Study hints that ancient Earth made its own water — geologically

A new study is helping to answer a longstanding question that has recently moved to the forefront of earth science: Did our planet make its own water through geologic processes, or did water come to us via icy comets from the far reaches of the solar system?

The answer is likely “both,” according to researchers at The Ohio State University– and the same amount of water that currently fills the Pacific Ocean could be buried deep inside the planet right now.

At the American Geophysical Union (AGU) meeting on Wednesday, Dec. 17, they report the discovery of a previously unknown geochemical pathway by which the Earth can sequester water in its interior for billions of years and still release small amounts to the surface via plate tectonics, feeding our oceans from within.

In trying to understand the formation of the early Earth, some researchers have suggested that the planet was dry and inhospitable to life until icy comets pelted the earth and deposited water on the surface.

Wendy Panero, associate professor of earth sciences at Ohio State, and doctoral student Jeff Pigott are pursuing a different hypothesis: that Earth was formed with entire oceans of water in its interior, and has been continuously supplying water to the surface via plate tectonics ever since.

Researchers have long accepted that the mantle contains some water, but how much water is a mystery. And, if some geological mechanism has been supplying water to the surface all this time, wouldn’t the mantle have run out of water by now?

Because there’s no way to directly study deep mantle rocks, Panero and Pigott are probing the question with high-pressure physics experiments and computer calculations.

“When we look into the origins of water on Earth, what we’re really asking is, why are we so different than all the other planets?” Panero said. “In this solar system, Earth is unique because we have liquid water on the surface. We’re also the only planet with active plate tectonics. Maybe this water in the mantle is key to plate tectonics, and that’s part of what makes Earth habitable.”

Central to the study is the idea that rocks that appear dry to the human eye can actually contain water–in the form of hydrogen atoms trapped inside natural voids and crystal defects. Oxygen is plentiful in minerals, so when a mineral contains some hydrogen, certain chemical reactions can free the hydrogen to bond with the oxygen and make water.

Stray atoms of hydrogen could make up only a tiny fraction of mantle rock, the researchers explained. Given that the mantle is more than 80 percent of the planet’s total volume, however, those stray atoms add up to a lot of potential water.

In a lab at Ohio State, the researchers compress different minerals that are common to the mantle and subject them to high pressures and temperatures using a diamond anvil cell–a device that squeezes a tiny sample of material between two diamonds and heats it with a laser–to simulate conditions in the deep Earth. They examine how the minerals’ crystal structures change as they are compressed, and use that information to gauge the minerals’ relative capacities for storing hydrogen. Then, they extend their experimental results using computer calculations to uncover the geochemical processes that would enable these minerals to rise through the mantle to the surface–a necessary condition for water to escape into the oceans.

In a paper now submitted to a peer-reviewed academic journal, they reported their recent tests of the mineral bridgmanite, a high-pressure form of olivine. While bridgmanite is the most abundant mineral in the lower mantle, they found that it contains too little hydrogen to play an important role in Earth’s water supply.

Another research group recently found that ringwoodite, another form of olivine, does contain enough hydrogen to make it a good candidate for deep-earth water storage. So Panero and Pigott focused their study on the depth where ringwoodite is found–a place 325-500 miles below the surface that researchers call the “transition zone”–as the most likely region that can hold a planet’s worth of water. From there, the same convection of mantle rock that produces plate tectonics could carry the water to the surface.

One problem: If all the water in ringwoodite is continually drained to the surface via plate tectonics, how could the planet hold any in reserve?

For the research presented at AGU, Panero and Pigott performed new computer calculations of the geochemistry in the lowest portion of the mantle, some 500 miles deep and more. There, another mineral, garnet, emerged as a likely water-carrier–a go-between that could deliver some of the water from ringwoodite down into the otherwise dry lower mantle.

If this scenario is accurate, the Earth may today hold half as much water in its depths as is currently flowing in oceans on the surface, Panero said–an amount that would approximately equal the volume of the Pacific Ocean. This water is continuously cycled through the transition zone as a result of plate tectonics.

“One way to look at this research is that we’re putting constraints on the amount of water that could be down there,” Pigott added.

Panero called the complex relationship between plate tectonics and surface water “one of the great mysteries in the geosciences.” But this new study supports researchers’ growing suspicion that mantle convection somehow regulates the amount of water in the oceans. It also vastly expands the timeline for Earth’s water cycle.

“If all of the Earth’s water is on the surface, that gives us one interpretation of the water cycle, where we can think of water cycling from oceans into the atmosphere and into the groundwater over millions of years,” she said. “But if mantle circulation is also part of the water cycle, the total cycle time for our planet’s water has to be billions of years.”

No laughing matter: Nitrous oxide rose at end of last ice age

Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. -  Adrian Schilt
Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. – Adrian Schilt

Nitrous oxide (N2O) is an important greenhouse gas that doesn’t receive as much notoriety as carbon dioxide or methane, but a new study confirms that atmospheric levels of N2O rose significantly as the Earth came out of the last ice age and addresses the cause.

