Sediment supply drives floodplain evolution in Amazon Basin

A new study of the Amazon River basin shows lowland rivers that carry large volumes of sediment meander more across floodplains and create more oxbow lakes than rivers that carry less sediment.

The findings have implication for the Amazonian river system, which may be significantly altered by proposed mega-dams that would disrupt sediment supplies.

Researchers from Cardiff University’s School of Earth and Ocean Sciences examined 20 reaches within the Amazon Basin from Landsat imagery spanning nearly 20 years (1985 to 2013).

They found rivers transporting larger amounts of sediment migrated more, and noted that channel movement did not depend on either the slope of the channel or the river discharge.

The research gives scientists insight into the contrasting behavioural properties of rivers where sediment is an imposed variable – e.g. resulting from glacial, volcanic, or human activity – and rivers were the main sediment supply is from local bank erosion.

Dr José Constantine, Lecturer in Earth Sciences at Cardiff University’s School of Earth & Ocean Sciences and lead author of the paper said: “We found that the speed at which the meanders migrated for each of the rivers studied depended on the river’s supply of sand and silt. The meanders of rivers carrying more sediment migrated faster than those carrying less sediment, and were also more frequently cut off and abandoned to form U-shaped lakes. If sediment loads are reduced — by a dam, for example — meander migration is expected to slow, and thus the reshaping of the floodplain environment is affected.

Sediment supply drives floodplain evolution in Amazon Basin

A new study of the Amazon River basin shows lowland rivers that carry large volumes of sediment meander more across floodplains and create more oxbow lakes than rivers that carry less sediment.

The findings have implication for the Amazonian river system, which may be significantly altered by proposed mega-dams that would disrupt sediment supplies.

Researchers from Cardiff University’s School of Earth and Ocean Sciences examined 20 reaches within the Amazon Basin from Landsat imagery spanning nearly 20 years (1985 to 2013).

They found rivers transporting larger amounts of sediment migrated more, and noted that channel movement did not depend on either the slope of the channel or the river discharge.

The research gives scientists insight into the contrasting behavioural properties of rivers where sediment is an imposed variable – e.g. resulting from glacial, volcanic, or human activity – and rivers were the main sediment supply is from local bank erosion.

Dr José Constantine, Lecturer in Earth Sciences at Cardiff University’s School of Earth & Ocean Sciences and lead author of the paper said: “We found that the speed at which the meanders migrated for each of the rivers studied depended on the river’s supply of sand and silt. The meanders of rivers carrying more sediment migrated faster than those carrying less sediment, and were also more frequently cut off and abandoned to form U-shaped lakes. If sediment loads are reduced — by a dam, for example — meander migration is expected to slow, and thus the reshaping of the floodplain environment is affected.

Rivers flow differently over gravel beds, study finds

River researchers used a specially constructed model to study how water flows over gravel river beds. Illinois postdoctoral researcher Gianluca Blois (left) and professor Jim Best also developed a technique to measure the water flow between the pore spaces in the river bed. -  L. Brian Stauffer
River researchers used a specially constructed model to study how water flows over gravel river beds. Illinois postdoctoral researcher Gianluca Blois (left) and professor Jim Best also developed a technique to measure the water flow between the pore spaces in the river bed. – L. Brian Stauffer

River beds, where flowing water meets silt, sand and gravel, are critical ecological zones. Yet how water flows in a river with a gravel bed is very different from the traditional model of a sandy river bed, according to a new study that compares their fluid dynamics.

The findings establish new parameters for river modeling that better represent reality, with implications for field researchers and water resource managers.

“The shallow zones where water in rivers interacts with the subsurface are critical environmentally, and how we have modeled those in the past may be radically different from reality,” said Jim Best, a professor of geology, geography and geographic information science at the University of Illinois. “If you’re a river engineer or a geomorphologist or a freshwater biologist, predicting where and when sediment transport is going to occur is very important. This study provides us with a very different set of conditions to look at those environments and potentially manage them.”

Best and postdoctoral researcher Gianluca Blois led the study at the U. of I., in collaboration with colleagues in the United Kingdom. The team published its findings in the journal Geophysical Research Letters.

