Migrating ‘supraglacial’ lakes could trigger future Greenland ice loss

Supraglacial lakes on the Greenland ice sheet can be seen as dark blue specks in the center and to the right of this satellite image. -  USGS/NASA Landsat
Supraglacial lakes on the Greenland ice sheet can be seen as dark blue specks in the center and to the right of this satellite image. – USGS/NASA Landsat

Predictions of Greenland ice loss and its impact on rising sea levels may have been greatly underestimated, according to scientists at the University of Leeds.

The finding follows a new study, which is published today in Nature Climate Change, in which the future distribution of lakes that form on the ice sheet surface from melted snow and ice – called supraglacial lakes – have been simulated for the first time.

Previously, the impact of supraglacial lakes on Greenland ice loss had been assumed to be small, but the new research has shown that they will migrate farther inland over the next half century, potentially altering the ice sheet flow in dramatic ways.

Dr Amber Leeson from the School of Earth and Environment and a member of the Centre for Polar Observation and Modelling (CPOM) team, who led the study, said: “Supraglacial lakes can increase the speed at which the ice sheet melts and flows, and our research shows that by 2060 the area of Greenland covered by them will double.”

Supraglacial lakes are darker than ice, so they absorb more of the Sun’s heat, which leads to increased melting. When the lakes reach a critical size, they drain through ice fractures, allowing water to reach the ice sheet base which causes it to slide more quickly into the oceans. These changes can also trigger further melting.

Dr Leeson explained: “When you pour pancake batter into a pan, if it rushes quickly to the edges of the pan, you end up with a thin pancake. It’s similar to what happens with ice sheets: the faster it flows, the thinner it will be.

“When the ice sheet is thinner, it is at a slightly lower elevation and at the mercy of warmer air temperatures than it would have been if it were thicker, increasing the size of the melt zone around the edge of the ice sheet.”

Until now, supraglacial lakes have formed at low elevations around the coastline of Greenland, in a band that is roughly 100 km wide. At higher elevations, today’s climate is just too cold for lakes to form.

In the study, the scientists used observations of the ice sheet from the Environmental Remote Sensing satellites operated by the European Space Agency and estimates of future ice melting drawn from a climate model to drive simulations of how meltwater will flow and pool on the ice surface to form supraglacial lakes.

Since the 1970s, the band in which supraglacial lakes can form on Greenland has crept 56km further inland. From the results of the new study, the researchers predict that, as Arctic temperatures rise, supraglacial lakes will spread much farther inland – up to 110 km by 2060 – doubling the area of Greenland that they cover today.

Dr Leeson said: “The location of these new lakes is important; they will be far enough inland so that water leaking from them will not drain into the oceans as effectively as it does from today’s lakes that are near to the coastline and connected to a network of drainage channels.”

“In contrast, water draining from lakes farther inland could lubricate the ice more effectively, causing it to speed up.”

Ice losses from Greenland had been expected to contribute 22cm to global sea-level rise by 2100. However, the models used to make this projection did not account for changes in the distribution of supraglacial lakes, which Dr Leeson’s study reveals will be considerable.

If new lakes trigger further increases in ice melting and flow, then Greenland’s future ice losses and its contribution to global sea-level rise have been underestimated.

The Director of CPOM, Professor Andrew Shepherd, who is also from the School of Earth and Environment at the University of Leeds and is a co-author of the study, said: “Because ice losses from Greenland are a key signal of global climate change, it’s important that we consider all factors that could affect the rate at which it will lose ice as climate warms.

“Our findings will help to improve the next generation of ice sheet models, so that we can have greater confidence in projections of future sea-level rise. In the meantime, we will continue to monitor changes in the ice sheet losses using satellite measurements.”

Further information:


The study was funded by the Natural Environment Research Council (NERC) through their support of the Centre for Polar Observation and Modelling and the National Centre for Earth Observation.

The research paper, Supraglacial lakes on the Greenland ice sheet advance inland under warming climate, is published in Nature Climate Change on 15 December 2014.

Dr Amber Leeson and Professor Andrew Shepherd are available for interview. Please contact the University of Leeds Press Office on 0113 343 4031 or email pressoffice@leeds.ac.uk

Has the puzzle of rapid climate change in the last ice age been solved?

