earthquakes are often linked. Most seamounts were once active volcanoes, and so are usually found near tectonically active plate boundaries, mid-ocean ridges and subducting zones.

The new map is twice as accurate as the previous version produced nearly 20 years ago, say the researchers, who are affiliated with California’s Scripps Institution of Oceanography (SIO) and other institutions.

“The team has developed and proved a powerful new tool for high-resolution exploration of regional seafloor structure and geophysical processes,” says Don Rice, program director in the National Science Foundation’s Division of Ocean Sciences, which funded the research.

“This capability will allow us to revisit unsolved questions and to pinpoint where to focus future exploratory work.”

Developed using a scientific model that captures gravity measurements of the ocean seafloor, the map extracts data from the European Space Agency’s (ESA) CryoSat-2 satellite.

CryoSat-2 primarily captures polar ice data but also operates continuously over the oceans. Data also came from Jason-1, NASA’s satellite that was redirected to map gravity fields during the last year of its 12-year mission.

“The kinds of things you can see very clearly are the abyssal hills, the most common landform on the planet,” says David Sandwell, lead author of the paper and a geophysicist at SIO.

The paper’s co-authors say that the map provides a window into the tectonics of the deep oceans.

The map also provides a foundation for the upcoming new version of Google’s ocean maps; it will fill large voids between shipboard depth profiles.

Previously unseen features include newly exposed continental connections across South America and Africa and new evidence for seafloor spreading ridges in the Gulf of Mexico. The ridges were active 150 million years ago and are now buried by mile-thick layers of sediment.

“One of the most important uses will be to improve the estimates of seafloor depth in the 80 percent of the oceans that remain uncharted or [where the sea floor] is buried beneath thick sediment,” the authors state.

###

Co-authors of the paper include R. Dietmar Muller of the University of Sydney, Walter Smith of the NOAA Laboratory for Satellite Altimetry Emmanuel Garcia of SIO and Richard Francis of ESA.

The study also was supported by the U.S. Office of Naval Research, the National Geospatial-Intelligence Agency and ConocoPhillips.

New map uncovers thousands of unseen seamounts on ocean floor

This is a gravity model of the North Atlantic; red dots are earthquakes. Quakes are often related to seamounts. -  David Sandwell, SIO
This is a gravity model of the North Atlantic; red dots are earthquakes. Quakes are often related to seamounts. – David Sandwell, SIO

Scientists have created a new map of the world’s seafloor, offering a more vivid picture of the structures that make up the deepest, least-explored parts of the ocean.

The feat was accomplished by accessing two untapped streams of satellite data.

Thousands of previously uncharted mountains rising from the seafloor, called seamounts, have emerged through the map, along with new clues about the formation of the continents.

Combined with existing data and improved remote sensing instruments, the map, described today in the journal Science, gives scientists new tools to investigate ocean spreading centers and little-studied remote ocean basins.

Earthquakes were also mapped. In addition, the researchers discovered that seamounts and earthquakes are often linked. Most seamounts were once active volcanoes, and so are usually found near tectonically active plate boundaries, mid-ocean ridges and subducting zones.

The new map is twice as accurate as the previous version produced nearly 20 years ago, say the researchers, who are affiliated with California’s Scripps Institution of Oceanography (SIO) and other institutions.

“The team has developed and proved a powerful new tool for high-resolution exploration of regional seafloor structure and geophysical processes,” says Don Rice, program director in the National Science Foundation’s Division of Ocean Sciences, which funded the research.

“This capability will allow us to revisit unsolved questions and to pinpoint where to focus future exploratory work.”

Developed using a scientific model that captures gravity measurements of the ocean seafloor, the map extracts data from the European Space Agency’s (ESA) CryoSat-2 satellite.

CryoSat-2 primarily captures polar ice data but also operates continuously over the oceans. Data also came from Jason-1, NASA’s satellite that was redirected to map gravity fields during the last year of its 12-year mission.

