Clues to one of Earth’s oldest craters revealed

The Sudbury Basin located in Ontario, Canada is one of the largest known impact craters on Earth, as well as one of the oldest due to its formation more than 1.8 billion years ago. Researchers who took samples from the site and subjected them to a detailed geochemical analysis say that a comet may have hit the area to create the crater.

“Our analysis revealed a chondritic platinum group element signature within the crater’s fallback deposits; however, the distribution of these elements within the impact structure and other constraints suggest that the impactor was a comet. Thus, it seems that a comet with a chondritic refractory component may have created the world-famous Sudbury basin,” said Joe Petrus, lead author of the Terra Nova paper.

X-ray vision to detect unseen gold

Powerful x-rays can now be used to rapidly and accurately detect gold in ore samples, thanks to a new technique developed by CSIRO – a move that could save Australia’s minerals industry hundreds of millions of dollars each year.

CSIRO has conducted a pilot study that shows that gamma-activation analysis (GAA) offers a much faster, more accurate way to detect gold than traditional chemical analysis methods.

This will mean mining companies can measure what’s coming in and out of their processing plants with greater accuracy, allowing them to monitor process performance and recover small traces of gold – worth millions of dollars – that would otherwise be discarded.

GAA works by scanning mineral samples – typically weighing around half a kilogram – using high-energy x-rays similar to those used to treat patients in hospitals. The x-rays activate any gold in the sample, and the activation is then picked up using a sensitive detector.

According to project leader Dr James Tickner, CSIRO’s study showed that this method is two-to-three times more accurate than the standard industry technique ‘fire assay’, which requires samples to be heated up to 1200°C.

“The big challenge for this project was to push the sensitivity of GAA to detect gold at much lower levels – well below a threshold of one gram per tonne,” he says.

Dr Tickner explains that a gold processing plant may only recover between 65 and 85 per cent of gold present in mined rock. Given a typical plant produces around A$1 billion of gold each year, this means hundreds of millions of dollars worth of gold is going to waste.

“Our experience suggests that better process monitoring can help reduce this loss by about a third,” he says.

Last year, Australia produced over A$10 billion worth of gold. Even if GAA only led to a modest 5 per cent improvement in recovery, that would be worth half a billion dollars annually to the industry.

Dr Tickner says that the other major benefit of GAA is that it is easily automated, allowing for much quicker analysis of ore samples.

“Fire assay usually involves sending samples off to a central lab and waiting several days for the results. Using GAA we can do the analysis in a matter of minutes, allowing companies to respond much more quickly to the data they’re collecting.”

“A compact GAA facility could even be trucked out to remote sites for rapid, on-the-spot analysis.”

Another great advantage of GAA is that it is more sustainable – unlike fire assay it doesn’t require the use of heavy metals such as lead.

It is also very adaptable. “While most of the work we’ve done has been based on the gold industry, the technique can be modified for other valuable commodities such as silver, lead, zinc, tin, copper and the platinum group metals.”

Now that the research team has proved the effectiveness of the technique, their next goal is to partner with local and international companies in order to get a full-scale analysis facility up and running in Australia. They hope to achieve this within the next two years.

Earth’s oldest known impact crater found in Greenland

A 100 kilometer-wide crater has been found in Greenland, the result of a massive asteroid or comet impact a billion years before any other known collision on Earth.

The spectacular craters on the Moon formed from impacts with asteroids and comets between 3 and 4 billion years ago. The early Earth, with its far greater gravitational mass, must have experienced even more collisions at this time – but the evidence has been eroded away or covered by younger rocks. The previously oldest known crater on Earth formed 2 billion years ago and the chances of finding an even older impact were thought to be, literally, astronomically low.

Now, a team of scientists from the Geological Survey of Denmark and Greenland (GEUS) in Copenhagen, Cardiff University in Wales, Lund University in Sweden and the Institute of Planetary Science in Moscow has upset these odds. Following a detailed programme of fieldwork, funded by GEUS and the Danish ‘Carlsbergfondet’ (Carlsberg Foundation), the team have discovered the remains of a giant 3 billion year old impact near the Maniitsoq region of West Greenland.