During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong northwest winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful 'conveyor belt' in the world's oceans, was thus much weaker than at present, and consequently transported less heat to northern regions. -  Map: Alfred-Wegener-Institut
During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong northwest winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful ‘conveyor belt’ in the world’s oceans, was thus much weaker than at present, and consequently transported less heat to northern regions. – Map: Alfred-Wegener-Institut

During the last ice age a large part of North America was covered with a massive ice sheet up to 3km thick. The water stored in this ice sheet is part of the reason why the sea level was then about 120 meters lower than today. Young Chinese scientist Xu Zhang, lead author of the study who undertook his PhD at the Alfred Wegener Institute, explains. “The rapid climate changes known in the scientific world as Dansgaard-Oeschger events were limited to a period of time from 110,000 to 23,000 years before present. The abrupt climate changes did not take place at the extreme low sea levels, corresponding to the time of maximum glaciation 20,000 years ago, nor at high sea levels such as those prevailing today – they occurred during periods of intermediate ice volume and intermediate sea levels.” The results presented by the AWI researchers can explain the history of climate changes during glacial periods, comparing simulated model data with that retrieved from ice cores and marine sediments.

How rapid temperature changes might have occurred during times when the Northern Hemisphere ice sheets were at intermediate sizes (see schematic depictions on http://bit.ly/1uQoI70).

During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong westerly winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful “conveyor belt” in the world’s oceans, was thus much weaker than at present, and consequently transported less heat to northern regions.

During the extended cold phases the ice sheets continued to thicken. When higher ice sheets prevailed over North America, typical in periods of intermediate sea levels, the prevailing westerly winds split into two branches. The major wind field ran to the north of the so-called Laurentide Ice Sheet and ensured that the sea ice boundary off the European coast shifted to the north. Ice-free seas permit heat exchange to take place between the atmosphere and the ocean. At the same time, the southern branch of the northwesterly winds drove warmer water into the ice-free areas of the northeast Atlantic and thus amplified the transportation of heat to the north. The modified conditions stimulated enhanced circulation in the ocean. Consequently, a thicker Laurentide Ice Sheet over North America resulted in increased ocean circulation and therefore greater transportation of heat to the north. The climate in the Northern Hemisphere became dramatically warmer within a few decades until, due to the retreat of the glaciers over North America and the renewed change in wind conditions, it began to cool off again.

“Using the simulations performed with our climate model, we were able to demonstrate that the climate system can respond to small changes with abrupt climate swings,” explains Professor Gerrit Lohmann, leader of the Paleoclimate Dynamics group at the Alfred Wegener Institute, Germany. In doing so he illustrates the new study’s significance with regards to contemporary climate change. “At medium sea levels, powerful forces, such as the dramatic acceleration of polar ice cap melting, are not necessary to result in abrupt climate shifts and associated drastic temperature changes.”

At present, the extent of Arctic sea ice is far less than during the last glacial period. The Laurentide Ice Sheet, the major driving force for ocean circulation during the glacials, has also disappeared. Climate changes following the pattern of the last ice age are therefore not to be anticipated under today’s conditions.

“There are apparently some situations in which the climate system is more resistant to change while in others the system tends toward strong fluctuations,” summarises Gerrit Lohmann. “In terms of the Earth’s history, we are currently in one of the climate system’s more stable phases. The preconditions, which gave rise to rapid temperature changes during the last ice age do not exist today. But this does not mean that sudden climate changes can be excluded in the future.”

Study links Greenland ice sheet collapse, sea level rise 400,000 years ago

A research team is hiking to sample the Greenland ice-sheet margin in south Greenland. -  (Photo by Kelsey Winsor, courtesy Oregon State University)
A research team is hiking to sample the Greenland ice-sheet margin in south Greenland. – (Photo by Kelsey Winsor, courtesy Oregon State University)

A new study suggests that a warming period more than 400,000 years ago pushed the Greenland ice sheet past its stability threshold, resulting in a nearly complete deglaciation of southern Greenland and raising global sea levels some 4-6 meters.

The study is one of the first to zero in on how the vast Greenland ice sheet responded to warmer temperatures during that period, which were caused by changes in the Earth’s orbit around the sun.

Results of the study, which was funded by the National Science Foundation, are being published this week in the journal Nature.

“The climate 400,000 years ago was not that much different than what we see today, or at least what is predicted for the end of the century,” said Anders Carlson, an associate professor at Oregon State University and co-author on the study. “The forcing was different, but what is important is that the region crossed the threshold allowing the southern portion of the ice sheet to all but disappear.

“This may give us a better sense of what may happen in the future as temperatures continue rising,” Carlson added.

Few reliable models and little proxy data exist to document the extent of the Greenland ice sheet loss during a period known as the Marine Isotope Stage 11. This was an exceptionally long warm period between ice ages that resulted in a global sea level rise of about 6-13 meters above present. However, scientists have been unsure of how much sea level rise could be attributed to Greenland, and how much may have resulted from the melting of Antarctic ice sheets or other causes.