“The kinds of things you can see very clearly are the abyssal hills, the most common landform on the planet,” says David Sandwell, lead author of the paper and a geophysicist at SIO.

The paper’s co-authors say that the map provides a window into the tectonics of the deep oceans.

The map also provides a foundation for the upcoming new version of Google’s ocean maps; it will fill large voids between shipboard depth profiles.

Previously unseen features include newly exposed continental connections across South America and Africa and new evidence for seafloor spreading ridges in the Gulf of Mexico. The ridges were active 150 million years ago and are now buried by mile-thick layers of sediment.

“One of the most important uses will be to improve the estimates of seafloor depth in the 80 percent of the oceans that remain uncharted or [where the sea floor] is buried beneath thick sediment,” the authors state.

###

Co-authors of the paper include R. Dietmar Muller of the University of Sydney, Walter Smith of the NOAA Laboratory for Satellite Altimetry Emmanuel Garcia of SIO and Richard Francis of ESA.

The study also was supported by the U.S. Office of Naval Research, the National Geospatial-Intelligence Agency and ConocoPhillips.

Pacific plate shrinking as it cools

A map produced by scientists at the University of Nevada, Reno, and Rice University shows predicted velocities for sectors of the Pacific tectonic plate relative to points near the Pacific-Antarctic ridge, which lies in the South Pacific ocean. The researchers show the Pacific plate is contracting as younger sections of the lithosphere cool. -  Corné Kreemer and Richard Gordon
A map produced by scientists at the University of Nevada, Reno, and Rice University shows predicted velocities for sectors of the Pacific tectonic plate relative to points near the Pacific-Antarctic ridge, which lies in the South Pacific ocean. The researchers show the Pacific plate is contracting as younger sections of the lithosphere cool. – Corné Kreemer and Richard Gordon

The tectonic plate that dominates the Pacific “Ring of Fire” is not as rigid as many scientists assume, according to researchers at Rice University and the University of Nevada.

Rice geophysicist Richard Gordon and his colleague, Corné Kreemer, an associate professor at the University of Nevada, Reno, have determined that cooling of the lithosphere — the outermost layer of Earth — makes some sections of the Pacific plate contract horizontally at faster rates than others and cause the plate to deform.

Gordon said the effect detailed this month in Geology is most pronounced in the youngest parts of the lithosphere — about 2 million years old or less — that make up some the Pacific Ocean’s floor. They predict the rate of contraction to be 10 times faster than older parts of the plate that were created about 20 million years ago and 80 times faster than very old parts of the plate that were created about 160 million years ago.

The tectonic plates that cover Earth’s surface, including both land and seafloor, are in constant motion; they imperceptibly surf the viscous mantle below. Over time, the plates scrape against and collide into each other, forming mountains, trenches and other geological features.

On the local scale, these movements cover only inches per year and are hard to see. The same goes for deformations of the type described in the new paper, but when summed over an area the size of the Pacific plate, they become statistically significant, Gordon said.

The new calculations showed the Pacific plate is pulling away from the North American plate a little more — approximately 2 millimeters a year — than the rigid-plate theory would account for, he said. Overall, the plate is moving northwest about 50 millimeters a year.

“The central assumption in plate tectonics is that the plates are rigid, but the studies that my colleagues and I have been doing for the past few decades show that this central assumption is merely an approximation — that is, the plates are not rigid,” Gordon said. “Our latest contribution is to specify or predict the nature and rate of deformation over the entire Pacific plate.”

The researchers already suspected cooling had a role from their observation that the 25 large and small plates that make up Earth’s shell do not fit together as well as the “rigid model” assumption would have it. They also knew that lithosphere as young as 2 million years was more malleable than hardened lithosphere as old as 170 million years.

“We first showed five years ago that the rate of horizontal contraction is inversely proportional to the age of the seafloor,” he said. “So it’s in the youngest lithosphere (toward the east side of the Pacific plate) where you get the biggest effects.”