The researchers used a specially constructed flume in the Ven Te Chow Hydrosystems Laboratory at Illinois to experimentally compare scenarios ranging from the traditional model of an impermeable river bottom to a completely permeable river bed – a collection of spheres that simulate gravel.

The researchers used a technique called particle image velocimetry (PIV), a widely used method for quantifying how water flows over a model river bed, pioneered at the U. of I. in the 1980s. Best and Blois developed a method to use PIV endoscopically to study, for the first time, fluid flow within the small spaces between the gravel. This allowed them to quantify flow within the river bed and link it to the stream flow above.

They found that, in the scenario that simulates a gravel bed, the patterns of flow velocity above the bed and the distribution of forces on the river bed were dramatically different from the models on which all previous work has been based. Their experimental scenarios also disproved one popular theory that explained the difference between classic models and field observations for the formation of bed topography, such as dunes.

“Bedforms formed in fine sediments are known to be substantially different from those formed in gravel beds, but we just didn’t know why,” Blois said. “People before us suggested that those differences were due to the roughness of the grains. But we introduced the bed permeability, just like real rivers. This, with our new measurement technique, allowed us to demonstrate that most of the stress variation is actually coming from fluid emerging from the permeable bed, rather than roughness.”

The maps of water flow that the experiments produced could lead to better predictive models, so that researchers can more accurately predict and study how nutrients and pollutants travel and accumulate in rivers. These new models also could provide insight into the growth and behavior of organisms that thrive in the narrow zone where river flow meets the river bed.

“For example, when salmon spawn in gravel-bed rivers, they basically make a depression in the gravel, into which they lay their eggs,” Best said. “By doing that, not only do they protect the eggs, but they create a bump in the sediment that creates a pressure distribution that would keep fine grains from going into the bed, which would be detrimental to the eggs. It’s fascinating that fish actually take advantage of these flow dynamics.”

The researchers are working with collaborators around the world to study how permeability affects turbulence above the bed, how this affects the organisms that grow in the pore spaces, and how tiny particles and dissolved substances accumulate in porous riverbeds.

“It’s going to change the way we conceptualize these systems and model them,” Blois said. “We’re trying to raise awareness of the fact that we are now able to measure the complex flow dynamics in these challenging environments, and that’s going to open up a new paradigm for river research.”

Rivers flow differently over gravel beds, study finds

River researchers used a specially constructed model to study how water flows over gravel river beds. Illinois postdoctoral researcher Gianluca Blois (left) and professor Jim Best also developed a technique to measure the water flow between the pore spaces in the river bed. -  L. Brian Stauffer
River researchers used a specially constructed model to study how water flows over gravel river beds. Illinois postdoctoral researcher Gianluca Blois (left) and professor Jim Best also developed a technique to measure the water flow between the pore spaces in the river bed. – L. Brian Stauffer

River beds, where flowing water meets silt, sand and gravel, are critical ecological zones. Yet how water flows in a river with a gravel bed is very different from the traditional model of a sandy river bed, according to a new study that compares their fluid dynamics.

The findings establish new parameters for river modeling that better represent reality, with implications for field researchers and water resource managers.

“The shallow zones where water in rivers interacts with the subsurface are critical environmentally, and how we have modeled those in the past may be radically different from reality,” said Jim Best, a professor of geology, geography and geographic information science at the University of Illinois. “If you’re a river engineer or a geomorphologist or a freshwater biologist, predicting where and when sediment transport is going to occur is very important. This study provides us with a very different set of conditions to look at those environments and potentially manage them.”

Best and postdoctoral researcher Gianluca Blois led the study at the U. of I., in collaboration with colleagues in the United Kingdom. The team published its findings in the journal Geophysical Research Letters.

The researchers used a specially constructed flume in the Ven Te Chow Hydrosystems Laboratory at Illinois to experimentally compare scenarios ranging from the traditional model of an impermeable river bottom to a completely permeable river bed – a collection of spheres that simulate gravel.

