Migrating ‘supraglacial’ lakes could trigger future Greenland ice loss

Supraglacial lakes on the Greenland ice sheet can be seen as dark blue specks in the center and to the right of this satellite image. -  USGS/NASA Landsat
Supraglacial lakes on the Greenland ice sheet can be seen as dark blue specks in the center and to the right of this satellite image. – USGS/NASA Landsat

Predictions of Greenland ice loss and its impact on rising sea levels may have been greatly underestimated, according to scientists at the University of Leeds.

The finding follows a new study, which is published today in Nature Climate Change, in which the future distribution of lakes that form on the ice sheet surface from melted snow and ice – called supraglacial lakes – have been simulated for the first time.

Previously, the impact of supraglacial lakes on Greenland ice loss had been assumed to be small, but the new research has shown that they will migrate farther inland over the next half century, potentially altering the ice sheet flow in dramatic ways.

Dr Amber Leeson from the School of Earth and Environment and a member of the Centre for Polar Observation and Modelling (CPOM) team, who led the study, said: “Supraglacial lakes can increase the speed at which the ice sheet melts and flows, and our research shows that by 2060 the area of Greenland covered by them will double.”

Supraglacial lakes are darker than ice, so they absorb more of the Sun’s heat, which leads to increased melting. When the lakes reach a critical size, they drain through ice fractures, allowing water to reach the ice sheet base which causes it to slide more quickly into the oceans. These changes can also trigger further melting.

Dr Leeson explained: “When you pour pancake batter into a pan, if it rushes quickly to the edges of the pan, you end up with a thin pancake. It’s similar to what happens with ice sheets: the faster it flows, the thinner it will be.

“When the ice sheet is thinner, it is at a slightly lower elevation and at the mercy of warmer air temperatures than it would have been if it were thicker, increasing the size of the melt zone around the edge of the ice sheet.”

Until now, supraglacial lakes have formed at low elevations around the coastline of Greenland, in a band that is roughly 100 km wide. At higher elevations, today’s climate is just too cold for lakes to form.

In the study, the scientists used observations of the ice sheet from the Environmental Remote Sensing satellites operated by the European Space Agency and estimates of future ice melting drawn from a climate model to drive simulations of how meltwater will flow and pool on the ice surface to form supraglacial lakes.

Since the 1970s, the band in which supraglacial lakes can form on Greenland has crept 56km further inland. From the results of the new study, the researchers predict that, as Arctic temperatures rise, supraglacial lakes will spread much farther inland – up to 110 km by 2060 – doubling the area of Greenland that they cover today.

Dr Leeson said: “The location of these new lakes is important; they will be far enough inland so that water leaking from them will not drain into the oceans as effectively as it does from today’s lakes that are near to the coastline and connected to a network of drainage channels.”

“In contrast, water draining from lakes farther inland could lubricate the ice more effectively, causing it to speed up.”

Ice losses from Greenland had been expected to contribute 22cm to global sea-level rise by 2100. However, the models used to make this projection did not account for changes in the distribution of supraglacial lakes, which Dr Leeson’s study reveals will be considerable.

If new lakes trigger further increases in ice melting and flow, then Greenland’s future ice losses and its contribution to global sea-level rise have been underestimated.

The Director of CPOM, Professor Andrew Shepherd, who is also from the School of Earth and Environment at the University of Leeds and is a co-author of the study, said: “Because ice losses from Greenland are a key signal of global climate change, it’s important that we consider all factors that could affect the rate at which it will lose ice as climate warms.

“Our findings will help to improve the next generation of ice sheet models, so that we can have greater confidence in projections of future sea-level rise. In the meantime, we will continue to monitor changes in the ice sheet losses using satellite measurements.”

Further information:


The study was funded by the Natural Environment Research Council (NERC) through their support of the Centre for Polar Observation and Modelling and the National Centre for Earth Observation.

The research paper, Supraglacial lakes on the Greenland ice sheet advance inland under warming climate, is published in Nature Climate Change on 15 December 2014.