To find the answer, the researchers examined sediment cores collected off the coast of Greenland from what is called the Eirik Drift. During several years of research, they sampled the chemistry of the glacial stream sediment on the island and discovered that different parts of Greenland have unique chemical features. During the presence of ice sheets, the sediments are scraped off and carried into the water where they are deposited in the Eirik Drift.

“Each terrain has a distinct fingerprint,” Carlson noted. “They also have different tectonic histories and so changes between the terrains allow us to predict how old the sediments are, as well as where they came from. The sediments are only deposited when there is significant ice to erode the terrain. The absence of terrestrial deposits in the sediment suggests the absence of ice.

“Not only can we estimate how much ice there was,” he added, “but the isotopic signature can tell us where ice was present, or from where it was missing.”

This first “ice sheet tracer” utilizes strontium, lead and neodymium isotopes to track the terrestrial chemistry.

The researchers’ analysis of the scope of the ice loss suggests that deglaciation in southern Greenland 400,000 years ago would have accounted for at least four meters – and possibly up to six meters – of global sea level rise. Other studies have shown, however, that sea levels during that period were at least six meters above present, and may have been as much as 13 meters higher.

Carlson said the ice sheet loss likely went beyond the southern edges of Greenland, though not all the way to the center, which has not been ice-free for at least one million years.

In their Nature article, the researchers contrasted the events of Marine Isotope Stage 11 with another warming period that occurred about 125,000 years ago and resulted in a sea level rise of 5-10 meters. Their analysis of the sediment record suggests that not as much of the Greenland ice sheet was lost – in fact, only enough to contribute to a sea level rise of less than 2.5 meters.

“However, other studies have shown that Antarctica may have been unstable at the time and melting there may have made up the difference,” Carlson pointed out.

The researchers say the discovery of an ice sheet tracer that can be documented through sediment core analysis is a major step to understanding the history of ice sheets in Greenland – and their impact on global climate and sea level changes. They acknowledge the need for more widespread coring data and temperature reconstructions.

“This is the first step toward more complete knowledge of the ice history,” Carlson said, “but it is an important one.”

Study finds earlier peak for Spain’s glaciers

Jane Willenbring (upper right) takes samples to date a boulder in Spain's Bejar mountain range. Her findings helped show that ancient glaciers in the region reached their maximum size several thousands of years earlier than once believed. -  University of Pennsylvania
Jane Willenbring (upper right) takes samples to date a boulder in Spain’s Bejar mountain range. Her findings helped show that ancient glaciers in the region reached their maximum size several thousands of years earlier than once believed. – University of Pennsylvania

The last glacial maximum was a time when Earth’s far northern and far southern latitudes were largely covered in ice sheets and sea levels were low. Over much of the planet, glaciers were at their greatest extent roughly 20,000 years ago. But according to a study headed by University of Pennsylvania geologist Jane Willenbring, that wasn’t true in at least one part of southern Europe. Due to local effects of temperature and precipitation, the local glacial maximum occurred considerably earlier, around 26,000 years ago.

The finding sheds new light on how regional climate has varied over time, providing information that could lead to more-accurate global climate models, which predict what changes Earth will experience in the future.

Willenbring, an assistant professor in Penn’s Department of Earth and Environmental Science in the School of Arts and Sciences, teamed with researchers from Spain, the United Kingdom, China and the United States to pursue this study of the ancient glaciers of southern Europe.

“We wanted to unravel why and when glaciers grow and shrink,” Willenbring said.

In the study site in central Spain, it is relatively straightforward to discern the size of ancient glaciers, because the ice carried and dropped boulders at the margin. Thus a ring of boulders marks the edge of the old glacier.

It is not as easy to determine what caused the glacier to grow, however. Glaciers need both moisture and cold temperatures to expand. Studying the boulders that rim the ancient glaciers alone cannot distinguish these contributions. Caves, however, provide a way to differentiate the two factors. Stalagmites and stalactites – the stony projections that grow from the cave floor and ceiling, respectively – carry a record of precipitation because they grow as a result of dripping water.

“If you add the cave data to the data from the glaciers, it gives you a neat way of figuring out whether it was cold temperatures or higher precipitation that drove the glacier growth at the time,” Willenbring said.

The researchers conducted the study in three of Spain’s mountain ranges: the Bej├ír, Gredos and Guadarrama. The nearby Eagle Cave allowed them to obtain indirect precipitation data.

To ascertain the age of the boulders strewn by the glaciers and thus come up with a date when glaciers were at their greatest extent, Willenbring and colleagues used a technique known as cosmogenic nuclide exposure dating, which measures the chemical residue of supernova explosions. They also used standard radiometric techniques to date stalagmites from Eagle Cave, which gave them information about fluxes in precipitation during the time the glaciers covered the land.