An international team of scientists analyzed air extracted from bubbles enclosed in ancient polar ice from Taylor Glacier in Antarctica, allowing for the reconstruction of the past atmospheric composition. The analysis documented a 30 percent increase in atmospheric nitrous oxide concentrations from 16,000 years ago to 10,000 years ago. This rise in N2O was caused by changes in environmental conditions in the ocean and on land, scientists say, and contributed to the warming at the end of the ice age and the melting of large ice sheets that then existed.

The findings add an important new element to studies of how Earth may respond to a warming climate in the future. Results of the study, which was funded by the U.S. National Science Foundation and the Swiss National Science Foundation, are being published this week in the journal Nature.

“We found that marine and terrestrial sources contributed about equally to the overall increase of nitrous oxide concentrations and generally evolved in parallel at the end of the last ice age,” said lead author Adrian Schilt, who did much of the work as a post-doctoral researcher at Oregon State University. Schilt then continued to work on the study at the Oeschger Centre for Climate Change Research at the University of Bern in Switzerland.

“The end of the last ice age represents a partial analog to modern warming and allows us to study the response of natural nitrous oxide emissions to changing environmental conditions,” Schilt added. “This will allow us to better understand what might happen in the future.”

Nitrous oxide is perhaps best known as laughing gas, but it is also produced by microbes on land and in the ocean in processes that occur naturally, but can be enhanced by human activity. Marine nitrous oxide production is linked closely to low oxygen conditions in the upper ocean and global warming is predicted to intensify the low-oxygen zones in many of the world’s ocean basins. N2O also destroys ozone in the stratosphere.

“Warming makes terrestrial microbes produce more nitrous oxide,” noted co-author Edward Brook, an Oregon State paleoclimatologist whose research team included Schilt. “Greenhouse gases go up and down over time, and we’d like to know more about why that happens and how it affects climate.”

Nitrous oxide is among the most difficult greenhouse gases to study in attempting to reconstruct the Earth’s climate history through ice core analysis. The specific technique that the Oregon State research team used requires large samples of pristine ice that date back to the desired time of study – in this case, between about 16,000 and 10,000 years ago.

The unusual way in which Taylor Glacier is configured allowed the scientists to extract ice samples from the surface of the glacier instead of drilling deep in the polar ice cap because older ice is transported upward near the glacier margins, said Brook, a professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The scientists were able to discern the contributions of marine and terrestrial nitrous oxide through analysis of isotopic ratios, which fingerprint the different sources of N2O in the atmosphere.

“The scientific community knew roughly what the N2O concentration trends were prior to this study,” Brook said, “but these findings confirm that and provide more exact details about changes in sources. As nitrous oxide in the atmosphere continues to increase – along with carbon dioxide and methane – we now will be able to more accurately assess where those contributions are coming from and the rate of the increase.”

Atmospheric N2O was roughly 200 parts per billion at the peak of the ice age about 20,000 years ago then rose to 260 ppb by 10,000 years ago. As of 2014, atmospheric N2Owas measured at about 327 ppb, an increase attributed primarily to agricultural influences.

Although the N2O increase at the end of the last ice age was almost equally attributable to marine and terrestrial sources, the scientists say, there were some differences.

“Our data showed that terrestrial emissions changed faster than marine emissions, which was highlighted by a fast increase of emissions on land that preceded the increase in marine emissions,” Schilt pointed out. “It appears to be a direct response to a rapid temperature change between 15,000 and 14,000 years ago.”

That finding underscores the complexity of analyzing how Earth responds to changing conditions that have to account for marine and terrestrial influences; natural variability; the influence of different greenhouse gases; and a host of other factors, Brook said.

“Natural sources of N2O are predicted to increase in the future and this study will help up test predictions on how the Earth will respond,” Brook said.

Massive geographic change may have triggered explosion of animal life

A new analysis from The University of Texas at Austin's Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. -  Ian Dalziel
A new analysis from The University of Texas at Austin’s Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. – Ian Dalziel

A new analysis of geologic history may help solve the riddle of the “Cambrian explosion,” the rapid diversification of animal life in the fossil record 530 million years ago that has puzzled scientists since the time of Charles Darwin.

A paper by Ian Dalziel of The University of Texas at Austin’s Jackson School of Geosciences, published in the November issue of Geology, a journal of the Geological Society of America, suggests a major tectonic event may have triggered the rise in sea level and other environmental changes that accompanied the apparent burst of life.

The Cambrian explosion is one of the most significant events in Earth’s 4.5-billion-year history. The surge of evolution led to the sudden appearance of almost all modern animal groups. Fossils from the Cambrian explosion document the rapid evolution of life on Earth, but its cause has been a mystery.

The sudden burst of new life is also called “Darwin’s dilemma” because it appears to contradict Charles Darwin’s hypothesis of gradual evolution by natural selection.

“At the boundary between the Precambrian and Cambrian periods, something big happened tectonically that triggered the spreading of shallow ocean water across the continents, which is clearly tied in time and space to the sudden explosion of multicellular, hard-shelled life on the planet,” said Dalziel, a research professor at the Institute for Geophysics and a professor in the Department of Geological Sciences.

Beyond the sea level rise itself, the ancient geologic and geographic changes probably led to a buildup of oxygen in the atmosphere and a change in ocean chemistry, allowing more complex life-forms to evolve, he said.