Dr Amber Leeson and Professor Andrew Shepherd are available for interview. Please contact the University of Leeds Press Office on 0113 343 4031 or email pressoffice@leeds.ac.uk

Good vibrations give electrons excitations that rock an insulator to go metallic

Vanadium atoms (blue) have unusually large thermal vibrations that stabilize the metallic state of a vanadium dioxide crystal. Red depicts oxygen atoms. -  ORNL
Vanadium atoms (blue) have unusually large thermal vibrations that stabilize the metallic state of a vanadium dioxide crystal. Red depicts oxygen atoms. – ORNL

For more than 50 years, scientists have debated what turns particular oxide insulators, in which electrons barely move, into metals, in which electrons flow freely. Some scientists sided with Nobel Prize-winning physicist Nevill Mott in thinking direct interactions between electrons were the key. Others believed, as did physicist Rudolf Peierls, that atomic vibrations and distortions trumped all. Now, a team led by the Department of Energy’s Oak Ridge National Laboratory has made an important advancement in understanding a classic transition-metal oxide, vanadium dioxide, by quantifying the thermodynamic forces driving the transformation. The results are published in the Nov. 10 advance online issue of Nature.

“We proved that phonons–the vibrations of the atoms–provide the driving force that stabilizes the metal phase when the material is heated,” said John Budai, who co-led the study with Jiawang Hong, a colleague in ORNL’s Materials Science and Technology Division.

Hong added, “This insight into how lattice vibrations can control phase stability in transition-metal oxides is needed to improve the performance of many multifunctional materials, including colossal magnetoresistors, superconductors and ferroelectrics.”

Today vanadium dioxide improves recording and storage media, strengthens structural alloys, and colors synthetic jewels. Tomorrow it may find its way into nanoscale actuators for switches, optical shutters that turn opaque on satellites to thwart intruding signals, and field-effect transistors to manipulate electronics in semiconductors and spintronics in devices that manipulate magnetic spin.

The next application we see may be energy-efficient “smart windows” coated with vanadium dioxide peppered with an impurity to control the transmission of heat and light. On cool days, windows would be transparent insulators that let in heat. On warm days, they would turn shiny and reflect the outside heat.

Complete thermodynamics


Materials are stabilized by a competition between internal energy and entropy (a measure of disorder that increases with temperature). While Mott and Peierls focused on energy, the ORNL-led team focused on the entropy.

Before the ORNL-led experiments, scientists knew the total amount of heat absorbed during vanadium dioxide’s transition from insulator to metal. But they didn’t know how much entropy was due to electrons and how much was due to atomic vibrations.

“This is the first complete description of thermodynamic forces controlling this archetypical metal-insulator transition,” said Budai.

The team’s current accomplishment was made possible by a novel combination of X-ray and neutron scattering tools, developed within the decade, that enabled lattice dynamics measurements and a calculation technique that Olle Hellman of Linköping University in Sweden recently developed to capture anharmonicity (a measure of nonlinearity in bond forces between atoms). It’s especially important that the calculations, performed by Hong, agree well with experiments because they can now be used to make new predictions for other materials.

The ORNL team came up with the idea to measure “incoherent” neutron scattering (each atom scatters independently) at ORNL’s Spallation Neutron Source (SNS) to determine the phonon spectra at many temperatures, and to measure coherent inelastic and diffuse X-ray scattering at Argonne National Laboratory’s Advanced Photon Source (APS) to probe collective vibrations in pristine crystals. Neutron measurements were enabled by the SNS’s large neutron flux, and X-ray measurements benefited from the high-resolution enabled by the high APS brightness. SNS and APS are DOE Office of Science User Facilities.

