Study hints that ancient Earth made its own water — geologically

A new study is helping to answer a longstanding question that has recently moved to the forefront of earth science: Did our planet make its own water through geologic processes, or did water come to us via icy comets from the far reaches of the solar system?

The answer is likely “both,” according to researchers at The Ohio State University– and the same amount of water that currently fills the Pacific Ocean could be buried deep inside the planet right now.

At the American Geophysical Union (AGU) meeting on Wednesday, Dec. 17, they report the discovery of a previously unknown geochemical pathway by which the Earth can sequester water in its interior for billions of years and still release small amounts to the surface via plate tectonics, feeding our oceans from within.

In trying to understand the formation of the early Earth, some researchers have suggested that the planet was dry and inhospitable to life until icy comets pelted the earth and deposited water on the surface.

Wendy Panero, associate professor of earth sciences at Ohio State, and doctoral student Jeff Pigott are pursuing a different hypothesis: that Earth was formed with entire oceans of water in its interior, and has been continuously supplying water to the surface via plate tectonics ever since.

Researchers have long accepted that the mantle contains some water, but how much water is a mystery. And, if some geological mechanism has been supplying water to the surface all this time, wouldn’t the mantle have run out of water by now?

Because there’s no way to directly study deep mantle rocks, Panero and Pigott are probing the question with high-pressure physics experiments and computer calculations.

“When we look into the origins of water on Earth, what we’re really asking is, why are we so different than all the other planets?” Panero said. “In this solar system, Earth is unique because we have liquid water on the surface. We’re also the only planet with active plate tectonics. Maybe this water in the mantle is key to plate tectonics, and that’s part of what makes Earth habitable.”

Central to the study is the idea that rocks that appear dry to the human eye can actually contain water–in the form of hydrogen atoms trapped inside natural voids and crystal defects. Oxygen is plentiful in minerals, so when a mineral contains some hydrogen, certain chemical reactions can free the hydrogen to bond with the oxygen and make water.

Stray atoms of hydrogen could make up only a tiny fraction of mantle rock, the researchers explained. Given that the mantle is more than 80 percent of the planet’s total volume, however, those stray atoms add up to a lot of potential water.

In a lab at Ohio State, the researchers compress different minerals that are common to the mantle and subject them to high pressures and temperatures using a diamond anvil cell–a device that squeezes a tiny sample of material between two diamonds and heats it with a laser–to simulate conditions in the deep Earth. They examine how the minerals’ crystal structures change as they are compressed, and use that information to gauge the minerals’ relative capacities for storing hydrogen. Then, they extend their experimental results using computer calculations to uncover the geochemical processes that would enable these minerals to rise through the mantle to the surface–a necessary condition for water to escape into the oceans.

In a paper now submitted to a peer-reviewed academic journal, they reported their recent tests of the mineral bridgmanite, a high-pressure form of olivine. While bridgmanite is the most abundant mineral in the lower mantle, they found that it contains too little hydrogen to play an important role in Earth’s water supply.

Another research group recently found that ringwoodite, another form of olivine, does contain enough hydrogen to make it a good candidate for deep-earth water storage. So Panero and Pigott focused their study on the depth where ringwoodite is found–a place 325-500 miles below the surface that researchers call the “transition zone”–as the most likely region that can hold a planet’s worth of water. From there, the same convection of mantle rock that produces plate tectonics could carry the water to the surface.

One problem: If all the water in ringwoodite is continually drained to the surface via plate tectonics, how could the planet hold any in reserve?

For the research presented at AGU, Panero and Pigott performed new computer calculations of the geochemistry in the lowest portion of the mantle, some 500 miles deep and more. There, another mineral, garnet, emerged as a likely water-carrier–a go-between that could deliver some of the water from ringwoodite down into the otherwise dry lower mantle.

If this scenario is accurate, the Earth may today hold half as much water in its depths as is currently flowing in oceans on the surface, Panero said–an amount that would approximately equal the volume of the Pacific Ocean. This water is continuously cycled through the transition zone as a result of plate tectonics.

“One way to look at this research is that we’re putting constraints on the amount of water that could be down there,” Pigott added.

Panero called the complex relationship between plate tectonics and surface water “one of the great mysteries in the geosciences.” But this new study supports researchers’ growing suspicion that mantle convection somehow regulates the amount of water in the oceans. It also vastly expands the timeline for Earth’s water cycle.