The researchers used a technique called particle image velocimetry (PIV), a widely used method for quantifying how water flows over a model river bed, pioneered at the U. of I. in the 1980s. Best and Blois developed a method to use PIV endoscopically to study, for the first time, fluid flow within the small spaces between the gravel. This allowed them to quantify flow within the river bed and link it to the stream flow above.

They found that, in the scenario that simulates a gravel bed, the patterns of flow velocity above the bed and the distribution of forces on the river bed were dramatically different from the models on which all previous work has been based. Their experimental scenarios also disproved one popular theory that explained the difference between classic models and field observations for the formation of bed topography, such as dunes.

“Bedforms formed in fine sediments are known to be substantially different from those formed in gravel beds, but we just didn’t know why,” Blois said. “People before us suggested that those differences were due to the roughness of the grains. But we introduced the bed permeability, just like real rivers. This, with our new measurement technique, allowed us to demonstrate that most of the stress variation is actually coming from fluid emerging from the permeable bed, rather than roughness.”

The maps of water flow that the experiments produced could lead to better predictive models, so that researchers can more accurately predict and study how nutrients and pollutants travel and accumulate in rivers. These new models also could provide insight into the growth and behavior of organisms that thrive in the narrow zone where river flow meets the river bed.

“For example, when salmon spawn in gravel-bed rivers, they basically make a depression in the gravel, into which they lay their eggs,” Best said. “By doing that, not only do they protect the eggs, but they create a bump in the sediment that creates a pressure distribution that would keep fine grains from going into the bed, which would be detrimental to the eggs. It’s fascinating that fish actually take advantage of these flow dynamics.”

The researchers are working with collaborators around the world to study how permeability affects turbulence above the bed, how this affects the organisms that grow in the pore spaces, and how tiny particles and dissolved substances accumulate in porous riverbeds.

“It’s going to change the way we conceptualize these systems and model them,” Blois said. “We’re trying to raise awareness of the fact that we are now able to measure the complex flow dynamics in these challenging environments, and that’s going to open up a new paradigm for river research.”

A unique approach to monitoring groundwater supplies near Ohio fracking sites

This image shows a drilling rig in Carroll County, Ohio. -  Amy Townsend-Small
This image shows a drilling rig in Carroll County, Ohio. – Amy Townsend-Small

A University of Cincinnati research project is taking a groundbreaking approach to monitoring groundwater resources near fracking sites in Ohio. Claire Botner, a UC graduate student in geology, will outline the project at The Geological Society of America’s Annual Meeting & Exposition. The meeting takes place Oct. 19-22, in Vancouver.

Botner’s research is part of UC Groundwater Research of Ohio (GRO), a collaborative research project out of UC to examine the effects of fracking (hydraulic fracturing) on groundwater in the Utica Shale region of eastern Ohio. First launched in Carroll County in 2012, the GRO team of researchers is examining methane levels and origins of methane in private wells and springs before, during and after the onset of fracking. The team travels to the region to take water samples four times a year.

Amy Townsend-Small, the lead researcher for GRO and a UC assistant professor of geology, says the UC study is unique in comparison with studies on water wells in other shale-rich areas of the U.S. where fracking is taking place – such as the Marcellus Shale region of Pennsylvania.

Townsend-Small says water samples finding natural gas-derived methane in wells near Pennsylvania fracking sites were taken only after fracking had occurred, so methane levels in those wells were not documented prior to or during fracking in Pennsylvania.

Hydraulic fracturing, or fracking, involves using millions of gallons of water mixed with sand and chemicals to break up organic-rich shale to release natural gas resources.

Proponents say the practice promises a future in lower energy prices, an increase in domestic jobs and less dependence on foreign oil from unstable overseas governments.

Opponents raise concerns about increasing methane gas levels (a powerful greenhouse gas) and other contamination involving the spillover of fracking wastewater in the groundwater of shale-rich regions.

“The only way people with private groundwater will know whether or not their water is affected by fracking is through regular monitoring,” says Townsend-Small.

The Ohio samples are being analyzed by UC researchers for concentrations of methane as well as other hydrocarbons and salt, which is pulled up in the fracking water mixture from the shales. The shales are ancient ocean sediments.