Among ORNL collaborators, Robert McQueeney made preliminary X-ray measurements and Lynn Boatner grew crystals for the experiment. Eliot Specht mapped phonon dispersions with diffuse X-ray scattering. Michael Manley and Olivier Delaire determined the phonon spectra using inelastic neutron scattering. Postdoctoral researcher Chen Li helped make experimental measurements and provided neutron expertise. Douglas Abernathy provided expertise with experimental beam lines, as did Argonne’s Ayman Said, Bogdan Leu and Jonathan Tischler.

Their measurements revealed that phonons with unusually large atomic vibrations and strong anharmonicity are responsible for about two-thirds of the total heat that each atom transfers during the lattice’s transition to a metallic phase.

“The entropy of the lattice vibrations competes against and overcomes the electronic energy, and that’s why the metallic phase is stabilized at high temperatures in vanadium dioxide,” Budai summed up. “Using comprehensive measurements and new calculations, we’re the first to close this gap and present convincing arguments for the dominant influence of low-energy, strongly anharmonic phonons.”

Atomic underpinnings


The findings reveal that the vanadium-dioxide lattice is anharmonic in the metal state. Think of atoms connected by bonds in a lattice as masses connected by springs. Pull on a mass and let go; it bounces. If the force is proportional to the distance a mass is pulled, the interaction is harmonic. Vanadium dioxide’s anharmonicity greatly complicates the way the lattice wiggles upon heating.

“A material that only had harmonic connections between atoms would have no thermal expansion; if you heat it up, it would stay the same size,” said Budai. Most materials, it turns out, are somewhat anharmonic. Metals, for example, expand when heated.

When heated to 340 kelvin (just above room temperature), vanadium dioxide turns from insulator to metal. Below 340 K, its lowest-energy lattice configuration is akin to a leaning cardboard box. Above 340 K, where entropy due to phonon vibrations dominates, its preferred state has all bond angles at 90 degrees. The phase change is fully reversible, so cooling a metal below the transition temperature reverts it to an insulator, and heating it past this point turns it metallic.

In metallic vanadium dioxide, each vanadium atom has one electron that is free to roam. In contrast, in insulating vanadium dioxide, that electron gets trapped in a chemical bond that forms vanadium dimers. “For understanding the atomic mechanisms, we needed theory,” Budai said.

That’s where Hong, a theorist at ORNL’s Center for Accelerating Materials Modeling, made critical contributions with quantum molecular dynamics calculations. He ran large-scale simulations at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory, using 1 million computing-core hours to simulate the lattice dynamics of metal and insulator phases of vanadium dioxide. All three types of experiments agreed well with Hong’s simulations. In addition, his calculation further reveals how phonon and electron contributions compete in the different phases.

Predicting new materials


“The theory not only provides us deep understanding of the experimental observations and reveals fundamental principles behind them,” said Hong, “but also gives us predictive modeling, which will accelerate fundamental and technological innovation by giving efficient strategies to design new materials with remarkable properties.”

Many other materials besides vanadium dioxide show a metal-to-insulator transition; however, the detailed role of lattice vibrations in controlling phase stability remains largely unknown. In future studies of other transition metal oxides, the researchers will continue to investigate the impact of anharmonic phonons on physical properties such as electrical conductivity and thermal transport. This fundamental research will help guide the development of improved energy-efficient materials.

Space-based methane maps find largest US signal in Southwest

An unexpectedly high amount of the climate-changing gas methane, the main component of natural gas, is escaping from the Four Corners region in the U.S. Southwest, according to a new study by the University of Michigan and NASA.

The researchers mapped satellite data to uncover the nation’s largest methane signal seen from space. They measured levels of the gas emitted from all sources, and found more than half a teragram per year coming from the area where Arizona, New Mexico, Colorado and Utah meet. That’s about as much methane as the entire coal, oil, and gas industries of the United Kingdom give off each year.

Four Corners sits on North America’s most productive coalbed methane basin. Coalbed methane is a variety of the gas that’s stuck to the surface of coal. It is dangerous to miners (not to mention canaries), but in recent decades, it’s been tapped as a resource.