“If all of the Earth’s water is on the surface, that gives us one interpretation of the water cycle, where we can think of water cycling from oceans into the atmosphere and into the groundwater over millions of years,” she said. “But if mantle circulation is also part of the water cycle, the total cycle time for our planet’s water has to be billions of years.”

Study hints that ancient Earth made its own water — geologically

A new study is helping to answer a longstanding question that has recently moved to the forefront of earth science: Did our planet make its own water through geologic processes, or did water come to us via icy comets from the far reaches of the solar system?

The answer is likely “both,” according to researchers at The Ohio State University– and the same amount of water that currently fills the Pacific Ocean could be buried deep inside the planet right now.

At the American Geophysical Union (AGU) meeting on Wednesday, Dec. 17, they report the discovery of a previously unknown geochemical pathway by which the Earth can sequester water in its interior for billions of years and still release small amounts to the surface via plate tectonics, feeding our oceans from within.

In trying to understand the formation of the early Earth, some researchers have suggested that the planet was dry and inhospitable to life until icy comets pelted the earth and deposited water on the surface.

Wendy Panero, associate professor of earth sciences at Ohio State, and doctoral student Jeff Pigott are pursuing a different hypothesis: that Earth was formed with entire oceans of water in its interior, and has been continuously supplying water to the surface via plate tectonics ever since.

Researchers have long accepted that the mantle contains some water, but how much water is a mystery. And, if some geological mechanism has been supplying water to the surface all this time, wouldn’t the mantle have run out of water by now?

Because there’s no way to directly study deep mantle rocks, Panero and Pigott are probing the question with high-pressure physics experiments and computer calculations.

“When we look into the origins of water on Earth, what we’re really asking is, why are we so different than all the other planets?” Panero said. “In this solar system, Earth is unique because we have liquid water on the surface. We’re also the only planet with active plate tectonics. Maybe this water in the mantle is key to plate tectonics, and that’s part of what makes Earth habitable.”

Central to the study is the idea that rocks that appear dry to the human eye can actually contain water–in the form of hydrogen atoms trapped inside natural voids and crystal defects. Oxygen is plentiful in minerals, so when a mineral contains some hydrogen, certain chemical reactions can free the hydrogen to bond with the oxygen and make water.

Stray atoms of hydrogen could make up only a tiny fraction of mantle rock, the researchers explained. Given that the mantle is more than 80 percent of the planet’s total volume, however, those stray atoms add up to a lot of potential water.

In a lab at Ohio State, the researchers compress different minerals that are common to the mantle and subject them to high pressures and temperatures using a diamond anvil cell–a device that squeezes a tiny sample of material between two diamonds and heats it with a laser–to simulate conditions in the deep Earth. They examine how the minerals’ crystal structures change as they are compressed, and use that information to gauge the minerals’ relative capacities for storing hydrogen. Then, they extend their experimental results using computer calculations to uncover the geochemical processes that would enable these minerals to rise through the mantle to the surface–a necessary condition for water to escape into the oceans.

In a paper now submitted to a peer-reviewed academic journal, they reported their recent tests of the mineral bridgmanite, a high-pressure form of olivine. While bridgmanite is the most abundant mineral in the lower mantle, they found that it contains too little hydrogen to play an important role in Earth’s water supply.

Another research group recently found that ringwoodite, another form of olivine, does contain enough hydrogen to make it a good candidate for deep-earth water storage. So Panero and Pigott focused their study on the depth where ringwoodite is found–a place 325-500 miles below the surface that researchers call the “transition zone”–as the most likely region that can hold a planet’s worth of water. From there, the same convection of mantle rock that produces plate tectonics could carry the water to the surface.

One problem: If all the water in ringwoodite is continually drained to the surface via plate tectonics, how could the planet hold any in reserve?

For the research presented at AGU, Panero and Pigott performed new computer calculations of the geochemistry in the lowest portion of the mantle, some 500 miles deep and more. There, another mineral, garnet, emerged as a likely water-carrier–a go-between that could deliver some of the water from ringwoodite down into the otherwise dry lower mantle.

If this scenario is accurate, the Earth may today hold half as much water in its depths as is currently flowing in oceans on the surface, Panero said–an amount that would approximately equal the volume of the Pacific Ocean. This water is continuously cycled through the transition zone as a result of plate tectonics.

“One way to look at this research is that we’re putting constraints on the amount of water that could be down there,” Pigott added.