The paper is the first to integrate geological evidence from five present-day continents — North America, South America, Africa, Australia and Antarctica — in addressing paleogeography at that critical time.

Dalziel proposes that present-day North America was still attached to the southern continents until sometime into the Cambrian period. Current reconstructions of the globe’s geography during the early Cambrian show the ancient continent of Laurentia — the ancestral core of North America — as already having separated from the supercontinent Gondwanaland.

In contrast, Dalziel suggests the development of a deep oceanic gateway between the Pacific and Iapetus (ancestral Atlantic) oceans isolated Laurentia in the early Cambrian, a geographic makeover that immediately preceded the global sea level rise and apparent explosion of life.

“The reason people didn’t make this connection before was because they hadn’t looked at all the rock records on the different present-day continents,” he said.

The rock record in Antarctica, for example, comes from the very remote Ellsworth Mountains.

“People have wondered for a long time what rifted off there, and I think it was probably North America, opening up this deep seaway,” Dalziel said. “It appears ancient North America was initially attached to Antarctica and part of South America, not to Europe and Africa, as has been widely believed.”

Although the new analysis adds to evidence suggesting a massive tectonic shift caused the seas to rise more than half a billion years ago, Dalziel said more research is needed to determine whether this new chain of paleogeographic events can truly explain the sudden rise of multicellular life in the fossil record.

“I’m not claiming this is the ultimate explanation of the Cambrian explosion,” Dalziel said. “But it may help to explain what was happening at that time.”

###

To read the paper go to http://geology.gsapubs.org/content/early/2014/09/25/G35886.1.abstract

Lack of oxygen delayed the rise of animals on Earth

Christopher Reinhard and Noah Planavsky conduct research for the study in China. -  Yale University
Christopher Reinhard and Noah Planavsky conduct research for the study in China. – Yale University

Geologists are letting the air out of a nagging mystery about the development of animal life on Earth.

Scientists have long speculated as to why animal species didn’t flourish sooner, once sufficient oxygen covered the Earth’s surface. Animals began to prosper at the end of the Proterozoic period, about 800 million years ago — but what about the billion-year stretch before that, when most researchers think there also was plenty of oxygen?

Well, it seems the air wasn’t so great then, after all.

In a study published Oct. 30 in Science, Yale researcher Noah Planavsky and his colleagues found that oxygen levels during the “boring billion” period were only 0.1% of what they are today. In other words, Earth’s atmosphere couldn’t have supported a diversity of creatures, no matter what genetic advancements were poised to occur.

“There is no question that genetic and ecological innovation must ultimately be behind the rise of animals, but it is equally unavoidable that animals need a certain level of oxygen,” said Planavsky, co-lead author of the research along with Christopher Reinhard of the Georgia Institute of Technology. “We’re providing the first evidence that oxygen levels were low enough during this period to potentially prevent the rise of animals.”

The scientists found their evidence by analyzing chromium (Cr) isotopes in ancient sediments from China, Australia, Canada, and the United States. Chromium is found in the Earth’s continental crust, and chromium oxidation is directly linked to the presence of free oxygen in the atmosphere.

Specifically, the team studied samples deposited in shallow, iron-rich ocean areas, near the shore. They compared their data with other samples taken from younger locales known to have higher levels of oxygen.

Oxygen’s role in controlling the first appearance of animals has long vexed scientists. “We were missing the right approach until now,” Planavsky said. “Chromium gave us the proxy.” Previous estimates put the oxygen level at 40% of today’s conditions during pre-animal times, leaving open the possibility that oxygen was already plentiful enough to support animal life.

In the new study, the researchers acknowledged that oxygen levels were “highly dynamic” in the early atmosphere, with the potential for occasional spikes. However, they said, “It seems clear that there is a first-order difference in the nature of Earth surface Cr cycling” before and after the rise of animals.

“If we are right, our results will really change how people view the origins of animals and other complex life, and their relationships to the co-evolving environment,” said co-author Tim Lyons of the University of California-Riverside. “This could be a game changer.”

“There’s a lot of interest right now in a broader discussion surrounding the role that environmental stability played in the evolution of complex life, and we think our results are a significant contribution to that,” Reinhard said.

Rare 2.5-billion-year-old rocks reveal hot spot of sulfur-breathing bacteria

Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. -  Alan J. Kaufman
Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. – Alan J. Kaufman

Wriggle your toes in a marsh’s mucky bottom sediment and you’ll probably inhale a rotten egg smell, the distinctive odor of hydrogen sulfide gas. That’s the biochemical signature of sulfur-using bacteria, one of Earth’s most ancient and widespread life forms.

Among scientists who study the early history of our 4.5 billion-year-old planet, there is a vigorous debate about the evolution of sulfur-dependent bacteria. These simple organisms arose at a time when oxygen levels in the atmosphere were less than one-thousandth of what they are now. Living in ocean waters, they respired (or breathed in) sulfate, a form of sulfur, instead of oxygen. But how did that sulfate reach the ocean, and when did it become abundant enough for living things to use it?