Botner’s study involves testing on 22 private wells in Carroll County between November 2012 and last May. The first fracking permits were issued in the region in 2011. So far, results indicate that any methane readings in groundwater wells came from organic matter. In less than a handful of cases, the natural methane levels were relatively high, above 10 milligrams per liter. However, most of the wells carried low levels of methane.

The UC sampling has now been expanded into Columbiana, Harrison, Stark and Belmont counties in Ohio. Researchers then review data on private drinking water wells with the homeowners. “We’re working on interacting with these communities and educating them about fracking as well as gathering scientific data, which is lacking on a very sensitive issue,” says Botner. “It can also be reassuring to receive data on their water supplies from an objective, university resource.”

The team also is seeking additional funding to begin monitoring groundwater wells near wastewater injection wells, where fracking brine is deposited after the wells are drilled.

###

Funding for Botner’s research to be presented at the GSA meeting is supported by a grant from the Missouri-based Deer Creek Foundation.

Botner is among UC graduate students and faculty who are presenting more than two dozen research papers, PowerPoint presentations or poster exhibitions at the GSA meeting. The meeting draws geoscientists from around the world representing more than 40 different disciplines.

UC’s nationally ranked Department of Geology conducts field research around the world in areas spanning paleontology, Quaternary geology, geomorphology, sedimentology, stratigraphy, tectonics, environmental geology and biogeochemistry.

The Geological Society of America, founded in 1888, is a scientific society with more than 26,500 members from academia, government and industry in more than 100 countries. Through its meetings, publications and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind.

A unique approach to monitoring groundwater supplies near Ohio fracking sites

This image shows a drilling rig in Carroll County, Ohio. -  Amy Townsend-Small
This image shows a drilling rig in Carroll County, Ohio. – Amy Townsend-Small

A University of Cincinnati research project is taking a groundbreaking approach to monitoring groundwater resources near fracking sites in Ohio. Claire Botner, a UC graduate student in geology, will outline the project at The Geological Society of America’s Annual Meeting & Exposition. The meeting takes place Oct. 19-22, in Vancouver.

Botner’s research is part of UC Groundwater Research of Ohio (GRO), a collaborative research project out of UC to examine the effects of fracking (hydraulic fracturing) on groundwater in the Utica Shale region of eastern Ohio. First launched in Carroll County in 2012, the GRO team of researchers is examining methane levels and origins of methane in private wells and springs before, during and after the onset of fracking. The team travels to the region to take water samples four times a year.

Amy Townsend-Small, the lead researcher for GRO and a UC assistant professor of geology, says the UC study is unique in comparison with studies on water wells in other shale-rich areas of the U.S. where fracking is taking place – such as the Marcellus Shale region of Pennsylvania.

Townsend-Small says water samples finding natural gas-derived methane in wells near Pennsylvania fracking sites were taken only after fracking had occurred, so methane levels in those wells were not documented prior to or during fracking in Pennsylvania.

Hydraulic fracturing, or fracking, involves using millions of gallons of water mixed with sand and chemicals to break up organic-rich shale to release natural gas resources.

Proponents say the practice promises a future in lower energy prices, an increase in domestic jobs and less dependence on foreign oil from unstable overseas governments.

Opponents raise concerns about increasing methane gas levels (a powerful greenhouse gas) and other contamination involving the spillover of fracking wastewater in the groundwater of shale-rich regions.

“The only way people with private groundwater will know whether or not their water is affected by fracking is through regular monitoring,” says Townsend-Small.

The Ohio samples are being analyzed by UC researchers for concentrations of methane as well as other hydrocarbons and salt, which is pulled up in the fracking water mixture from the shales. The shales are ancient ocean sediments.

Botner’s study involves testing on 22 private wells in Carroll County between November 2012 and last May. The first fracking permits were issued in the region in 2011. So far, results indicate that any methane readings in groundwater wells came from organic matter. In less than a handful of cases, the natural methane levels were relatively high, above 10 milligrams per liter. However, most of the wells carried low levels of methane.