Panero called the complex relationship between plate tectonics and surface water “one of the great mysteries in the geosciences.” But this new study supports researchers’ growing suspicion that mantle convection somehow regulates the amount of water in the oceans. It also vastly expands the timeline for Earth’s water cycle.

“If all of the Earth’s water is on the surface, that gives us one interpretation of the water cycle, where we can think of water cycling from oceans into the atmosphere and into the groundwater over millions of years,” she said. “But if mantle circulation is also part of the water cycle, the total cycle time for our planet’s water has to be billions of years.”

Glacier beds can get slipperier at higher sliding speeds

Neal Iverson developed the Iowa State University Sliding Simulator to test how glaciers slide over their beds. -  Bob Elbert/Iowa State University
Neal Iverson developed the Iowa State University Sliding Simulator to test how glaciers slide over their beds. – Bob Elbert/Iowa State University

As a glacier’s sliding speed increases, the bed beneath the glacier can grow slipperier, according to laboratory experiments conducted by Iowa State University glaciologists.

They say including this effect in efforts to calculate future increases in glacier speeds could improve predictions of ice volume lost to the oceans and the rate of sea-level rise.

The glaciologists – Lucas Zoet, a postdoctoral research associate, and Neal Iverson, a professor of geological and atmospheric sciences – describe the results of their experiments in the Journal of Glaciology. The paper uses data collected from a newly constructed laboratory tool, the Iowa State University Sliding Simulator, to investigate glacier sliding. The device was used to explore the relationship between drag and sliding speed for comparison with the predictions of theoretical models.

“We really have a unique opportunity to study the base of glaciers with these experiments,” said Zoet, the lead author of the paper. “The other tactic you might take is studying these relationships with field observations, but with field data so many different processes are mixed together that it becomes hard to untangle the relevant data from the noise.”

Data collected by the researchers show that resistance to glacier sliding – the drag that the bed exerts on the ice – can decrease in response to increasing sliding speed. This decrease in drag with increasing speed, although predicted by some theoreticians a long as 45 years ago, is the opposite of what is usually assumed in mathematical models of the flow of ice sheets.

These are the first empirical results demonstrating that as ice slides at an increasing speed – perhaps in response to changing weather or climate – the bed can become slipperier, which could promote still faster glacier flow.

The response of glaciers to changing climate is one of the largest potential contributors to sea-level rise. Predicting glacier response to climate change depends on properly characterizing the way a glacier slides over its bed. There has been a half-century debate among theoreticians as to how to do that.

The simulator features a ring of ice about 8 inches thick and about 3 feet across that is rotated over a model glacier bed. Below the ice is a hydraulic press that can simulate the weight of a glacier several hundred yards thick. Above are motors that can rotate the ice ring over the bed at either a constant speed or a constant stress. A circulating, temperature-regulated fluid keeps the ice at its melting temperature – a necessary condition for significant sliding.

“About six years were required to design, construct, and work the bugs out of the new apparatus,” Iverson said, “but it is performing well now and allowing hypothesis tests that were formerly not possible.”

Glacier beds can get slipperier at higher sliding speeds

Neal Iverson developed the Iowa State University Sliding Simulator to test how glaciers slide over their beds. -  Bob Elbert/Iowa State University
Neal Iverson developed the Iowa State University Sliding Simulator to test how glaciers slide over their beds. – Bob Elbert/Iowa State University

As a glacier’s sliding speed increases, the bed beneath the glacier can grow slipperier, according to laboratory experiments conducted by Iowa State University glaciologists.

They say including this effect in efforts to calculate future increases in glacier speeds could improve predictions of ice volume lost to the oceans and the rate of sea-level rise.

The glaciologists – Lucas Zoet, a postdoctoral research associate, and Neal Iverson, a professor of geological and atmospheric sciences – describe the results of their experiments in the Journal of Glaciology. The paper uses data collected from a newly constructed laboratory tool, the Iowa State University Sliding Simulator, to investigate glacier sliding. The device was used to explore the relationship between drag and sliding speed for comparison with the predictions of theoretical models.

“We really have a unique opportunity to study the base of glaciers with these experiments,” said Zoet, the lead author of the paper. “The other tactic you might take is studying these relationships with field observations, but with field data so many different processes are mixed together that it becomes hard to untangle the relevant data from the noise.”

