Climate capers of the past 600,000 years

The researchers remove samples from a core segment taken from Lake Van at the center for Marine environmental sciences MARUM in Bremen, where all of the cores from the PALEOVAN project are stored. -  Photo: Nadine Pickarski/Uni Bonn
The researchers remove samples from a core segment taken from Lake Van at the center for Marine environmental sciences MARUM in Bremen, where all of the cores from the PALEOVAN project are stored. – Photo: Nadine Pickarski/Uni Bonn

If you want to see into the future, you have to understand the past. An international consortium of researchers under the auspices of the University of Bonn has drilled deposits on the bed of Lake Van (Eastern Turkey) which provide unique insights into the last 600,000 years. The samples reveal that the climate has done its fair share of mischief-making in the past. Furthermore, there have been numerous earthquakes and volcanic eruptions. The results of the drilling project also provide a basis for assessing the risk of how dangerous natural hazards are for today’s population. In a special edition of the highly regarded publication Quaternary Science Reviews, the scientists have now published their findings in a number of journal articles.

In the sediments of Lake Van, the lighter-colored, lime-containing summer layers are clearly distinguishable from the darker, clay-rich winter layers — also called varves. In 2010, from a floating platform an international consortium of researchers drilled a 220 m deep sediment profile from the lake floor at a water depth of 360 m and analyzed the varves. The samples they recovered are a unique scientific treasure because the climate conditions, earthquakes and volcanic eruptions of the past 600,000 years can be read in outstanding quality from the cores.

The team of scientists under the auspices of the University of Bonn has analyzed some 5,000 samples in total. “The results show that the climate over the past hundred thousand years has been a roller coaster. Within just a few decades, the climate could tip from an ice age into a warm period,” says Doctor Thomas Litt of the University of Bonn’s Steinmann Institute and spokesman for the PALEOVAN international consortium of researchers. Unbroken continental climate archives from the ice age which encompass several hundred thousand years are extremely rare on a global scale. “There has never before in all of the Middle East and Central Asia been a continental drilling operation going so far back into the past,” says Doctor Litt. In the northern hemisphere, climate data from ice-cores drilled in Greenland encompass the last 120,000 years. The Lake Van project closes a gap in the scientific climate record.

The sediments reveal six cycles of cold and warm periods


Scientists found evidence for a total of six cycles of warm and cold periods in the sediments of Lake Van. The University of Bonn paleoecologist and his colleagues analyzed the pollen preserved in the sediments. Under a microscope they were able to determine which plants around the eastern Anatolian Lake the pollen came from. “Pollen is amazingly durable and is preserved over very long periods when protected in the sediments,” Doctor Litt explained. Insight into the age of the individual layers was gleaned through radiometric age measurements that use the decay of radioactive elements as a geologic clock. Based on the type of pollen and the age, the scientists were able to determine when oak forests typical of warm periods grew around Lake Van and when ice-age steppe made up of grasses, mugwort and goosefoot surrounded the lake.

Once they determine the composition of the vegetation present and the requirements of the plants, the scientists can reconstruct with a high degree of accuracy the temperature and amount of rainfall during different epochs. These analyses enable the team of researchers to read the varves of Lake Van like thousands of pages of an archive. With these data, the team was able to demonstrate that fluctuations in climate were due in large part to periodic changes in the Earth’s orbit parameters and the commensurate changes in solar insolation levels. However, the influence of North Atlantic currents was also evident. “The analysis of the Lake Van sediments has presented us with an image of how an ecosystem reacts to abrupt changes in climate. This fundamental data will help us to develop potential scenarios of future climate effects,” says Doctor Litt.