The researchers saw hints of deformation in a metric called plate circuit closure, which describes the relative motions where at least three plates meet. If the plates were rigid, their angular velocities at the triple junction would have a sum of zero. But where the Pacific, Nazca and Cocos plates meet west of the Galápagos Islands, the nonclosure velocity is 14 millimeters a year, enough to suggest that all three plates are deforming.

“When we did our first global model in 1990, we said to ourselves that maybe when we get new data, this issue will go away,” Gordon said. “But when we updated our model a few years ago, all the places that didn’t have plate circuit closure 20 years ago still didn’t have it.”

There had to be a reason, and it began to become clear when Gordon and his colleagues looked beneath the seafloor. “It’s long been understood that the ocean floor increases in depth with age due to cooling and thermal contraction. But if something cools, it doesn’t just cool in one direction. It’s going to be at least approximately isotropic. It should shrink the same in all directions, not just vertically,” he said.

A previous study by Gordon and former Rice graduate student Ravi Kumar calculated the effect of thermal contraction on vertical columns of oceanic lithosphere and determined its impact on the horizontal plane, but viewing the plate as a whole demanded a different approach. “We thought about the vertically integrated properties of the lithosphere, but once we did that, we realized Earth’s surface is still a two-dimensional problem,” he said.

For the new study, Gordon and Kreemer started by determining how much the contractions would, on average, strain the horizontal surface. They divided the Pacific plate into a grid and calculated the strain on each of the nearly 198,000 squares based on their age, as determined by the seafloor age model published by the National Geophysical Data Center.

“That we could calculate on a laptop,” Gordon said. “If we tried to do it in three dimensions, it would take a high-powered computer cluster.”

The surface calculations were enough to show likely strain fields across the Pacific plate that, when summed, accounted for the deformation. As further proof, the distribution of recent earthquakes in the Pacific plate, which also relieve the strain, showed a greater number occurring in the plate’s younger lithosphere. “In the Earth, those strains are either accommodated by elastic deformation or by little earthquakes that adjust it,” he said.

“The central assumption of plate tectonics assumes the plates are rigid, and this is what we make predictions from,” said Gordon, who was recently honored by the American Geophysical Union for writing two papers about plate movements that are among the top 40 papers ever to appear in one of the organization’s top journals. “Up until now, it’s worked really well.”

“The big picture is that we now have, subject to experimental and observational tests, the first realistic, quantitative estimate of how the biggest oceanic plate departs from that rigid-plate assumption.”

Pacific plate shrinking as it cools

A map produced by scientists at the University of Nevada, Reno, and Rice University shows predicted velocities for sectors of the Pacific tectonic plate relative to points near the Pacific-Antarctic ridge, which lies in the South Pacific ocean. The researchers show the Pacific plate is contracting as younger sections of the lithosphere cool. -  Corné Kreemer and Richard Gordon
A map produced by scientists at the University of Nevada, Reno, and Rice University shows predicted velocities for sectors of the Pacific tectonic plate relative to points near the Pacific-Antarctic ridge, which lies in the South Pacific ocean. The researchers show the Pacific plate is contracting as younger sections of the lithosphere cool. – Corné Kreemer and Richard Gordon

The tectonic plate that dominates the Pacific “Ring of Fire” is not as rigid as many scientists assume, according to researchers at Rice University and the University of Nevada.

Rice geophysicist Richard Gordon and his colleague, Corné Kreemer, an associate professor at the University of Nevada, Reno, have determined that cooling of the lithosphere — the outermost layer of Earth — makes some sections of the Pacific plate contract horizontally at faster rates than others and cause the plate to deform.

Gordon said the effect detailed this month in Geology is most pronounced in the youngest parts of the lithosphere — about 2 million years old or less — that make up some the Pacific Ocean’s floor. They predict the rate of contraction to be 10 times faster than older parts of the plate that were created about 20 million years ago and 80 times faster than very old parts of the plate that were created about 160 million years ago.