“This single discovery means that we can study the effects of cratering on the Earth nearly a billion years further back in time than was possible before,” according to Dr Iain McDonald of Cardiff University’s School of Earth and Ocean Sciences, who was part of the team.

Finding the evidence was made all the harder because there is no obvious bowl-shaped crater left to find. Over the 3 billion years since the impact, the land has been eroded down to expose deeper crust 25 km below the original surface. All external parts of the impact structure have been removed, but the effects of the intense impact shock wave penetrated deep into the crust – far deeper than at any other known crater – and these remain visible.

However, because the effects of impact at these depths have never been observed before it has taken nearly three years of painstaking work to assemble all the key evidence. “The process was rather like a Sherlock Holmes story,” said Dr McDonald. “We eliminated the impossible in terms of any conventional terrestrial processes, and were left with a giant impact as the only explanation for all of the facts.”

Only around 180 impact craters have ever been discovered on Earth and around 30% of them contain important natural resources of minerals or oil and gas. The largest and oldest known crater prior to this study, the 300 kilometre wide Vredefort crater in South Africa, is 2 billion years in age and heavily eroded.

Dr McDonald added that “It has taken us nearly three years to convince our peers in the scientific community of this but the mining industry was far more receptive. A Canadian exploration company has been using the impact model to explore for deposits of nickel and platinum metals at Maniitsoq since the autumn of 2011.”

The international team was led by Adam A. Garde, senior research scientist at GEUS. The first scientific paper documenting the discovery has just been published in the journal Earth and Planetary Science Letters.

Extraterrestrial platinum was ‘stirred’ into the Earth

Micrograph showing sheaves of parallel platy olivine crystals making so called 'spinifex texture,' from a komatiite flow at Wildara, Western Australia. -  CSIRO
Micrograph showing sheaves of parallel platy olivine crystals making so called ‘spinifex texture,’ from a komatiite flow at Wildara, Western Australia. – CSIRO

A research program aimed at using platinum as an exploration guide for nickel has for the first time been able to put a time scale on the planet’s large-scale convection processes.

The research is reported in a Nature paper titled “Progressive mixing of meteoritic veneer into the early Earth’s deep mantle”.

Report author CSIRO Minerals Down Under Flagship researcher Dr Stephen Barnes said the study group collected a large body of data on the platinum content of lava flows called komatiites, which host some of the world’s major nickel deposits.

“We found that the oldest komatiites have the lowest platinum content,” Dr Barnes said.

“The platinum content gradually increases from about 3.5 billion years to 2.9 billion years ago. “This tells us that the deep source where the komatiite came from, down near the boundary between the Earth’s core and mantle, was gradually gaining platinum over time”.

The paper’s authors now think they know why.

“When the Earth’s core formed, it took all the available platinum with it, leaving the mantle and crust with none,” Dr Barnes said.

“Following that, a steady rain of meteorites created the so-called Late Veneer – a thin surface layer of meteorite debris rich in platinum.

With time through large-scale convection processes, which now cause plate tectonics, this material was stirred down into the interior of the Earth.

We are seeing the signal of that stirring, which took about 1.5 billion years to occur.

This is the first time a time scale has been put on the stirring, which has important implications for the people who study the dynamics of mantle processes and the mechanisms that cause plate tectonics, earthquakes and volcanoes.

Combined with some other work by the researchers on sister elements to platinum, iridium and osmium, we also now have a new framework for understanding the variations in isotopic ratios of osmium with time.

Osmium isotopes are widely used as tracers of mantle processes, but there has been a mismatch between signals from osmium and from other important isotopic tracer systems which has eluded explanation until now.

Co-authors Dr Marco Fiorentini and Dr Wolfgang Maier from the University of Western Australia are delighted that this is a completely academic outcome which came out of an industry-funded project.

“It is a nice example of an unexpected fundamental discovery arising from a practical applied science study and demonstrates the very positive collaborations that exist between CSIRO and the University of Western Australia,” Dr Fiorentini said.