The UC sampling has now been expanded into Columbiana, Harrison, Stark and Belmont counties in Ohio. Researchers then review data on private drinking water wells with the homeowners. “We’re working on interacting with these communities and educating them about fracking as well as gathering scientific data, which is lacking on a very sensitive issue,” says Botner. “It can also be reassuring to receive data on their water supplies from an objective, university resource.”

The team also is seeking additional funding to begin monitoring groundwater wells near wastewater injection wells, where fracking brine is deposited after the wells are drilled.

###

Funding for Botner’s research to be presented at the GSA meeting is supported by a grant from the Missouri-based Deer Creek Foundation.

Botner is among UC graduate students and faculty who are presenting more than two dozen research papers, PowerPoint presentations or poster exhibitions at the GSA meeting. The meeting draws geoscientists from around the world representing more than 40 different disciplines.

UC’s nationally ranked Department of Geology conducts field research around the world in areas spanning paleontology, Quaternary geology, geomorphology, sedimentology, stratigraphy, tectonics, environmental geology and biogeochemistry.

The Geological Society of America, founded in 1888, is a scientific society with more than 26,500 members from academia, government and industry in more than 100 countries. Through its meetings, publications and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind.

Hydraulic fracturing linked to earthquakes in Ohio

Hydraulic fracturing triggered a series of small earthquakes in 2013 on a previously unmapped fault in Harrison County, Ohio, according to a study published in the journal Seismological Research Letters (SRL).

Nearly 400 small earthquakes occurred between Oct. 1 and Dec. 13, 2013, including 10 “positive” magnitude earthquake, none of which were reported felt by the public. The 10 positive magnitude earthquakes, which ranged from magnitude 1.7 to 2.2, occurred between Oct. 2 and 19, coinciding with hydraulic fracturing operations at nearby wells.

This series of earthquakes is the first known instance of seismicity in the area.

Hydraulic fracturing, or fracking, is a method for extracting gas and oil from shale rock by injecting a high-pressure water mixture directed at the rock to release the gas inside. The process of hydraulic fracturing involves injecting water, sand and chemicals into the rock under high pressure to create cracks. The process of cracking rocks results in micro-earthquakes. Hydraulic fracturing usually creates only small earthquakes, ones that have magnitude in the range of negative 3 (−3) to negative 1 (-1).

“Hydraulic fracturing has the potential to trigger earthquakes, and in this case, small ones that could not be felt, however the earthquakes were three orders of magnitude larger than normally expected,” said Paul Friberg, a seismologist with Instrumental Software Technologies, Inc. (ISTI) and a co-author of the study.

The earthquakes revealed an east-west trending fault that lies in the basement formation at approximately two miles deep and directly below the three horizontal gas wells. The EarthScope Transportable Array Network Facility identified the first earthquakes on Oct. 2, 2013, locating them south of Clendening Lake near the town of Uhrichsville, Ohio. A subsequent analysis identified 190 earthquakes during a 39-hour period on Oct. 1 and 2, just hours after hydraulic fracturing began on one of the wells.

The micro-seismicity varied, corresponding with the fracturing activity at the wells. The timing of the earthquakes, along with their tight linear clustering and similar waveform signals, suggest a unique source for the cause of the earthquakes — the hydraulic fracturing operation. The fracturing likely triggered slip on a pre-existing fault, though one that is located below the formation expected to confine the fracturing, according to the authors.

“As hydraulic fracturing operations explore new regions, more seismic monitoring will be needed since many faults remain unmapped.” Friberg co-authored the paper with Ilya Dricker, also with ISTI, and Glenda Besana-Ostman originally with Ohio Department of Natural Resources, and now with the Bureau of Reclamation at the U.S. Department of Interior.

Hydraulic fracturing linked to earthquakes in Ohio

Hydraulic fracturing triggered a series of small earthquakes in 2013 on a previously unmapped fault in Harrison County, Ohio, according to a study published in the journal Seismological Research Letters (SRL).

Nearly 400 small earthquakes occurred between Oct. 1 and Dec. 13, 2013, including 10 “positive” magnitude earthquake, none of which were reported felt by the public. The 10 positive magnitude earthquakes, which ranged from magnitude 1.7 to 2.2, occurred between Oct. 2 and 19, coinciding with hydraulic fracturing operations at nearby wells.