“There’s so much coalbed methane in the Four Corners area, it doesn’t need to be that crazy of a leak rate to produce the emissions that we see. A lot of the infrastructure is likely contributing,” said Eric Kort, assistant professor of atmospheric, oceanic and space sciences at the U-M College of Engineering.

Kort, first author of a paper on the findings published in Geophysical Research Letters, says the controversial natural gas extraction technique of hydraulic fracturing is not the main culprit.

“We see this large signal and it’s persistent since 2003,” Kort said. “That’s a pre- fracking timeframe in this region. While fracking has become a focal point in conversations about methane emissions, it certainly appears from this and other studies that in the U.S., fossil fuel extraction activities across the board likely emit higher than inventory estimates.”

While the signal represents the highest concentration of methane seen from space, the researchers caution that Four Corners isn’t necessarily the highest emitting region.

“One has to be somewhat careful in equating abundances with emissions,” said study contributor Christian Frankenberg at Jet Propulsion Laboratory. “The Four Corners methane source is in a relatively isolated area with little other methane emissions, hence causing a well distinguishable hot-spot in methane abundances. Local or more diffuse emissions in other areas, such as the eastern U.S., may be convoluted with other nearby sources

Natural gas is often touted as more sustainable than coal and oil because it releases fewer pollutants when it burns. But when it leaks into the air before it gets to the pilot light, methane has 30 times the short-term heat-trapping effects of carbon dioxide. Policymakers, energy companies and environmentalists alike are aiming to reduce methane emissions as a way to curb climate change. But pinpointing plumes—a first step to stopping them—has been a difficult task with today’s tools.

The research team demonstrated a new approach to finding leaks. They used a satellite instrument—the European Space Agency’s SCIAMACHY—to get regional methane measurements over the entire United States. They ran the data through a mathematical model to account for mountains and valleys, which can trap methane. That’s how they identified the anomaly at Four Corners. Then they zoomed in on that region and ran another mathematical model to control for wind, to make sure that didn’t negate the original signal. It didn’t.

“We didn’t know this was a region we should look at. We found it from space,” Kort said. “We’ve demonstrated that satellite measurements can help identify, locate and quantify anomalous methane emissions in regions that are unexpected.”

Methane gets into the atmosphere from both natural and human-made sources. Wetlands and landfills release it, as do certain bacteria. Agriculture is a big contributor. So are gas and oil drilling and distribution. Inventories such as those the EPA compiles make estimates based on measurements from a sampling of these sources. In previous work, air measurements from planes and a sparse network of monitoring towers have revealed that the inventory-based numbers are coming in low—roughly 50 percent low. But towers and planes can’t see everywhere to figure out exactly where all the methane is coming from. With limited observations there can be blind spots, the researchers say.

This study used satellite data from 2003 to 2009. In later years, they were able to validate the satellite measurements with a year of ground-based data.

SCIAMACHY is no longer operating, so there aren’t equivalent satellites to provide this information for other parts of the world. For the Four Corners region, Kort will be taking readings from an airplane next year, to get even closer to identifying the leaks.

###

The study is titled “Four Corners: the largest US methane anomaly viewed from space.” The research was funded by NASA and Los Alamos National Lab.

Eric Kort: http://aoss.engin.umich.edu/people/eakort

Abstract: http://onlinelibrary.wiley.com/doi/10.1002/2014GL061503/abstract

Breakthrough provides picture of underground water

Superman isn’t the only one who can see through solid surfaces. In a development that could revolutionize the management of precious groundwater around the world, Stanford researchers have pioneered the use of satellites to accurately measure levels of water stored hundreds of feet below ground. Their findings were published recently in Water Resources Research.

Groundwater provides 25 to 40 percent of all drinking water worldwide, and is the primary source of freshwater in many arid countries, according to the National Groundwater Association. About 60 percent of all withdrawn groundwater goes to crop irrigation. In the United States, the number is closer to 70 percent. In much of the world, however, underground reservoirs or aquifers are poorly managed and rapidly depleted due to a lack of water-level data. Developing useful groundwater models, availability predictions and water budgets is very challenging.