“Previously, people believe the last glacial maximum was somewhere in the range of 19-23,000 years ago,” Willenbring said. “Our chronology indicates that’s more in the range of 25-29,000 years ago in Spain.”

The geologists found that, although temperatures were cool in the range of 19,000-23,000 years ago, conditions were also relatively dry, so the glaciers did not regain the size they had obtained several thousand years earlier, when rain and snowfall totals were higher. They reported their findings in the journal Scientific Reports.

Given the revised timeline in this region, Willenbring and colleagues determined that the increased precipitation resulted from changes in the intensity of the sun’s radiation on the Earth, which is based on the planet’s tilt in orbit. Such changes can impact patterns of wind, temperature and storms.

“That probably means there was a southward shift of the North Atlantic Polar Front, which caused storm tracks to move south, too,” Willenbring said. “Also, at this time there was a nice warm source of precipitation, unlike before and after when the ocean was colder.”

Willenbring noted that the new date for the glacier maximum in the Mediterranean region, which is several thousands of years earlier than the date the maximum was reached in central Europe, will help provide more context for creating accurate global climate models.

“It’s important for global climate models to be able to test under what conditions precipitation changes and when sources for that precipitation change,” she said. “That’s particularly true in some of these arid regions, like the American Southwest and the Mediterranean.”

When glaciers were peaking in the Mediterranean around 26,000 years ago, the American Southwest was experiencing similar conditions. Areas that are now desert were moist. Large lakes abounded, including Lake Bonneville, which covered much of modern-day Utah. The state’s Great Salt Lake is what remains.

“Lakes in this area were really high for 5,000-10,000 years, and the cause for that has always been a mystery,” Willenbring said. “By looking at what was happening in the Mediterranean, we might eventually be able to say something about the conditions that led to these lakes in the Southwest, too.”

Ancient ice melt unearthed in Antarctic mud

Global warming five million years ago may have caused parts of Antarctica’s large ice sheets to melt and sea levels to rise by approximately 20 metres, scientists report today in the journal Nature Geoscience.

The researchers, from Imperial College London, and their academic partners studied mud samples to learn about ancient melting of the East Antarctic ice sheet. They discovered that melting took place repeatedly between five and three million years ago, during a geological period called Pliocene Epoch, which may have caused sea levels to rise approximately ten metres.

Scientists have previously known that the ice sheets of West Antarctica and Greenland partially melted around the same time. The team say that this may have caused sea levels to rise by a total of 20 metres.

The academics say understanding this glacial melting during the Pliocene Epoch may give us insights into how sea levels could rise as a consequence of current global warming. This is because the Pliocene Epoch had carbon dioxide concentrations similar to now and global temperatures comparable to those predicted for the end of this century.

Dr Tina Van De Flierdt, co-author from the Department of Earth Science and Engineering at Imperial College London, says: “The Pliocene Epoch had temperatures that were two or three degrees higher than today and similar atmospheric carbon dioxide levels to today. Our study underlines that these conditions have led to a large loss of ice and significant rises in global sea level in the past. Scientists predict that global temperatures of a similar level may be reached by the end of this century, so it is very important for us to understand what the possible consequences might be.”

The East Antarctic ice sheet is the largest ice mass on Earth, roughly the size of Australia. The ice sheet has fluctuated in size since its formation 34 million years ago, but scientists have previously assumed that it had stabilised around 14 million years ago.

The team in today’s study were able to determine that the ice sheet had partially melted during this “stable” period by analysing the chemical content of mud in sediments. These were drilled from depths of more than three kilometres below sea level off the coast of Antarctica.

Analysing the mud revealed a chemical fingerprint that enabled the team to trace where it came from on the continent. They discovered that the mud originated from rocks that are currently hidden under the ice sheet. The only way that significant amounts of this mud could have been deposited as sediment in the sea would be if the ice sheet had retreated inland and eroded these rocks, say the team.

The academics suggest that the melting of the ice sheet may have been caused in part by the fact that some of it rests in basins below sea level. This puts the ice in direct contact with seawater and when the ocean warms, as it did during the Pliocene, the ice sheet becomes vulnerable to melting.

Carys Cook, co-author and research postgraduate from the Grantham Institute for Climate Change at Imperial, adds: “Scientists previously considered the East Antarctic ice sheet to be more stable than the much smaller ice sheets in West Antarctica and Greenland, even though very few studies of East Antarctic ice sheet have been carried out. Our work now shows that the East Antarctic ice sheet has been much more sensitive to climate change in the past than previously realised. This finding is important for our understanding of what may happen to the Earth if we do not tackle the effects of climate change.”

The next step will see the team analysing sediment samples to determine how quickly the East Antarctic ice sheet melted during the Pliocene. This information could be useful in the future for predicting how quickly the ice sheet could melt as a result of global warming.