Risks of earthquakes and volcanic eruptions in the region of Van

Such risk assessments can also be made for other natural forces. “Deposits of volcanic ash with thicknesses of up to 10 m in the Lake Van sediments show us that approximately 270,000 years ago there was a massive eruption,” the University of Bonn paleoecologist said. The team struck some 300 different volcanic events in its drillings. Statistically, that corresponds to one explosive volcanic eruption in the region every 2000 years. Deformations in the sediment layers show that the area is subject to frequent, strong earthquakes. “The area around Lake Van is very densely populated. The data from the core samples show that volcanic activity and earthquakes present a relatively high risk for the region,” Doctor Litt says. According to media reports, in 2011 a 7.2 magnitude earthquake in the Van province claimed the lives of more than 500 people and injured more than 2,500.

Publication: “Results from the PALEOVAN drilling project: A 600,000 year long continental archive in the Near East”, Quaternary Science Reviews, Volume 104, online publication: (http://dx.doi.org/10.1016/j.quascirev.2014.09.026)

The next ‘Big One’ for the Bay Area may be a cluster of major quakes

A cluster of closely timed earthquakes over 100 years in the 17th and 18th centuries released as much accumulated stress on San Francisco Bay Area’s major faults as the Great 1906 San Francisco earthquake, suggesting two possible scenarios for the next “Big One” for the region, according to new research published by the Bulletin of the Seismological Society of America (BSSA).

“The plates are moving,” said David Schwartz, a geologist with the U.S. Geological Survey and co-author of the study. “The stress is re-accumulating, and all of these faults have to catch up. How are they going to catch up?”

The San Francisco Bay Region (SFBR) is considered within the boundary between the Pacific and North American plates. Energy released during its earthquake cycle occurs along the region’s principal faults: the San Andreas, San Gregorio, Calaveras, Hayward-Rodgers Creek, Greenville, and Concord-Green Valley faults.

“The 1906 quake happened when there were fewer people, and the area was much less developed,” said Schwartz. “The earthquake had the beneficial effect of releasing the plate boundary stress and relaxing the crust, ushering in a period of low level earthquake activity.”

The earthquake cycle reflects the accumulation of stress, its release as slip on a fault or a set of faults, and its re-accumulation and re-release. The San Francisco Bay Area has not experienced a full earthquake cycle since its been occupied by people who have reported earthquake activity, either through written records or instrumentation. Founded in 1776, the Mission Dolores and the Presidio in San Francisco kept records of felt earthquakes and earthquake damage, marking the starting point for the historic earthquake record for the region.

“We are looking back at the past to get a more reasonable view of what’s going to happen decades down the road,” said Schwartz. “The only way to get a long history is to do these paleoseismic studies, which can help construct the rupture histories of the faults and the region. We are trying to see what went on and understand the uncertainties for the Bay Area.”

Schwartz and colleagues excavated trenches across faults, observing past surface ruptures from the most recent earthquakes on the major faults in the area. Radiocarbon dating of detrital charcoal and the presence of non-native pollen established the dates of paleoearthquakes, expanding the span of information of large events back to 1600.

The trenching studies suggest that between 1690 and the founding of the Mission Dolores and Presidio in 1776, a cluster of earthquakes ranging from magnitude 6.6 to 7.8 occurred on the Hayward fault (north and south segments), San Andreas fault (North Coast and San Juan Bautista segments), northern Calaveras fault, Rodgers Creek fault, and San Gregorio fault. There are no paleoearthquake data for the Greenville fault or northern extension of the Concord-Green Valley fault during this time interval.

“What the cluster of earthquakes did in our calculations was to release an amount of energy somewhat comparable to the amount released in the crust by the 1906 quake,” said Schwartz.

As stress on the region accumulates, the authors see at least two modes of energy release – one is a great earthquake and other is a cluster of large earthquakes. The probability for how the system will rupture is spread out over all faults in the region, making a cluster of large earthquakes more likely than a single great earthquake.

“Everybody is still thinking about a repeat of the 1906 quake,” said Schwartz. “It’s one thing to have a 1906-like earthquake where seismic activity is shut off, and we slide through the next 110 years in relative quiet. But what happens if every five years we get a magnitude 6.8 or 7.2? That’s not outside the realm of possibility.”