The tectonic plates that cover Earth’s surface, including both land and seafloor, are in constant motion; they imperceptibly surf the viscous mantle below. Over time, the plates scrape against and collide into each other, forming mountains, trenches and other geological features.

On the local scale, these movements cover only inches per year and are hard to see. The same goes for deformations of the type described in the new paper, but when summed over an area the size of the Pacific plate, they become statistically significant, Gordon said.

The new calculations showed the Pacific plate is pulling away from the North American plate a little more — approximately 2 millimeters a year — than the rigid-plate theory would account for, he said. Overall, the plate is moving northwest about 50 millimeters a year.

“The central assumption in plate tectonics is that the plates are rigid, but the studies that my colleagues and I have been doing for the past few decades show that this central assumption is merely an approximation — that is, the plates are not rigid,” Gordon said. “Our latest contribution is to specify or predict the nature and rate of deformation over the entire Pacific plate.”

The researchers already suspected cooling had a role from their observation that the 25 large and small plates that make up Earth’s shell do not fit together as well as the “rigid model” assumption would have it. They also knew that lithosphere as young as 2 million years was more malleable than hardened lithosphere as old as 170 million years.

“We first showed five years ago that the rate of horizontal contraction is inversely proportional to the age of the seafloor,” he said. “So it’s in the youngest lithosphere (toward the east side of the Pacific plate) where you get the biggest effects.”

The researchers saw hints of deformation in a metric called plate circuit closure, which describes the relative motions where at least three plates meet. If the plates were rigid, their angular velocities at the triple junction would have a sum of zero. But where the Pacific, Nazca and Cocos plates meet west of the Galápagos Islands, the nonclosure velocity is 14 millimeters a year, enough to suggest that all three plates are deforming.

“When we did our first global model in 1990, we said to ourselves that maybe when we get new data, this issue will go away,” Gordon said. “But when we updated our model a few years ago, all the places that didn’t have plate circuit closure 20 years ago still didn’t have it.”

There had to be a reason, and it began to become clear when Gordon and his colleagues looked beneath the seafloor. “It’s long been understood that the ocean floor increases in depth with age due to cooling and thermal contraction. But if something cools, it doesn’t just cool in one direction. It’s going to be at least approximately isotropic. It should shrink the same in all directions, not just vertically,” he said.

A previous study by Gordon and former Rice graduate student Ravi Kumar calculated the effect of thermal contraction on vertical columns of oceanic lithosphere and determined its impact on the horizontal plane, but viewing the plate as a whole demanded a different approach. “We thought about the vertically integrated properties of the lithosphere, but once we did that, we realized Earth’s surface is still a two-dimensional problem,” he said.

For the new study, Gordon and Kreemer started by determining how much the contractions would, on average, strain the horizontal surface. They divided the Pacific plate into a grid and calculated the strain on each of the nearly 198,000 squares based on their age, as determined by the seafloor age model published by the National Geophysical Data Center.

“That we could calculate on a laptop,” Gordon said. “If we tried to do it in three dimensions, it would take a high-powered computer cluster.”

The surface calculations were enough to show likely strain fields across the Pacific plate that, when summed, accounted for the deformation. As further proof, the distribution of recent earthquakes in the Pacific plate, which also relieve the strain, showed a greater number occurring in the plate’s younger lithosphere. “In the Earth, those strains are either accommodated by elastic deformation or by little earthquakes that adjust it,” he said.

“The central assumption of plate tectonics assumes the plates are rigid, and this is what we make predictions from,” said Gordon, who was recently honored by the American Geophysical Union for writing two papers about plate movements that are among the top 40 papers ever to appear in one of the organization’s top journals. “Up until now, it’s worked really well.”

“The big picture is that we now have, subject to experimental and observational tests, the first realistic, quantitative estimate of how the biggest oceanic plate departs from that rigid-plate assumption.”