Scientists solve a 14,000-year-old ocean mystery

At the end of the last Ice Age, as the world began to warm, a swath of the North Pacific Ocean came to life. During a brief pulse of biological productivity 14,000 years ago, this stretch of the sea teemed with phytoplankton, amoeba-like foraminifera and other tiny creatures, who thrived in large numbers until the productivity ended-as mysteriously as it began-just a few hundred years later.

Researchers have hypothesized that iron sparked this surge of ocean life, but a new study led by Woods Hole Oceanographic Institution (WHOI) scientists and colleagues at the University of Bristol (UK), the University of Bergen (Norway), Williams College and the Lamont Doherty Earth Observatory of Columbia University suggests iron may not have played an important role after all, at least in some settings. The study, published in the journal Nature Geoscience, determines that a different mechanism-a transient “perfect storm” of nutrients and light-spurred life in the post-Ice Age Pacific. Its findings resolve conflicting ideas about the relationship between iron and biological productivity during this time period in the North Pacific-with potential implications for geo-engineering efforts to curb climate change by seeding the ocean with iron.

“A lot of people have put a lot of faith into iron-and, in fact, as a modern ocean chemist, I’ve built my career on the importance of iron-but it may not always have been as important as we think,” says WHOI Associate Scientist Phoebe Lam, a co-author of the study.

Because iron is known to cause blooms of biological activity in today’s North Pacific Ocean, researchers have assumed it played a key role in the past as well. They have hypothesized that as Ice Age glaciers began to melt and sea levels rose, they submerged the surrounding continental shelf, washing iron into the rising sea and setting off a burst of life.

Past studies using sediment cores-long cylinders drilled into the ocean floor that offer scientists a look back through time at what has accumulated there-have repeatedly found evidence of this burst, in the form of a layer of increased opal and calcium carbonate, the materials that made up phytoplankton and foraminifera shells. But no one had searched the fossil record specifically for signs that iron from the continental shelf played a part in the bloom.

Lam and an international team of colleagues revisited the sediment core data to directly test this hypothesis. They sampled GGC-37, a core taken from a site near Russia’s Kamchatka Peninsula, about every 5 centimeters, moving back through time to before the biological bloom began. Then they analyzed the chemical composition of their samples, measuring the relative abundance of the isotopes of the elements neodymium and strontium in the sample, which indicates which variant of iron was present. The isotope abundance ratios were a particularly important clue, because they could reveal where the iron came from-one variant pointed to iron from the ancient Loess Plateau of northern China, a frequent source of iron-rich dust in the northwest Pacific, while another suggested the younger, more volcanic continental shelf was the iron source.

What the researchers found surprised them.

“We saw the flux of iron was really high during glacial times, and that it dropped during deglaciation,” Lam says. “We didn’t see any evidence of a pulse of iron right before this productivity peak.”

The iron the researchers did find during glacial times appeared to be supplemented by a third source, possibly in the Bering Sea area, but it didn’t have a significant effect on the productivity peak. Instead, the data suggest that iron levels were declining when the peak began.

Based on the sediment record, the researchers propose a different cause for the peak: a chain of events that created ideal conditions for sea life to briefly flourish. The changing climate triggered deep mixing in the North Pacific ocean, which stirred nutrients that the tiny plankton depend on up into the sea’s surface layers, but in doing so also mixed the plankton into deep, dark waters, where light for photosynthesis was too scarce for them to thrive. Then a pulse of freshwater from melting glaciers-evidenced by a change in the amount of a certain oxygen isotope in the foraminifera shells found in the core-stopped the mixing, trapping the phytoplankton and other small creatures in a thin, bright, nutrient-rich top layer of ocean. With greater exposure to light and nutrients, and iron levels that were still relatively high, the creatures flourished.

“We think that ultimately this is what caused the productivity peak-that all these things happened all at once,” Lam says. “And it was a transient thing, because the iron continued to drop and eventually the nutrients ran out.”

The study’s findings disprove that iron caused this ancient bloom, but they also raise questions about a very modern idea. Some scientists have proposed seeding the world’s oceans with iron to trigger phytoplankton blooms that could trap some of the atmosphere’s carbon dioxide and help stall climate change. This idea, sometimes referred to as the “Iron Hypothesis,” has met with considerable controversy, but scientific evidence of its potential effectiveness to sequester carbon and its impact on ocean life has been mixed.

“This study shows how there are multiple controls on ocean phytoplankton blooms, not just iron,” says Ken Buesseler, a WHOI marine chemist who led a workshop in 2007 to discuss modern iron fertilization. “Certainly before we think about adding iron to the ocean to sequester carbon as a geoengineering tool, we should encourage studies like this of natural systems where the conditions of adding iron, or not, on longer and larger time scales have already been done for us and we can study the consequences.”