Study co-author Rosemary Knight, a professor of geophysics and senior fellow, by courtesy, at the Stanford Woods Institute for the Environment, compared groundwater use to a mismanaged bank account: “It’s like me saying I’m going to retire and live off my savings without knowing how much is in the account.”

Lead author Jessica Reeves, a postdoctoral scholar in geophysics, extended Knight’s analogy to the connection among farmers who depend on the same groundwater source. “Imagine your account was connected to someone else’s account, and they were withdrawing from it without your knowing.”

Until now, the only way a water manager could gather data about the state of water tables in a watershed was to drill monitoring wells. The process is time and resource intensive, especially for confined aquifers, which are deep reservoirs separated from the ground surface by multiple layers of impermeable clay. Even with monitoring wells, good data is not guaranteed. Much of the data available from monitoring wells across the American West is old and of varying quality and scientific usefulness. Compounding the problem, not all well data is openly shared.

To solve these challenges, Reeves, Knight, Stanford Woods Institute-affiliated geophysics and electrical engineering Professor Howard Zebker, Stanford civil and environmental engineering Professor Peter Kitanidis and Willem Schreüder of Principia Mathematica Inc. looked to the sky.

The basic concept: Satellites that use electromagnetic waves to monitor changes in the elevation of Earth’s surface to within a millimeter could be mined for clues about groundwater. The technology, Interferometric Synthetic Aperture Radar (InSAR), had previously been used primarily to collect data on volcanoes, earthquakes and landslides.

With funding from NASA, the researchers used InSAR to make measurements at 15 locations in Colorado’s San Luis Valley, an important agricultural region and flyway for migrating birds. Based on observed changes in Earth’s surface, the scientists compiled water-level measurements for confined aquifers at three of the sampling locations that matched the data from nearby monitoring wells.

“If we can get this working in between wells, we can measure groundwater levels across vast areas without using lots of on-the-ground monitors,” Reeves said.

The breakthrough holds the potential for giving resource managers in Colorado and elsewhere valuable data as they build models to assess scenarios such as the effect on groundwater from population increases and droughts.

Just as computers and smartphones inevitably get faster, satellite data will only improve. That means more and better data for monitoring and managing groundwater. Eventually, InSAR data could play a vital role in measuring seasonal changes in groundwater supply and help determine levels for sustainable water use.

In the meantime, Knight envisions a Stanford-based, user-friendly online database that consolidates InSAR findings and a range of other current remote sensing data for soil moisture, precipitation and other components of a water budget. “Very few, if any, groundwater managers are tapping into any of the data,” Knight said. With Zebker, postdoctoral fellow Jingyi Chen and colleagues at the University of South Carolina, Knight recently submitted a grant proposal for this concept to NASA.

Underwater ‘tree rings’

This alga can be found in coastal regions of the North Atlantic, North Pacific and Arctic Ocean, where it can live for hundreds of years. -  Nick Caloyianus
This alga can be found in coastal regions of the North Atlantic, North Pacific and Arctic Ocean, where it can live for hundreds of years. – Nick Caloyianus

Almost 650 years of annual change in sea-ice cover can been seen in the calcite crust growth layers of seafloor algae, says a new study from the University of Toronto Mississauga (UTM).

“This is the first time coralline algae have been used to track changes in Arctic sea ice,” says Jochen Halfar, an associate professor in UTM’s Department of Chemical and Physical Sciences. “We found the algal record shows a dramatic decrease in ice cover over the last 150 years.”

With colleagues from the Smithsonian Institution, Germany and Newfoundland, Halfar collected and analyzed samples of the alga Clathromorphum compactum. This long-lived plant species forms thick rock-like calcite crusts on the seafloor in shallow waters 15 to 17 metres deep. It is widely distributed in the Arctic and sub-Arctic Oceans.