This series of earthquakes is the first known instance of seismicity in the area.

Hydraulic fracturing, or fracking, is a method for extracting gas and oil from shale rock by injecting a high-pressure water mixture directed at the rock to release the gas inside. The process of hydraulic fracturing involves injecting water, sand and chemicals into the rock under high pressure to create cracks. The process of cracking rocks results in micro-earthquakes. Hydraulic fracturing usually creates only small earthquakes, ones that have magnitude in the range of negative 3 (−3) to negative 1 (-1).

“Hydraulic fracturing has the potential to trigger earthquakes, and in this case, small ones that could not be felt, however the earthquakes were three orders of magnitude larger than normally expected,” said Paul Friberg, a seismologist with Instrumental Software Technologies, Inc. (ISTI) and a co-author of the study.

The earthquakes revealed an east-west trending fault that lies in the basement formation at approximately two miles deep and directly below the three horizontal gas wells. The EarthScope Transportable Array Network Facility identified the first earthquakes on Oct. 2, 2013, locating them south of Clendening Lake near the town of Uhrichsville, Ohio. A subsequent analysis identified 190 earthquakes during a 39-hour period on Oct. 1 and 2, just hours after hydraulic fracturing began on one of the wells.

The micro-seismicity varied, corresponding with the fracturing activity at the wells. The timing of the earthquakes, along with their tight linear clustering and similar waveform signals, suggest a unique source for the cause of the earthquakes — the hydraulic fracturing operation. The fracturing likely triggered slip on a pre-existing fault, though one that is located below the formation expected to confine the fracturing, according to the authors.

“As hydraulic fracturing operations explore new regions, more seismic monitoring will be needed since many faults remain unmapped.” Friberg co-authored the paper with Ilya Dricker, also with ISTI, and Glenda Besana-Ostman originally with Ohio Department of Natural Resources, and now with the Bureau of Reclamation at the U.S. Department of Interior.

A new look at what’s in ‘fracking’ fluids raises red flags

Scientists are getting to the bottom of what's in fracking fluids — with some troubling results. -  Doug Duncan/U.S. Geological Survey
Scientists are getting to the bottom of what’s in fracking fluids — with some troubling results. – Doug Duncan/U.S. Geological Survey

As the oil and gas drilling technique called hydraulic fracturing (or “fracking”) proliferates, a new study on the contents of the fluids involved in the process raises concerns about several ingredients. The scientists presenting the work today at the 248th National Meeting & Exposition of the American Chemical Society (ACS) say that out of nearly 200 commonly used compounds, there’s very little known about the potential health risks of about one-third, and eight are toxic to mammals.

The meeting features nearly 12,000 presentations on a wide range of science topics and is being held here through Thursday by ACS, the world’s largest scientific society.

William Stringfellow, Ph.D., says he conducted the review of fracking contents to help resolve the public debate over the controversial drilling practice. Fracking involves injecting water with a mix of chemical additives into rock formations deep underground to promote the release of oil and gas. It has led to a natural gas boom in the U.S., but it has also stimulated major opposition and troubling reports of contaminated well water, as well as increased air pollution near drill sites.

“The industrial side was saying, ‘We’re just using food additives, basically making ice cream here,'” Stringfellow says. “On the other side, there’s talk about the injection of thousands of toxic chemicals. As scientists, we looked at the debate and asked, ‘What’s the real story?'”

To find out, Stringfellow’s team at Lawrence Berkeley National Laboratory and University of the Pacific scoured databases and reports to compile a list of substances commonly used in fracking. They include gelling agents to thicken the fluids, biocides to keep microbes from growing, sand to prop open tiny cracks in the rocks and compounds to prevent pipe corrosion.

What their analysis revealed was a little truth to both sides’ stories – with big caveats. Fracking fluids do contain many nontoxic and food-grade materials, as the industry asserts. But if something is edible or biodegradable, it doesn’t automatically mean it can be easily disposed of, Stringfellow notes.