Rising oceans — too late to turn the tide?

If sea levels rose to where they were during the Last Interglacial Period, large parts of the Gulf of Mexico would be under water (red areas), including half of Florida and several Caribbean islands. -  Jeremy Weiss, Department of Geosciences, The University of Arizona
If sea levels rose to where they were during the Last Interglacial Period, large parts of the Gulf of Mexico would be under water (red areas), including half of Florida and several Caribbean islands. – Jeremy Weiss, Department of Geosciences, The University of Arizona

Thermal expansion of seawater contributed only slightly to rising sea levels compared to melting ice sheets during the Last Interglacial Period, a University of Arizona-led team of researchers has found.

The study combined paleoclimate records with computer simulations of atmosphere-ocean interactions and the team’s co-authored paper is accepted for publication in Geophysical Research Letters.

As the world’s climate becomes warmer due to increased greenhouse gases in the atmosphere, sea levels are expected to rise by up to three feet by the end of this century.

But the question remains: How much of that will be due to ice sheets melting as opposed to the oceans’ 332 million cubic miles of water increasing in volume as they warm up?

For the study, UA team members analyzed paleoceanic records of global distribution of sea surface temperatures of the warmest 5,000-year period during the Last Interglacial, a warm period that lasted from 130,000 to 120,000 years ago.

The researchers then compared the data to results of computer-based climate models simulating ocean temperatures during a 200-year snapshot as if taken 125,000 years ago and calculating the contributions from thermal expansion of sea water.

The team found that thermal expansion could have contributed no more than 40 centimeters – less than 1.5 feet – to the rising sea levels during that time, which exceeded today’s level up to eight meters or 26 feet.

At the same time, the paleoclimate data revealed average ocean temperatures that were only about 0.7 degrees Celsius, or 1.3 degrees Fahrenheit, above those of today.

“This means that even small amounts of warming may have committed us to more ice sheet melting than we previously thought. The temperature during that time of high sea levels wasn’t that much warmer than it is today,” said Nicholas McKay, a doctoral student at the UA’s department of geosciences and the paper’s lead author.

McKay pointed out that even if ocean levels rose to similar heights as during the Last Interglacial, they would do so at a rate of up to three feet per century.

“Even though the oceans are absorbing a good deal of the total global warming, the atmosphere is warming faster than the oceans,” McKay added. “Moreover, ocean warming is lagging behind the warming of the atmosphere. The melting of large polar ice sheets lags even farther behind.”

“As a result, even if we stopped greenhouse gas emissions right now, the Earth would keep warming, the oceans would keep warming, the ice sheets would keep shrinking, and sea levels would keep rising for a long time,” he explained.

They are absorbing most of that heat, but they lag behind. Especially the large ice sheets are not in equilibrium with global climate,” McKay added. “

Jonathan Overpeck, co-director of the UA’s Institute of the Environment and a professor with joint appointments in the department of geosciences and atmospheric sciences, said: “This study marks the strongest case yet made that humans – by warming the atmosphere and oceans – are pushing the Earth’s climate toward the threshold where we will likely be committed to four to six or even more meters of sea level rise in coming centuries.”

Overpeck, who is McKay’s doctoral advisor and a co-author of the study, added: “Unless we dramatically curb global warming, we are in for centuries of sea level rise at a rate of up to three feet per century, with the bulk of the water coming from the melting of the great polar ice sheets – both the Greenland and Antarctic Ice Sheets.”

According to the authors, the new results imply that 4.1 to 5.8 meters, or 13.5 to 19 feet, of sea level rise during the Last Interglacial period was derived from the Antarctic Ice Sheet, “reemphasizing the concern that both the Antarctic and Greenland Ice Sheets may be more sensitive to warming temperatures than widely thought.”

“The central question we asked was, ‘What are the warmest 5,000 years we can find for all these records, and what was the corresponding sea level rise during that time?'” McKay said.

Evidence for elevated sea levels is scattered all around the globe, he added. On Barbados and the Bahamas, for example, notches cut by waves into the rock six or more meters above the present shoreline have been dated to being 125,000 years old.

“Based on previous studies, we know that the sea level during the Last Interglacial was up to 8.5 meters higher than today,” McKay explained.

“We already knew that the vast majority came from the melting of the large ice sheets in Greenland and Antarctica, but how much could the expansion of seawater have added to that?”

Given that sea surface temperatures were about 0.7 degrees warmer than today, the team calculated that even if the warmer temperatures reached all the way down to 2,000 meters depth – more than 6,500 feet, which is highly unlikely – expansion would have accounted for no more than 40 centimeters, less than a foot and a half.