Divers retrieved the specimens from near-freezing seawater during several research cruises led by Walter Adey from the Smithsonian.

The algae’s growth rates depend on the temperature of the water and the light they receive. As snow-covered sea ice accumulates on the water over the algae, it turns the sea floor dark and cold, stopping the plants’ growth. When the sea ice melts in the warm months, the algae resume growing their calcified crusts.

This continuous cycle of dormancy and growth results in visible layers that can be used to determine the length of time the algae were able to grow each year during the ice-free season.

“It’s the same principle as using rings to determine a tree’s age and the levels of precipitation,” says Halfar. “In addition to ring counting, we used radiocarbon dating to confirm the age of the algal layers.”

After cutting and polishing the algae, Halfar used a specialized microscope to take thousands of images of each sample. The images were combined to give a complete overview of the fist-sized specimens.

Halfar corroborated the length of the algal growth periods through the magnesium levels preserved in each growth layer. The amount of magnesium is dependent on both the light reaching the algae and the temperature of the sea water. Longer periods of open and warm water result in a higher amount of algal magnesium.

During the Little Ice Age, a period of global cooling that lasted from the mid-1500s to the mid-1800s, the algae’s annual growth increments were as narrow as 30 microns due to the extensive sea-ice cover, Halfar says. However, since 1850, the thickness of the algae’s growth increments have more than doubled, bearing witness to an unprecedented decline in sea ice coverage that has accelerated in recent decades.

Halfar says the coralline algae represent not only a new method for climate reconstruction, but are vital to extending knowledge of the climate record back in time to permit more accurate modeling of future climate change.

Currently, observational information about annual changes in the Earth’s temperature and climate go back 150 years. Reliable information about sea-ice coverage comes from satellites and dates back only to the late 1970s.

“In the north, there is nothing in the shallow oceans that tells us about climate, water temperature or sea ice coverage on an annual basis,” says Halfar. “These algae, which live over a thousand years, can now provide us with that information.”

‘Highway from hell’ fueled Costa Rican volcano

Volcanologist Philipp Ruprecht analyzed crystals formed as Irazú's magma cooled to establish how fast it traveled. -  Kim Martineau
Volcanologist Philipp Ruprecht analyzed crystals formed as Irazú’s magma cooled to establish how fast it traveled. – Kim Martineau

If some volcanoes operate on geologic timescales, Costa Rica’s Irazú had something of a short fuse. In a new study in the journal Nature, scientists suggest that the 1960s eruption of Costa Rica’s largest stratovolcano was triggered by magma rising from the mantle over a few short months, rather than thousands of years or more, as many scientists have thought. The study is the latest to suggest that deep, hot magma can set off an eruption fairly quickly, potentially providing an extra tool for detecting an oncoming volcanic disaster.

“If we had had seismic instruments in the area at the time we could have seen these deep magmas coming,” said the study’s lead author, Philipp Ruprecht, a volcanologist at Columbia University’s Lamont-Doherty Earth Observatory. “We could have had an early warning of months, instead of days or weeks.”

Towering more than 10,000 feet and covering almost 200 square miles, Irazú erupts about every 20 years or less, with varying degrees of damage. When it awakened in 1963, it erupted for two years, killing at least 20 people and burying hundreds of homes in mud and ash. Its last eruption, in 1994, did little damage.


Irazú sits on the Pacific Ring of Fire, where oceanic crust is slowly sinking beneath the continents, producing some of earth’s most spectacular fireworks. Conventional wisdom holds that the mantle magma feeding those eruptions rises and lingers for long periods of time in a mixing chamber several miles below the volcano. But ash from Irazú’s prolonged explosion is the latest to suggest that some magma may travel directly from the upper mantle, covering more than 20 miles in a few months.

“There has to be a conduit from the mantle to the magma chamber,” said study co-author Terry Plank, a geochemist at Lamont-Doherty. “We like to call it the highway from hell.”