New research by University of Maryland geology doctoral student Iadviga Zhelezinskaia offers a surprising answer. Zhelezinskaia is the first researcher to analyze the biochemical signals of sulfur compounds found in 2.5 billion-year-old carbonate rocks from Brazil. The rocks were formed on the ocean floor in a geologic time known as the Neoarchaean Eon. They surfaced when prospectors drilling for gold in Brazil punched a hole into bedrock and pulled out a 590-foot-long core of ancient rocks.

In research published Nov. 7, 2014 in the journal Science, Zhelezinskaia and three co-authors–physicist John Cliff of the University of Western Australia and geologists Alan Kaufman and James Farquhar of UMD–show that bacteria dependent on sulfate were plentiful in some parts of the Neoarchaean ocean, even though sea water typically contained about 1,000 times less sulfate than it does today.

“The samples Iadviga measured carry a very strong signal that sulfur compounds were consumed and altered by living organisms, which was surprising,” says Farquhar. “She also used basic geochemical models to give an idea of how much sulfate was in the oceans, and finds the sulfate concentrations are very low, much lower than previously thought.”

Geologists study sulfur because it is abundant and combines readily with other elements, forming compounds stable enough to be preserved in the geologic record. Sulfur has four naturally occurring stable isotopes–atomic signatures left in the rock record that scientists can use to identify the elements’ different forms. Researchers measuring sulfur isotope ratios in a rock sample can learn whether the sulfur came from the atmosphere, weathering rocks or biological processes. From that information about the sulfur sources, they can deduce important information about the state of the atmosphere, oceans, continents and biosphere when those rocks formed.

Farquhar and other researchers have used sulfur isotope ratios in Neoarchaean rocks to show that soon after this period, Earth’s atmosphere changed. Oxygen levels soared from just a few parts per million to almost their current level, which is around 21 percent of all the gases in the atmosphere. The Brazilian rocks Zhelezinskaia sampled show only trace amounts of oxygen, a sign they were formed before this atmospheric change.

With very little oxygen, the Neoarchaean Earth was a forbidding place for most modern life forms. The continents were probably much drier and dominated by volcanoes that released sulfur dioxide, carbon dioxide, methane and other greenhouse gases. Temperatures probably ranged between 0 and 100 degrees Celsius (32 to 212 degrees Fahrenheit), warm enough for liquid oceans to form and microbes to grow in them.

Rocks 2.5 billion years old or older are extremely rare, so geologists’ understanding of the Neoarchaean are based on a handful of samples from a few small areas, such as Western Australia, South Africa and Brazil. Geologists theorize that Western Australia and South Africa were once part of an ancient supercontinent called Vaalbara. The Brazilian rock samples are comparable in age, but they may not be from the same supercontinent, Zhelezinskaia says.

Most of the Neoarchaean rocks studied are from Western Australia and South Africa and are black shale, which forms when fine dust settles on the sea floor. The Brazilian prospector’s core contains plenty of black shale and a band of carbonate rock, formed below the surface of shallow seas, in a setting that probably resembled today’s Bahama Islands. Black shale usually contains sulfur-bearing pyrite, but carbonate rock typically does not, so geologists have not focused on sulfur signals in Neoarchaean carbonate rocks until now.

Zhelezinskaia “chose to look at a type of rock that others generally avoided, and what she saw was spectacularly different,” said Kaufman. “It really opened our eyes to the implications of this study.”

The Brazilian carbonate rocks’ isotopic ratios showed they formed in ancient seabed containing sulfate from atmospheric sources, not continental rock. And the isotopic ratios also showed that Neoarchaean bacteria were plentiful in the sediment, respiring sulfate and emitted hydrogen sulfide–the same process that goes on today as bacteria recycle decaying organic matter into minerals and gases.

How could the sulfur-dependent bacteria have thrived during a geologic time when sulfur levels were so low? “It seems that they were in shallow water, where evaporation may have been high enough to concentrate the sulfate, and that would make it abundant enough to support the bacteria,” says Zhelezinskaia.

Zhelezinskaia is now analyzing carbonate rocks of the same age from Western Australia and South Africa, to see if the pattern holds true for rocks formed in other shallow water environments. If it does, the results may change scientists’ understanding of one of Earth’s earliest biological processes.

“There is an ongoing debate about when sulfate-reducing bacteria arose and how that fits into the evolution of life on our planet,” says Farquhar. “These rocks are telling us the bacteria were there 2.5 billion years ago, and they were doing something significant enough that we can see them today.”

###

This research was supported by the Fulbright Program (Grantee ID 15110620), the NASA Astrobiology Institute (Grant No. NNA09DA81A) and the National Science Foundation Frontiers in Earth-System Dynamics program (Grant No. 432129). The content of this article does not necessarily reflect the views of these organizations.