San Francisco’s big 1906 quake was third of a series on San Andreas Fault

University of Oregon doctoral student Ashley Streig shows a tree stump on which tree-ring dating indicates the tree was cut prior to the earthquake of 1838 on the San Andreas Fault in the Santa Cruz Mountains. -  University of Oregon
University of Oregon doctoral student Ashley Streig shows a tree stump on which tree-ring dating indicates the tree was cut prior to the earthquake of 1838 on the San Andreas Fault in the Santa Cruz Mountains. – University of Oregon

Research led by a University of Oregon doctoral student in California’s Santa Cruz Mountains has uncovered geologic evidence that supports historical narratives for two earthquakes in the 68 years prior to San Francisco’s devastating 1906 disaster.

The evidence places the two earthquakes, in 1838 and 1890, on the San Andreas Fault, as theorized by many researchers based on written accounts about damage to Spanish-built missions in the Monterey and San Francisco bay areas. These two quakes, as in 1906, were surface-rupturing events, the researchers concluded.

Continuing work, says San Francisco Bay-area native Ashley R. Streig, will dig deeper into the region’s geological record — layers of sediment along the fault — to determine if the ensuing seismically quiet years make up a normal pattern — or not — of quake frequency along the fault.

Streig is lead author of the study, published in this month’s issue of the Bulletin of the Seismological Society of America. She collaborated on the project with her doctoral adviser Ray Weldon, professor of the UO’s Department of Geological Sciences, and Timothy E. Dawson of the Menlo Park office of the California Geological Survey.

The study was the first to fully map the active fault trace in the Santa Cruz Mountains using a combination of on-the-ground observations and airborne Light Detection and Ranging (LiDAR), a remote sensing technology. The Santa Cruz Mountains run for about 39 miles from south of San Francisco to near San Juan Batista. Hazel Dell is east of Santa Cruz and north of Watsonville.

“We found the first geologic evidence of surface rupture by what looks like the 1838 and 1890 earthquakes, as well as 1906,” said Streig, whose introduction to major earthquakes came at age 11 during the 1989 Loma Prieta Earthquake on a deep sub-fault of the San Andreas Fault zone. That quake, which disrupted baseball’s World Series, forced her family to camp outside their home.

Unlike the 1906 quake that ruptured 470 km (296 mi) of the fault, the 1838 and 1890 quakes ruptured shorter portions of the fault, possibly limited to the Santa Cruz Mountains. “This is the first time we have had good, clear geologic evidence of these historic 19th century earthquakes,” she said. “It’s important because it tells us that we had three surface ruptures, really closely spaced in time that all had fairly large displacements of at least half a meter and probably larger.”

The team identified ax-cut wood chips, tree stumps and charcoal fragments from early logging efforts in unexpectedly deep layers of sediment, 1.5 meters (five feet) below the ground, and document evidence of three earthquakes since logging occurred at the site. The logging story emerged from 16 trenches dug in 2008, 2010 and 2011 along the fault at the Hazel Dell site in the mountain range.

High-resolution radiocarbon dating of tree-rings from the wood chips and charcoal confirm these are post European deposits, and the geologic earthquake evidence coincides with written accounts describing local earthquake damage, including damage to Spanish missions in 1838, and in a USGS publication of earthquakes in 1890 catalogued by an astronomer from Lick Observatory.

Additionally, in 1906 individuals living near the Hazel Dell site reported to geologists that cracks from the 1906 earthquake had occurred just where they had 16 years earlier, in 1890, which, Streig and colleagues say, was probably centered in the Hazel Dell region. Another displacement of sediment at the Hazel Dell site matched the timeline of the 1906 quake.