Their evidence comes from crystals of the mineral olivine separated from the ashes of Irazú’s 1963-1965 eruption, collected on a 2010 expedition to the volcano. As magma rising from the mantle cools, it forms crystals that preserve the conditions in which they formed. Unexpectedly, Irazú’s crystals revealed spikes of nickel, a trace element found in the mantle. The spikes told the researchers that some of Irazú’s erupted magma was so fresh the nickel had not had a chance to diffuse.


“The study provides one more piece of evidence that it’s possible to get magma from the mantle to the surface in very short order,” said John Pallister, who heads the U.S. Geological Survey (USGS) Volcano Disaster Assistance Program in Vancouver, Wash. “It tells us there’s a potentially shorter time span we need to worry about.”

Deep, fast-rising magma has been linked to other big events. In 1991, Mount Pinatubo in the Philippines spewed so much gas and ash into the atmosphere that it cooled Earth’s climate. In the weeks before the eruption, seismographs recorded hundreds of deep earthquakes that USGS geologist Randall White later attributed to magma rising from the mantle-crust boundary. In 2010, a chain of eruptions at Iceland’s Eyjafjallajökull volcano that caused widespread flight cancellations also indicated that some magma was coming from down deep. Small earthquakes set off by the eruptions suggested that the magma in Eyjafjallajökull’s last two explosions originated 12 miles and 15 miles below the surface, according to a 2012 study by University of Cambridge researcher Jon Tarasewicz in Geophysical Research Letters.

Volcanoes give off many warning signs before a blow-up. Their cones bulge with magma. They vent carbon dioxide and sulfur into the air, and throw off enough heat that satellites can detect their changing temperature. Below ground, tremors and other rumblings can be detected by seismographs. When Indonesia’s Mount Merapi roared to life in late October 2010, officials led a mass evacuation later credited with saving as many as 20,000 lives.

Still, the forecasting of volcanic eruptions is not an exact science. Even if more seismographs could be placed along the flanks of volcanoes to detect deep earthquakes, it is unclear if scientists would be able to translate the rumblings into a projected eruption date. Most problematically, many apparent warning signs do not lead to an eruption, putting officials in a bind over whether to evacuate nearby residents.

“[Several months] leaves a lot of room for error,” said Erik Klemetti, a volcanologist at Denison University who writes the “Eruptions” blog for Wired magazine. “In volcanic hazards you have very few shots to get people to leave.”

Scientists may be able to narrow the window by continuing to look for patterns between eruptions and the earthquakes that precede them. The Nature study also provides a real-world constraint for modeling how fast magma travels to the surface.

“If this interpretation is correct, you start having a speed limit that your models of magma transport have to catch,” said Tom Sisson, a USGS volcanologist based at Menlo Park, Calif.

Olivine minerals with nickel spikes similar to Irazú’s have been found in the ashes of arc volcanoes in Mexico, Siberia and the Cascades of the U.S. Pacific Northwest, said Lamont geochemist Susanne Straub, whose ideas inspired the study. “It’s clearly not a local phenomenon,” she said. The researchers are currently analyzing crystals from past volcanic eruptions in Alaska’s Aleutian Islands, Chile and Tonga, but are unsure how many will bear Irazú’s fast-rising magma signature. “Some may be capable of producing highways from hell and some may not,” said Ruprecht.

Continuous satellite monitoring of ice sheets needed to better predict sea-level rise

The findings, published in Nature Geoscience, underscore the need for continuous satellite monitoring of the ice sheets to better identify and predict melting and the corresponding sea-level rise.

The ice sheets covering Antarctica and Greenland contain about 99.5 per cent of the Earth’s glacier ice which would raise global sea level by some 63m if it were to melt completely. The ice sheets are the largest potential source of future sea level rise – and they also possess the largest uncertainty over their future behaviour. They present some unique challenges for predicting their future response using numerical modelling and, as a consequence, alternative approaches have been explored. One common approach is to extrapolate observed changes to estimate their contribution to sea level in the future.