“Large sulfur isotope fractionations associated with Neoarchaean microbial sulfate reductions,” Iadviga Zhelezinskaia, Alan J. Kaufman, James Farquhar and John Cliff, was published Nov. 7, 2014 in Science. Download the abstract after 2 p.m. U.S. Eastern time, Nov. 6, 2014: http://www.sciencemag.org/lookup/doi/10.1126/science.1256211

James Farquhar home page

http://www.geol.umd.edu/directory.php?id=13

Alan J. Kaufman home page

http://www.geol.umd.edu/directory.php?id=15

Iadviga Zhelezinskaia home page

http://www.geol.umd.edu/directory.php?id=66

Media Relations Contact: Abby Robinson, 301-405-5845, abbyr@umd.edu

Writer: Heather Dewar

Synthetic biology for space exploration

Synthetic biology could be a key to manned space exploration of Mars. -  Photo courtesy of NASA
Synthetic biology could be a key to manned space exploration of Mars. – Photo courtesy of NASA

Does synthetic biology hold the key to manned space exploration of Mars and the Moon? Berkeley Lab researchers have used synthetic biology to produce an inexpensive and reliable microbial-based alternative to the world’s most effective anti-malaria drug, and to develop clean, green and sustainable alternatives to gasoline, diesel and jet fuels. In the future, synthetic biology could also be used to make manned space missions more practical.

“Not only does synthetic biology promise to make the travel to extraterrestrial locations more practical and bearable, it could also be transformative once explorers arrive at their destination,” says Adam Arkin, director of Berkeley Lab’s Physical Biosciences Division (PBD) and a leading authority on synthetic and systems biology.

“During flight, the ability to augment fuel and other energy needs, to provide small amounts of needed materials, plus renewable, nutritional and taste-engineered food, and drugs-on-demand can save costs and increase astronaut health and welfare,” Arkin says. “At an extraterrestrial base, synthetic biology could even make more effective use of the catalytic activities of diverse organisms.”

Arkin is the senior author of a paper in the Journal of the Royal Society Interface that reports on a techno-economic analysis demonstrating “the significant utility of deploying non-traditional biological techniques to harness available volatiles and waste resources on manned long-duration space missions.” The paper is titled “Towards Synthetic Biological Approaches to Resource Utilization on Space Missions.” The lead and corresponding author is Amor Menezes, a postdoctoral scholar in Arkin’s research group at the University of California (UC) Berkeley. Other co-authors are John Cumbers and John Hogan with the NASA Ames Research Center.

One of the biggest challenges to manned space missions is the expense. The NASA rule-of-thumb is that every unit mass of payload launched requires the support of an additional 99 units of mass, with “support” encompassing everything from fuel to oxygen to food and medicine for the astronauts, etc. Most of the current technologies now deployed or under development for providing this support are abiotic, meaning non-biological. Arkin, Menezes and their collaborators have shown that providing this support with technologies based on existing biological processes is a more than viable alternative.

“Because synthetic biology allows us to engineer biological processes to our advantage, we found in our analysis that technologies, when using common space metrics such as mass, power and volume, have the potential to provide substantial cost savings, especially in mass,” Menezes says.

In their study, the authors looked at four target areas: fuel generation, food production, biopolymer synthesis, and pharmaceutical manufacture. They showed that for a 916 day manned mission to Mars, the use of microbial biomanufacturing capabilities could reduce the mass of fuel manufacturing by 56-percent, the mass of food-shipments by 38-percent, and the shipped mass to 3D-print a habitat for six by a whopping 85-percent. In addition, microbes could also completely replenish expired or irradiated stocks of pharmaceuticals, which would provide independence from unmanned re-supply spacecraft that take up to 210 days to arrive.

“Space has always provided a wonderful test of whether technology can meet strict engineering standards for both effect and safety,” Arkin says. “NASA has worked decades to ensure that the specifications that new technologies must meet are rigorous and realistic, which allowed us to perform up-front techno-economic analysis.”

The big advantage biological manufacturing holds over abiotic manufacturing is the remarkable ability of natural and engineered microbes to transform very simple starting substrates, such as carbon dioxide, water biomass or minerals, into materials that astronauts on long-term missions will need. This capability should prove especially useful for future extraterrestrial settlements.

“The mineral and carbon composition of other celestial bodies is different from the bulk of Earth, but the earth is diverse with many extreme environments that have some relationship to those that might be found at possible bases on the Moon or Mars,” Arkin says. “Microbes could be used to greatly augment the materials available at a landing site, enable the biomanufacturing of food and pharmaceuticals, and possibly even modify and enrich local soils for agriculture in controlled environments.”

The authors acknowledge that much of their analysis is speculative and that their calculations show a number of significant challenges to making biomanufacturing a feasible augmentation and replacement for abiotic technologies. However, they argue that the investment to overcome these barriers offers dramatic potential payoff for future space programs.

“We’ve got a long way to go since experimental proof-of-concept work in synthetic biology for space applications is just beginning, but long-duration manned missions are also a ways off,” says Menezes. “Abiotic technologies were developed for many, many decades before they were successfully utilized in space, so of course biological technologies have some catching-up to do. However, this catching-up may not be that much, and in some cases, the biological technologies may already be superior to their abiotic counterparts.”

###

This research was supported by the National Aeronautics and Space Administration (NASA) and the University of California, Santa Cruz.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit http://www.lbl.gov.