The project also allowed the team to conclude that another historically reported quake, in 1865, was not surface rupturing, but it was probably deep and, like the 1989 event, occurred on a sub zone of the San Andreas Fault. Conventional thinking, Streig said, has suggested that the San Andreas Fault always ruptures in a long-reaching fashion similar to the 1906 earthquake. This study, however, points to more regionally confined ruptures as well.

“This all tells us that there are more frequent surface-rupturing earthquakes on this section of the fault than have been previously identified, certainly in the historic period,” Streig said. “This becomes important to earthquake models because it is saying something about the connectivity of all these fault sections — and how they might link up.”

The frequency of the quakes in the Santa Cruz Mountains, she added, must have been a terrifying experience for settlers during the 68-year period.

“This study is the first to show three historic ruptures on the San Andreas Fault outside the special case of Parkfield,” Weldon said, referring to a region in mountains to the south of the Santa Cruz range where six magnitude 6-plus earthquakes occurred between 1857 and 1966. “The earthquakes of 1838 and 1890 were known to be somewhere nearby from shaking, but now we know the San Andreas Fault ruptured three times on the same piece of the fault in less than 100 years.”

More broadly, Weldon said, having multiple paleoseismic sites close together on a major fault, geologists now realize that interpretations gleaned from single-site evidence probably aren’t reliable. “We need to spend more time reproducing or confirming results rather than rushing to the next fault if we are going to get it right,” he said. “Ashley’s combination of historical research, C-14 dating, tree rings, pollen and stratigraphic correlation between sites has allowed us to credibly argue for precision that allows identification of the 1838 and 1890 earthquakes.”

“Researchers at the University of Oregon are using tools and technologies to further our understanding of the dynamic forces that continue to shape our planet and impact its people,” said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. “This research furthers our understanding of the connectivity of the various sections of California’s San Andreas Fault and has the potential to save lives by leading to more accurate earthquake modeling.”

Rainforests in Far East shaped by humans for the last 11,000 years

New research from Queen’s University Belfast shows that the tropical forests of South East Asia have been shaped by humans for the last 11,000 years.

The rain forests of Borneo, Sumatra, Java, Thailand and Vietnam were previously thought to have been largely unaffected by humans, but the latest research from Queen’s Palaeoecologist Dr Chris Hunt suggests otherwise.

A major analysis of vegetation histories across the three islands and the SE Asian mainland has revealed a pattern of repeated disturbance of vegetation since the end of the last ice age approximately 11,000 years ago.

The research, which was funded by the Arts and Humanities Research Council and the British Academy, is being published in the Journal of Archaeological Science. It is the culmination of almost 15 years of field work by Dr Hunt, involving the collection of pollen samples across the region, and a major review of existing palaeoecology research, which was completed in partnership with Dr Ryan Rabett from Cambridge University.

Evidence of human activity in rainforests is extremely difficult to find and traditional archaeological methods of locating and excavating sites are extremely difficult in the dense forests. Pollen samples, however, are now unlocking some of the region’s historical secrets.

Dr Hunt, who is Director of Research on Environmental Change at Queen’s School of Geography, Archaeology and Palaeoecology, said: “It has long been believed that the rainforests of the Far East were virgin wildernesses, where human impact has been minimal. Our findings, however, indicate a history of disturbances to vegetation. While it could be tempting to blame these disturbances on climate change, that is not the case as they do not coincide with any known periods of climate change. Rather, these vegetation changes have been brought about by the actions of people.

“There is evidence that humans in the Kelabit Highlands of Borneo burned fires to clear the land for planting food-bearing plants. Pollen samples from around 6,500 years ago contain abundant charcoal, indicating the occurrence of fire. However, while naturally occurring or accidental fires would usually be followed by specific weeds and trees that flourish in charred ground, we found evidence that this particular fire was followed by the growth of fruit trees. This indicates that the people who inhabited the land intentionally cleared it of forest vegetation and planted sources of food in its place.