Since 2002, the satellites of the Gravity Recovery and Climate Experiment (GRACE) detect tiny variations in Earth’s gravity field resulting from changes in mass distribution, including movement of ice into the oceans. Using these changes in gravity, the state of the ice sheets can be monitored at monthly intervals.

Dr Bert Wouters, currently a visiting researcher at the University of Colorado, said: “In the course of the mission, it has become apparent that ice sheets are losing substantial amounts of ice – about 300 billion tonnes each year – and that the rate at which these losses occurs is increasing. Compared to the first few years of the GRACE mission, the ice sheets’ contribution to sea level rise has almost doubled in recent years.”

Yet, there is no consensus among scientists about the cause of this recent increase in ice sheet mass loss observed by satellites. Beside anthropogenic warming, ice sheets are affected by many natural processes, such as multi-year fluctuations in the atmosphere (for example, shifting pressure systems in the North Atlantic, or El Niño and La Niña events) and slow changes in ocean currents.

“So, if observations span only a few years, such ‘ice sheet weather’ may show up as an apparent speed-up of ice loss which would cancel out once more observations become available,” Dr Wouters said.

The team of researchers compared nine years of satellite data from the GRACE mission with reconstructions of about 50 years of mass changes to the ice sheets. They found that the ability to accurately detect an accelerating trend in mass loss depends on the length of the record.

At the moment, the ice loss detected by the GRACE satellites is larger than what we would expect to see just from natural fluctuations, but the speed-up of ice loss over the last years is not.

The study suggests that although there may be almost enough satellite data to detect a speed-up in mass loss of the Antarctic ice sheet with a reasonable level of confidence, another ten years of satellite observations is needed to do so for Greenland. As a result, extrapolation of the current contribution to sea-level rise of the ice sheets to 2100 may be too high or low by as much as 35 cm. The study, therefore, urges caution in extrapolating current measurements to predict future sea-level rise.

Satellites provide up-to-date information on snow cover

This image of Trans-Labrador Highway, located in Canada's province of Newfoundland and Labrador, shows a heavy excavator bucket and a snow plow clearing snow from the road. - Credits: A. Khan, Goverment of Newfoundland and Labrador
This image of Trans-Labrador Highway, located in Canada’s province of Newfoundland and Labrador, shows a heavy excavator bucket and a snow plow clearing snow from the road. – Credits: A. Khan, Goverment of Newfoundland and Labrador

ESA GlobSnow project led by the Finnish Meteorological Institute uses satellites to produce up-to-date information on global snow cover. The new database gives fresh information on the snow situation right after a snowfall. Gathering this information was not possible before when only land-based observations were available.

European Space Agency´s (ESA) GlobSnow project, led by the Finnish Meteorological Institute, can map the extent and volume of snow cover especially on the northern hemisphere. Launched at the beginning of November, the service provides almost real-time data on snow cover and snow depth. The purpose of this service, accessed through the GlobSnow website maintained by the Institute, is to create a global database containing the snow data gathered by satellites.

Global data on snow cover

Snowfall impedes transport but also causes floods in many countries. The seasons affect snow cover the most on the northern hemisphere. The average snow cover in winter extends over an area of 20-40 million square kilometres; in other words, the snow contains as much water as one billion Olympic swimming pools. At the same time, the snow cover is one of the most important factors affecting the global climate, meteorology and water systems. Long distances between observation stations, especially in the sparsely-populated regions of Eurasia and North America, have made it difficult to chart snow and its volume at global level.

More accurate climate models

The data produced by satellites are used in the forecasting of floods and in climate research. In the coming year, many countries will test application of the new material for making hydrological models and flood forecasts. GlobSnow also provides climate researchers with snow data extending over the past 30 years. Access to satellite data enables researchers to monitor and analyse climatic trends. It has been discovered, for instance, that the snow cover has shrunk globally; this is one indicator of climate change. The database also provides increasingly accurate input data for climate models, thereby further improving the quality and accuracy of climate models.