The breathing sand

An Eddy Correlation Lander analyzes the strength of the oxygen fluxes at the bottom of the North Sea. -  Photo: ROV-Team, GEOMAR
An Eddy Correlation Lander analyzes the strength of the oxygen fluxes at the bottom of the North Sea. – Photo: ROV-Team, GEOMAR

A desert at the bottom of the sea? Although the waters of the North Sea exchange about every two to three years, there is evidence of decreasing oxygen content. If lower amounts of this gas are dissolved in seawater, organisms on and in the seabed produce less energy – with implications for larger creatures and the biogeochemical cycling in the marine ecosystem. Since nutrients, carbon and oxygen circulate very well and are processed quickly in the permeable, sandy sediments that make up two-thirds of the North Sea, measurements of metabolic rates are especially difficult here. Using the new Aquatic Eddy Correlation technique, scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel, Leibniz Institute of Freshwater Ecology and Inland Fisheries, the University of Southern Denmark, the University of Koblenz-Landau, the Scottish Marine Institute and Aarhus University were able to demonstrate how oxygen flows at the ground of the North Sea. Their methods and results are presented in the Journal of Geophysical Research: Oceans.

“The so-called ‘Eddy Correlation’ technique detects the flow of oxygen through these small turbulences over an area of several square meters. It considers both the mixing of sediments by organisms living in it and the hydrodynamics of the water above the rough sea floor”, Dr. Peter Linke, a marine biologist at GEOMAR, explains. “Previous methods overlooked only short periods or disregarded important parameters. Now we can create a more realistic picture.” The new method also takes into account the fact that even small objects such as shells or ripples shaped by wave action or currents are able to impact the oxygen exchange in permeable sediments.

On the expedition CE0913 with the Irish research vessel CELTIC EXPLORER, scientists used the underwater robot ROV KIEL 6000 to place three different instruments within the “Tommeliten” area belonging to Norway: Two “Eddy Correlation Landers” recorded the strength of oxygen fluxes over three tidal cycles. Information about the distribution of oxygen in the sediment was collected with a “Profiler Lander”, a seafloor observatory with oxygen sensors and flow meters. A “Benthic chamber” isolated 314 square centimetres of sediment and took samples from the overlying water over a period of 24 hours to determine the oxygen consumption of the sediment.

“The combination of traditional tools with the ‘Eddy Correlation’ technique has given us new insights into the dynamics of the exchange of substances between the sea water and the underlying sediment. A variety of factors determine the timing and amount of oxygen available. Currents that provide the sandy sediment with oxygen, but also the small-scale morphology of the seafloor, ensure that small benthic organisms are able to process carbon or other nutrients. The dependencies are so complex that they can be decrypted only by using special methods”, Dr. Linke summarizes. Therefore, detailed measurements in the water column and at the boundary to the seafloor as well as model calculations are absolutely necessary to understand basic functions and better estimate future changes in the cycle of materials. “With conventional methods, for example, we would never have been able to find that the loose sandy sediment stores oxygen brought in by the currents for periods of less water movement and less oxygen introduction.”

Original publication:
McGinnis, D. F., S. Sommer, A. Lorke, R. N. Glud, P. Linke (2014): Quantifying tidally driven benthic oxygen exchange across permeable sediments: An aquatic eddy correlation study. Journal of Geophysical Research: Oceans, doi:10.1002/2014JC010303.

Links:

GEOMAR Helmholtz Centre for Ocean Research Kiel

Eddy correlation information page

Leibniz Institute of Freshwater Ecology and Inland Fisheries, IGB

University of Southern Denmark

University of Koblenz-Landau

Scottish Marine Institute

Aarhus University

Images:
High resolution images can be downloaded at http://www.geomar.de/n2110-e.

Video footage is available on request.

Contact:
Dr. Peter Linke (GEOMAR FB2-MG), Tel. 0431 600-2115, plinke@geomar.de

Maike Nicolai (GEOMAR, Kommunikation & Medien), Tel. 0431 600-2807, mnicolai@geomar.de

Microfossils reveal warm oceans had less oxygen, geologists say

Assistant Professor of Earth Sciences Zunli Lu was among the researchers to release these findings. -  Syracuse University
Assistant Professor of Earth Sciences Zunli Lu was among the researchers to release these findings. – Syracuse University

Researchers in Syracuse University’s College of Arts and Sciences are pairing chemical analyses with micropaleontology—the study of tiny fossilized organisms—to better understand how global marine life was affected by a rapid warming event more than 55 million years ago.

Their findings are the subject of an article in the journal Paleoceanography (John Wiley & Sons, 2014).

“Global warming impacts marine life in complex ways, of which the loss of dissolved oxygen [a condition known as hypoxia] is a growing concern” says Zunli Lu, assistant professor of Earth sciences and a member of Syracuse’s Water Science and Engineering Initiative. “Moreover, it’s difficult to predict future deoxygenation that is induced by carbon emissions, without a good understanding of our geologic past.”

Lu says this type of deoxygenation leads to larger and thicker oxygen minimum zones (OMZs) in the world’s oceans. An OMZ is the layer of water in an ocean where oxygen saturation is at its lowest.

Much of Lu’s work revolves around the Paleocene-Eocene Thermal Maximum (PETM), a well-studied analogue for modern climate warming. Documenting the expansion of OMZs during the PETM is difficult because of the lack of a sensitive, widely applicable indicator of dissolved oxygen.

To address the problem, Lu and his colleagues have begun working with iodate, a type of iodine that exists only in oxygenated waters. By analyzing the iodine-to-calcium ratios in microfossils, they are able to estimate the oxygen levels of ambient seawater, where microorganisms once lived.