“That means almost all of the substantial sea level rise in the Last Interglacial must have come from the large ice sheets, with only a small contribution from melted mountain glaciers and small ice caps,” McKay said.

According to co-author Bette Otto-Bliesner, senior scientist at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., getting the same estimate of the role ocean expansion played on sea level rise increases confidence in the data and the climate models.

“The models allow us to attribute changes we observe in the paleoclimate record to the physical mechanisms that caused those changes,” Otto-Bliesner said. “This helps tremendously in being able to distinguish mere correlations from cause-and-effect relationships.”

The authors cautioned that past evidence is not a prediction of the future, mostly because global temperatures during the Last Interglacial were driven by changes in the Earth’s orbit around the sun. However, current global warming is driven by increasing greenhouse gas concentrations.

The seasonal differences between the northern and the southern hemispheres were more pronounced during the Last Interglacial than they will be in the future.

“We expect something quite different for the future because we’re not changing things seasonally, we’re warming the globe in all seasons,” McKay said.

“The question is, when we think about warming on a global scale and contemplate letting the climate system change to a new warmer state, what would we expect for the ice sheets and sea levels based on the paleoclimate record? The Last Interglacial is the most recent time when sea levels were much higher and it’s a time for which we have lots of data,” McKay added.

“The message is that the last time glaciers and ice sheets melted, sea levels rose by more than eight meters. Much of the world’s population lives relatively close to sea level. This is going to have huge impacts, especially on poor countries,” he added.

“If you live a meter above sea level, it’s irrelevant what causes the rise. Whether sea levels are rising for natural reasons or for anthropogenic reasons, you’re still going to be under water sooner or later.”

Alaska Glacier Speed-up Tied To Internal Plumbing Issues, Says Study





Alaska's Kennicott Glacier recently has been observed by scientists to be lurching, a result of meltwater and floodwater overwhelming its interior plumbing. (Credit: Robert. S. Anderson/University of Colorado at Boulder)
Alaska’s Kennicott Glacier recently has been observed by scientists to be lurching, a result of meltwater and floodwater overwhelming its interior plumbing. (Credit: Robert. S. Anderson/University of Colorado at Boulder)

A University of Colorado at Boulder study indicates meltwater periodically overwhelms the interior drainpipes of Alaska’s Kennicott Glacier and causes it to lurch forward, similar to processes that may help explain the acceleration of glaciers observed recently on the Greenland ice sheet that are contributing to global sea rise.



According to CU-Boulder Professor Robert Anderson of the Institute of Arctic and Alpine Research, the amount of water passing through conduits inside and underneath the Kennicott Glacier increases during seasonal melting and also following annual flooding from a nearby lake. The addition of excess water from melting and flooding causes water to back up into a honeycomb of passages inside the glacier, he said, suggesting the resulting increase in water pressure causes the glacier to slide more rapidly down its bedrock valley.



“The phenomenon is similar to the plumbing system of a house that is incapable of handling excess water or waste, causing it to back up,” said Anderson. “This is a feedback we are still trying to understand and one that has big implications for understanding the dynamics of glaciers and ice sheets, including the behavior of outlet glaciers on the Greenland ice sheet.”



A paper on the subject appears in the January edition of the new monthly scientific journal, Nature Geoscience. The study was authored by former CU-Boulder graduate student Timothy Bartholomaus, Robert Anderson, and INSTAAR’s Suzanne Anderson. Robert Anderson is a faculty member in the CU-Boulder geological sciences department and Suzanne Anderson is a faculty member the geography department.



The sliding eventually halts when the moving glacier opens up spaces in its bed that can accommodate some of the excess water, helping to relieve the water pressure, the authors said. In addition, high rates of water flow eventually enlarge the conduits and ducts permeating the glacier, “melting them back and allowing more water to bleed from the system, further decreasing the pressure,” said Robert Anderson.


The Kennicott Glacier roughly doubled its normal 1-to-2 feet of movement per day during the 2006 sliding episodes tied to water pressure, said Anderson. When the glacier responded to a 2006 “outburst” flood — when water from Hidden Creek Lake adjacent to the glacier rushed into the sub-glacial tunnel system and released an estimated 10 billion gallons of water under the glacier — the pace ramped up to nearly 9 feet a day for the duration of the two-day period.



The team used GPS receivers positioned on the glacier as well as pressure gauges, temperature sensors, sonic distance measuring sensors and electrical conductivity probes. The conductivity levels in the water draining out of the glacier rose after backpressure in the glacier dissipated and expelled water high in chloride ions abundant in the salty bedrock beneath the ice, said co-author Suzanne Anderson.