“You can’t take a truckload of ice cream and dump it down the storm drain,” he says, building on the industry’s analogy. “Even ice cream manufacturers have to treat dairy wastes, which are natural and biodegradable. They must break them down rather than releasing them directly into the environment.”

His team found that most fracking compounds will require treatment before being released. And, although not in the thousands as some critics suggest, the scientists identified eight substances, including biocides, that raised red flags. These eight compounds were identified as being particularly toxic to mammals.

“There are a number of chemicals, like corrosion inhibitors and biocides in particular, that are being used in reasonably high concentrations that potentially could have adverse effects,” Stringfellow says. “Biocides, for example, are designed to kill bacteria – it’s not a benign material.”

They’re also looking at the environmental impact of the fracking fluids, and they are finding that some have toxic effects on aquatic life.

In addition, for about one-third of the approximately 190 compounds the scientists identified as ingredients in various fracking formulas, the scientists found very little information about toxicity and physical and chemical properties.

“It should be a priority to try to close that data gap,” Stringfellow says.

A new look at what’s in ‘fracking’ fluids raises red flags

Scientists are getting to the bottom of what's in fracking fluids — with some troubling results. -  Doug Duncan/U.S. Geological Survey
Scientists are getting to the bottom of what’s in fracking fluids — with some troubling results. – Doug Duncan/U.S. Geological Survey

As the oil and gas drilling technique called hydraulic fracturing (or “fracking”) proliferates, a new study on the contents of the fluids involved in the process raises concerns about several ingredients. The scientists presenting the work today at the 248th National Meeting & Exposition of the American Chemical Society (ACS) say that out of nearly 200 commonly used compounds, there’s very little known about the potential health risks of about one-third, and eight are toxic to mammals.

The meeting features nearly 12,000 presentations on a wide range of science topics and is being held here through Thursday by ACS, the world’s largest scientific society.

William Stringfellow, Ph.D., says he conducted the review of fracking contents to help resolve the public debate over the controversial drilling practice. Fracking involves injecting water with a mix of chemical additives into rock formations deep underground to promote the release of oil and gas. It has led to a natural gas boom in the U.S., but it has also stimulated major opposition and troubling reports of contaminated well water, as well as increased air pollution near drill sites.

“The industrial side was saying, ‘We’re just using food additives, basically making ice cream here,'” Stringfellow says. “On the other side, there’s talk about the injection of thousands of toxic chemicals. As scientists, we looked at the debate and asked, ‘What’s the real story?'”

To find out, Stringfellow’s team at Lawrence Berkeley National Laboratory and University of the Pacific scoured databases and reports to compile a list of substances commonly used in fracking. They include gelling agents to thicken the fluids, biocides to keep microbes from growing, sand to prop open tiny cracks in the rocks and compounds to prevent pipe corrosion.

What their analysis revealed was a little truth to both sides’ stories – with big caveats. Fracking fluids do contain many nontoxic and food-grade materials, as the industry asserts. But if something is edible or biodegradable, it doesn’t automatically mean it can be easily disposed of, Stringfellow notes.

“You can’t take a truckload of ice cream and dump it down the storm drain,” he says, building on the industry’s analogy. “Even ice cream manufacturers have to treat dairy wastes, which are natural and biodegradable. They must break them down rather than releasing them directly into the environment.”

His team found that most fracking compounds will require treatment before being released. And, although not in the thousands as some critics suggest, the scientists identified eight substances, including biocides, that raised red flags. These eight compounds were identified as being particularly toxic to mammals.

“There are a number of chemicals, like corrosion inhibitors and biocides in particular, that are being used in reasonably high concentrations that potentially could have adverse effects,” Stringfellow says. “Biocides, for example, are designed to kill bacteria – it’s not a benign material.”

They’re also looking at the environmental impact of the fracking fluids, and they are finding that some have toxic effects on aquatic life.

In addition, for about one-third of the approximately 190 compounds the scientists identified as ingredients in various fracking formulas, the scientists found very little information about toxicity and physical and chemical properties.

“It should be a priority to try to close that data gap,” Stringfellow says.