Fossil skeletons of a group of protists known as foraminiferas have long been used for paleo-environmental reconstructions. Developing an oxygenation proxy for foraminifera is important to Lu because it could enable him study the extent of OMZs “in 3-D,” since these popcorn-like organisms have been abundant in ancient and modern oceans.

“By comparing our fossil data with oxygen levels simulated in climate models, we think OMZs were much more prevalent 55 million years ago than they are today,” he says, adding that OMZs likely expanded during the PETM. “Deoxygenation, along with warming and acidification, had a dramatic effect on marine life during the PETM, prompting mass extinction on the seafloor.”

Lu thinks analytical facilities that combine climate modeling with micropaleontology will help scientists anticipate trends in ocean deoxygenation. Already, it’s been reported that modern-day OMZs, such as ones in the Eastern Pacific Ocean, are beginning to expand. “They’re natural laboratories for research,” he says, regarding the interactions between oceanic oxygen levels and climate changes.”

###

The article’s lead author is Xiaoli Zhou, a Ph.D. student of Lu’s in Syracuse’s Earth sciences department. Other coauthors are Ellen Thomas, a senior research scientist in geology and geophysics at Yale University; Ros Rickaby, professor of biogeochemistry at the University of Oxford (U.K.); and Arne Winguth, assistant professor of oceanography at The University of Texas at Arlington.

Housed in Syracuse’s College of Arts and Sciences, the Department of Earth Sciences offers graduate and undergraduate degree opportunities in environmental geology, wetland hydrogeology, crustal evolution, sedimentology, isotope geochemistry, paleobiology, paleolimnology, and global environmental change.

Snail shells show high-rise plateau is much lower than it used to be

This is the Zhada Basin on the southwest Tibetan Plateau, with the Himalayas to the south. -  Joel Saylor
This is the Zhada Basin on the southwest Tibetan Plateau, with the Himalayas to the south. – Joel Saylor

The Tibetan Plateau in south-central Asia, because of its size, elevation and impact on climate, is one of the world’s greatest geological oddities.

At about 960,000 square miles it covers slightly more land area than Alaska, Texas and California combined, and its elevation is on the same scale as Mount Rainier in the Cascade Range of Washington state. Because it rises so high into the atmosphere, it helps bring monsoons over India and other nations to the south while the plateau itself remains generally arid.

For decades, geologists have debated when and how the plateau reached such lofty heights, some 14,000 feet above sea level, about half the elevation of the highest Himalayan peaks just south of the plateau.

But new research led by a University of Washington scientist appears to confirm an earlier improbable finding – at least one large area in southwest Tibet, the plateau’s Zhada Basin, actually lost 3,000 to 5,000 feet of elevation sometime in the Pliocene epoch.

“This basin is really high right now but we think it was a kilometer or more higher just 3 million to 4 million years ago,” said Katharine Huntington, a UW associate professor of Earth and space sciences and the lead author of a paper describing the research.

Co-authors are Joel Saylor of the University of Houston and Jay Quade and Adam Hudson, both of the University of Arizona. The paper was published online in August and will appear in a future print edition of the Geological Society of America Bulletin.

The Zhada Basin has rugged terrain, with exposed deposits of ancient lake and river sediments that make fossil shells of gastropods such as snails easily accessible, and determining their age is relatively straightforward. The researchers studied shells dating from millions of years ago and from a variety of aquatic environments. They also collected modern shell and water samples from a variety of environments for comparison.

The work confirms results of a previous study involving Saylor and Quade that examined the ratio of heavy isotope oxygen-18 to light isotope oxygen-16 in ancient snail shells from the Zhada Basin. They found the ratios were very low, which suggested the basin had a higher elevation in the past.

Oxygen-18 levels decrease in precipitation at higher elevations in comparison with oxygen-16, so shells formed in lakes and rivers that collect precipitation at higher elevations should have a lower heavy-to-light oxygen ratio. However, those lower ratios depend on a number of other factors, including temperature, evaporation and precipitation source, which made it difficult to say with certainty whether the low ratios found in the ancient snail shells meant a loss of elevation in the Zhada Basin.

So the scientists also employed a technique called clumped isotope thermometry, which Huntington has used and worked to refine for several years, to determine the temperature of shell growth and get an independent estimate of elevation change in the basin.

Bonding, or “clumping” together, of heavy carbon-13 and oxygen-18 isotopes in the carbonate of snail shells happens more readily at colder temperatures, and is measured using a tool called a mass spectrometer that provides data on the temperature of the lake or river water in which the snails lived.

The scientists found markedly greater “clumping,” as well as lower ratios of oxygen-18 to oxygen-16 in the ancient shells, indicating the shells formed at temperatures as much as 11 degrees Celsius (20 F) colder than average temperatures today, the equivalent of as much as 5,000 feet of elevation loss.

Just why the elevation decline happened is open to speculation. One possibility is that as faults in the region spread, the Zhada Basin lowered, Huntington said. It is unknown yet whether other parts of the southern plateau also lowered at the same time, but if elevation loss was widespread it could be because of broader fault spreading. It also is possible the crust thickened and forced large rock formations even deeper into the Earth, where they heated until they reached a consistency at which they could ooze out from beneath the crust, like toothpaste squeezed from the tube.