“Nature essentially provided us with an extra probe to determine these sub-glacial processes, and ultimately provided an additional avenue of support for our model of how this system works,” said Robert Anderson. The National Science Foundation funded the research.



An awareness of such glacial dynamics is important information for glaciologists studying the Greenland ice sheet, which is undergoing record surface melt and the subsequent drainage of large volumes of water through the ice sheet and associated outlet glaciers, the researchers said. Some of Greenland’s outlet glaciers have sped up from 50 percent to 100 percent during the annual melt season and discharged substantially more ice into the seas, according to recent research led by CU-Boulder glaciologist Konrad Steffen.



“There are a number of catastrophic draining events of slush ponds on the Greenland ice sheet that may well promote increased sliding of the ice sheet as this water is jammed into a sub-glacial pipe system that is ill-prepared for such inputs,” Robert Anderson said. “This phenomenon is also relevant to small glaciers around the world, because it may help to explain their nonsteady rates of sliding.



“People are becoming increasingly aware that sea-level rise is a very real problem,” he said. “As scientists, we need to acknowledge the role of all of the world’s ice masses and to understand the physical mechanisms by which they deliver water to the sea.”

Mapping of Greenland may aid understanding of sea-level mystery





Greenland appears green in this world map.
Greenland appears green in this world map.

A University of Alberta Arctic ice researcher is closing in on some real understanding about the process that might be feeding rising sea levels.



Using satellite microwave data, Martin Sharp, a professor in the Department of Earth and Atmospheric Sciences, has successfully mapped the summer melt extent and duration of the summer melt across Greenland for a five-year period stretching from 2000 to 2004.



“What we’re interested in is the problem of explaining why the rates of global sea level rising have more or less doubled since the early 1990s compared with the early part of the 20th century,” he said.



Sharp, whose findings were recently published in the Journal of Geophysical Research, says there is mounting evidence that indicates the increasing sea level is probably due to the substantial increase in the rate in which Greenland is generating water, both by melting and by carving ice bergs into the ocean.



While climate change is the leading hypothesis of the day, the processes that are accelerating the melting of Greenland’s ice cap are still largely misunderstood.



“Some of this water is getting to the bottom of the ice sheet, even in places where it is a kilometre-and-a-half thick, and at sub-freezing temperature pretty much through the whole thickness,” said Sharp. “It’s kind of counter-intuitive that water would find its way through, but it looks like that is what may be happening.”



He says that water at the base of the ice sheet acts as lubricant for the glaciers above to flow faster. An increased rate of glacial movement means a surge in the rate at which icebergs are being dropped into the water. This, in turn, may be contributing to rising sea levels, he suggests.



Sharp hypothesizes that this increase might very well be destabilizing the flow of glaciers, overwhelming the natural drainage system at the bottom of the ice sheet, increasing the water pressure, and, in effect, ‘floating’ the ice off the bedrock, allowing it to speed up.


While it’s true the speed of glacial flow has seen an increase from eight kilometres per year to 15 over the last two decades, the onset of another interesting phenomenon may be helping to shape the tale. Sharp says seismic monitoring stations have measured a substantial increase in the number of large earthquakes being reported in areas where Greenland seems to be losing mass more rapidly.



“The suggestion is those earthquakes are generated by increased slip between rock and the ice underneath,” he said. “The glaciers are moving like a large landslide and causing tremors in the crust beneath it when it does.”



“It’s a hypothesis, but there is not a whole lot of direct evidence that says this is the case,” said Sharp, who is now in search of a grad student to help compile all the data.



“We know where those earthquakes took place, so now we can ask the question: Does the occurrence of those earthquakes actually coincide with periods of unusually high melt?”



Previous attempts at mapping Greenland’s ice sheet were unreliable, resulting in data points whose imagery had a resolution that covered more than 4,000 square kilometres of ice shelf.



So three years ago, Sharp began tapping into another satellite source that has been available since 1999, which produces a resolution of a more manageable 16 square kilometres.



Over that area, a satellite sends down a signal, some of which is absorbed by the surface while some is scattered back to the satellite. If there is any water at the surface at all, a very large portion of the energy hitting the surface is absorbed and doesn’t come back. The result is daily resolutions of the distribution of ice melt across the whole ice sheet.



Sharp broke Greenland down into nine different regions to better determine exactly when it was melting where in each year. For each region, Sharp says he will be able to calculate the average length of melt season and then back-calculate the air temperature. Once the inputs are created, Sharp looks forward to determining exactly what is driving these melt events.



“We are asking if it is actually true that the amount and extent of melting in Greenland has increased over the period of interest and, in particular, is it increasing in the places where it looks as if the flow of the glacier has been sped up,” said Sharp.