“One of the major indicators of human action in the rainforest is the sheer prevalence of fast-growing ‘weed’ trees such as Macaranga, Celtis and Trema. Modern ecological studies show that they quickly follow burning and disturbance of forests in the region.

“Nearer to the Borneo coastline, the New Guinea Sago Palm first appeared over 10,000 years ago. This would have involved a voyage of more than 2,200km from its native New Guinea, and its arrival on the island is consistent with other known maritime voyages in the region at that time – evidence that people imported the Sago seeds and planted them.”

The findings have huge importance for ecological studies or rainforests as the historical role of people in managing the forest vegetation has rarely been considered. It could also have an impact on rainforest peoples fighting the advance of logging companies.

Dr Hunt continued: “Laws in several countries in South East Asia do not recognise the rights of indigenous forest dwellers on the grounds that they are nomads who leave no permanent mark on the landscape. Given that we can now demonstrate their active management of the forests for more than 11,000 years, these people have a new argument in their case against eviction.”

200,000-year environmental history of continental shelf based on a deep-sea core from Okinawa Trough

This shows terrigenous palynomorphs of short-distance transportation: light microscope and scanning electron microscope photos of pollen and spore, plant debris and charcoals. -  © Science China Press
This shows terrigenous palynomorphs of short-distance transportation: light microscope and scanning electron microscope photos of pollen and spore, plant debris and charcoals. – © Science China Press

A new research paper shows that a great number of nearby terrigenous pollen and charcoal have been found from the deep-sea sediments of the last 200 kyrs in Okinawa Trough. It is tesitfied that the continental shelf of the East China Sea was exposed and covered with the huge wetland and grassland ecosystems during the the last two glacial periods. They discovered that the variation of terrestrial sources is concordent with global glacial volume and sea-level changes at orbital-scale since 200 kyrs before present. Their work, entitled “A ~200 ka pollen record from Okinawa Trough: Paleoenvironment reconstruction of glacial-interglacial cycles”, was published in SCIENCE CHINA Earth Sciences.2013, Vol 56 (doi: 10.1007/s11430-013-4619-0)

This research work concerns mainly the Quaternary environment and global chages based on pollen analysis from a deep-sea core in Okinawa Trough. The project was directed by Department of Earth Sciences, Sun Yat-sen University, with colaboration of University Claude Bernard-Lyon 1 and Laboratory of Climate and Environment Sciences in Gif-sur-Yvette. The first author is professor ZHENG Zhuo from Sun Yat-sen University. Their research work was supported by the National Natural Science Foundation of China (grant no. 40772113, 41072128).

The discoreries show that terrestrial-source materials vary greatly during the transition of glacial and interglacial periods, proving the sensitive response on the global ice volume and sea-level changes. This deep-sea record has firstly documented high percentage of sedge, grass and many freshwater algaes in the glacial interval, which indicates that the offshore distance of Okinawa Trough has obviously shortened due to the exposed continental shelf during the glacial stages. The vegetation on the exposed continental shelf was dominated by intrazonal communities such as halophyte grasslands and freshwater wetlands. New evidence demonstrated that the fundamental changes of sediment sources in Okinawa Trough since ~200 ka BP were affected by combine factors including the offshore coastline distance, monsoon variability and sea-level changes.

This new research provides an oldest record of Quaternry environment reconstruction so far in the Okinawa Trough. It has a great scientific significance on highlighting the evolution history of continental shelf extension, the tracing of the sediment source areas of the Okinawa Trough and global climate changes since the last 200 kyrs.

UF Pine lsland pollen study leads to revision of state’s ancient geography

A new University of Florida study of 45-million-year-old pollen from Pine Island west of Fort Myers has led to a new understanding of the state’s geologic history, showing Florida could be 10 million to 15 million years older than previously believed.

The discovery of land in Florida during the early Eocene opens the possibility for researchers to explore the existence of land animals at that time, including their adaptation, evolution and dispersal until the present.