She noted that climate records from deep-sea fossils indicate Earth was significantly warmer when the cold Zhada Basin snail shells were formed.

“Our findings are a conservative estimate,” Huntington said. “No one can say this result is due to a colder climate, because if anything it should have been warmer.”

Asian monsoon much older than previously thought

University of Arizona geoscientist Alexis Licht (bottom left) and his colleagues from the French-Burmese Paleontological Team led by Jean-Jacques Jaeger of the University of Poitiers, France (center with hiking staff) used fossils they collected in Myanmar to figure out that the Asian monsoon started at least 40 million years ago. -  French-Burmese Paleontological Team 2012
University of Arizona geoscientist Alexis Licht (bottom left) and his colleagues from the French-Burmese Paleontological Team led by Jean-Jacques Jaeger of the University of Poitiers, France (center with hiking staff) used fossils they collected in Myanmar to figure out that the Asian monsoon started at least 40 million years ago. – French-Burmese Paleontological Team 2012

The Asian monsoon already existed 40 million years ago during a period of high atmospheric carbon dioxide and warmer temperatures, reports an international research team led by a University of Arizona geoscientist.

Scientists thought the climate pattern known as the Asian monsoon began 22-25 million years ago as a result of the uplift of the Tibetan Plateau and the Himalaya Mountains.

“It is surprising,” said lead author Alexis Licht, now a research associate in the UA department of geosciences. “People thought the monsoon started much later.”

The monsoon, the largest climate system in the world, governs the climate in much of mainland Asia, bringing torrential summer rains and dry winters.

Co-author Jay Quade, a UA professor of geosciences, said, “This research compellingly shows that a strong Asian monsoon system was in place at least by 35-40 million years ago.”

The research by Licht and his colleagues shows the earlier start of the monsoon occurred at a time when atmospheric CO2 was three to four times greater than it is now. The monsoon then weakened 34 million years ago when atmospheric CO2 then decreased by 50 percent and an ice age occurred.

Licht said the study is the first to show the rise of the monsoon is as much a result of global climate as it is a result of topography. The team’s paper is scheduled for early online publication in the journal Nature on Sept. 14.

“This finding has major consequences for the ongoing global warming,” he said. “It suggests increasing the atmospheric CO2 will increase the monsoonal precipitation significantly.”

Unraveling the monsoon’s origins required contributions from three different teams of scientists that were independently studying the environment of 40 million years ago.

All three investigations showed the monsoon climate pattern occurred 15 million years earlier than previously thought. Combining different lines of evidence from different places strengthened the group’s confidence in the finding, Licht said. The climate modeling team also linked the development of the monsoon to the increased CO2 of the time.

Licht and his colleagues at Poitiers and Nancy universities in France examined snail and mammal fossils in Myanmar. The group led by G. Dupont-Nivet and colleagues at Utrecht University in the Netherlands studied lake deposits in Xining Basin in central China. J.-B. Ladant and Y. Donnadieu of the Laboratory of Sciences of the Climate and Environment (LSCE) in Gif-sur-Yvette, France, created climate simulations of the Asian climate 40 million years ago.

A complete list of authors of the group’s publication, “Asian monsoons in a late Eocene greenhouse world,” is at the bottom of this release, as is a list of funding sources.

Licht didn’t set out to study the origin of the monsoon.

He chose his study site in Myanmar because the area was rich in mammal fossils, including some of the earliest ancestors of modern monkeys and apes. The research, part of his doctoral work at the University of Poitiers, focused on understanding the environments those early primates inhabited. Scientists thought those primates had a habitat like the current evergreen tropical rain forests of Borneo, which do not have pronounced differences between wet and dry seasons.

To learn about the past environment, Licht analyzed 40-million-year-old freshwater snail shells and teeth of mammals to see what types of oxygen they contained. The ratio of two different forms of oxygen, oxygen-18 and oxygen-16, shows whether the animal lived in a relatively wet climate or an arid one.

“One of the goals of the study was to document the pre-monsoonal conditions, but what we found were monsoonal conditions,” he said.

To his surprise, the oxygen ratios told an unexpected story: The region had a seasonal pattern very much like the current monsoon – dry winters and very rainy summers.

“The early primates of Myanmar lived under intense seasonal stress – aridity and then monsoons,” he said. “That was completely unexpected.”

The team of researchers working in China found another line of evidence pointing to the existence of the monsoon about 40 million years ago. The monsoon climate pattern generates winter winds that blow dust from central Asia and deposits it in thick piles in China. The researchers found deposits of such dust dating back 41 million years ago, indicating the monsoon had occurred that long ago.

The third team’s climate simulations indicated strong Asian monsoons 40 million years ago. The simulations showed the level of atmospheric CO2 was connected to the strength of the monsoon, which was stronger 40 million years ago when CO2 levels were higher and weakened 34 million years ago when CO2 levels dropped.

Licht’s next step is to investigate how geologically short-term increases of atmospheric CO2 known as hyperthermals affected the monsoon’s behavior 40 million years ago.

“The response of the monsoon to those hyperthermals could provide interesting analogs to the ongoing global warming,” he said.