Florida Museum of Natural History vertebrate paleontologist Jonathan Bloch, who was not involved in the current study, said he is especially interested in the finding and future related research.

“As a paleontologist who studies the evolution of mammals, my first question is ‘OK, if there was land here at that time, what kinds of animals lived here?’ ” Bloch said. “Most of our current understanding of the evolution of early mammals comes from fossils discovered out west.”

The study in the current issue of the journal Palynology by David Jarzen, a research scientist at the Florida Museum of Natural History on the UF campus, determined sediment collected from a deep injection well contained local, land-based pollen, disproving the popular belief Florida was underwater 45 million years ago during the early Eocene.

“When I got the sample, I could actually break it apart with my fingers,” Jarzen said. “It wasn’t just land, it was low-lying land with boggy conditions and near shore because it showed marine influence.”

Until recently, Florida was believed to have been submerged until the Oligocene epoch, 23 million to 34 million years ago, Jarzen said. The 2010 study of the Pine Island sample from the Oldsmar Formation dates Florida’s land from the early Eocene, about 10 million to 15 million years earlier than determined in a 2006 study of pollen and invertebrate fossils from the Avon Park Formation in west central Florida by Jarzen and former Florida Museum scientist David Dilcher.

“What we thought we knew was an incomplete body of information,” said Fredrick Rich, a professor of geology in the department of geology and geography at Georgia Southern University. “Those terrestrial trees, shrubs and herbs didn’t live out there all by themselves. I envision a small key, or maybe several small keys just like the islands in Florida Bay.

The study appears in the December 2010 edition of the bi-annual journal, which was distributed in January.

The sample of dark gray lignitic clay and limestone contained pollen from 17 different flowering plants, representing the earliest report of land vegetation to date. It was collected in 2004 by study co-author Curtis Klug, a hydrogeologist with Cardno Entrix, a Fort Myers-based natural resource management and environmental consulting company.

“As we’re drilling through the rock and the cuttings come to the surface, we collect them, examine them, and determine the type of rock and its estimated age,” Klug said. “As we were drilling, we did go through several lignites, but this was one of the thickest ones we found in this particular well.”

The company was digging a 767-meter well for the Greater Pine Island Water Association, a company that uses reverse osmosis to produce drinking water. In this case, the well was used to dispose of excess saline brine, Klug said.

Lignite, also known as brown coal, is geologically younger than higher-grade coals and contains decomposed organic matter, largely plant material from wetlands. Along with the 17 land-based pollens, which included species of trees, palms and possibly ferns representing a climate similar to the panhandle today, the sample also contained at least four examples of marine phytoplankton. The presence of limestone and foraminiferas, single-celled organisms found in all marine environments, indicates the rise and fall of the area’s sea level.

“Depending upon the anticipated uses of future injection wells, the developers might find it very interesting to know that what they will drill into is not likely to be simple and homogeneous,” Rich said. “There is a buried landscape down there and the engineers need to know that is the case.”Klug said the age of the sample was determined by analyzing the foraminiferas’ carbonate shells and comparing the layer to sediments recovered from the same depth. “I think it’s really very interesting,” Klug said. “It’s a preliminary study but what it shows I think is that the information is available for anybody who’s willing to spend the time looking into it.”

Pine Island was the site of a Calusa Indian village for more than 1,500 years and is important for research in archaeology and ecology. The Florida Museum maintains the Randell Research Center at Pineland, an archaeological site on the northwest part of the island.

“Our studies of environmental change at Pineland show that while sea level is rising very quickly today, water levels fluctuated up and down when the Calusa inhabited the area from AD 1 to 1700,” said William Marquardt, Randell Center director and curator of archaeology at the Florida Museum. “Jarzen and Klug’s new findings from the Eocene epoch may be suggesting something similar 35 million years ago – that there were fluctuations during the Eocene that periodically exposed land in Florida.”