Data collected by the researchers show that resistance to glacier sliding – the drag that the bed exerts on the ice – can decrease in response to increasing sliding speed. This decrease in drag with increasing speed, although predicted by some theoreticians a long as 45 years ago, is the opposite of what is usually assumed in mathematical models of the flow of ice sheets.

These are the first empirical results demonstrating that as ice slides at an increasing speed – perhaps in response to changing weather or climate – the bed can become slipperier, which could promote still faster glacier flow.

The response of glaciers to changing climate is one of the largest potential contributors to sea-level rise. Predicting glacier response to climate change depends on properly characterizing the way a glacier slides over its bed. There has been a half-century debate among theoreticians as to how to do that.

The simulator features a ring of ice about 8 inches thick and about 3 feet across that is rotated over a model glacier bed. Below the ice is a hydraulic press that can simulate the weight of a glacier several hundred yards thick. Above are motors that can rotate the ice ring over the bed at either a constant speed or a constant stress. A circulating, temperature-regulated fluid keeps the ice at its melting temperature – a necessary condition for significant sliding.

“About six years were required to design, construct, and work the bugs out of the new apparatus,” Iverson said, “but it is performing well now and allowing hypothesis tests that were formerly not possible.”

North Atlantic signalled Ice Age thaw 1,000 years before it happened, reveals new research

The Atlantic Ocean at mid-depths may have given out early warning signals – 1,000 years in advance – that the last Ice Age was going to end, scientists report today in the journal Paleoceanography.

Scientists had previously known that at the end of the last Ice Age, around 14,700 years ago, major changes occurred to the Atlantic Ocean in a period known as the Bolling-Allerod interval. During this period, as glaciers melted and the Earth warmed, the currents of the Atlantic Ocean at its deepest levels changed direction.

The researchers have analysed the chemistry of 24 ancient coral fossils from the North Atlantic Ocean to learn more about the circulation of its waters during the last Ice Age. They found that the corals recorded a high variability in the currents of the Atlantic Ocean at mid-depths, around 2km below the surface, up to 1,000 years prior to the Bolling-Allerod interval. The team suggests that these changes may have been an early warning signal that the world was poised to switch from its glacial state to the warmer world we know today, and that the changes happened first at mid-depths.

The study was carried out by researchers from Imperial College London in conjunction with academics from the Scottish Marine Institute, the University of Bristol and Caltech Division of Geology and Planetary Sciences.

Dr David Wilson, from the Department of Earth Science and Engineering at Imperial College London, said: “The world’s oceans have always been an important barometer when it comes to changes in our planet. Excitingly, the coral fossils we’ve studied are showing us that the North Atlantic Ocean at mid-depths was undergoing changes up to 1,000 years earlier than we had expected. The tantalising prospect is that this high variability may have been a signal that the last Ice Age was about to end.”

The fossil corals analysed by the team come from a species called Desmophyllum dianthus, which are often around 5cm in diameter and look like budding flowers. They typically only live for 100 years, giving the team a rare insight into what was happening to the ocean’s currents during this relatively brief time. Thousands of years ago they grew on the New England Seamounts, which are a chain of undersea mountains approximately 1000km off the east coast of the US, located at mid-depths 2km beneath the surface. This underwater area is important for understanding the North Atlantic’s currents.

While some of the corals analysed by the team come from historical collections, most have been collected by researchers from previous expeditions in 2003 and 2005 to the New England Seamounts. The researchers used deep sea robotic submergence vehicles called Hercules and Alvin to collect the ancient coral fossils.

These ancient coral fossils accumulated rare earth elements from seawater, including neodymium, which leached from rocks on land into the Atlantic Ocean and circulated in its currents, eventually ending up in the coral skeletons. Neodymium isotopes in different regions of the world have specific signatures, created by radioactive decay over billions of years. The scientists studied the chemistry of the coral fossils to determine where the neodymium isotopes had come from, giving them a glimpse into the circulation of the Atlantic Ocean at the end of the Ice Age.

Since the world’s oceans are connected by currents, the next step will see the team integrating the evidence they gathered from the North Atlantic Ocean into a picture of global changes in the mid-depths of oceans around the world. In particular, the team is interested in exploring how the Southern Ocean around Antarctica changed around the same time by analysing neodymium isotopes in a collection of Southern Ocean corals.

North Atlantic signalled Ice Age thaw 1,000 years before it happened, reveals new research

The Atlantic Ocean at mid-depths may have given out early warning signals – 1,000 years in advance – that the last Ice Age was going to end, scientists report today in the journal Paleoceanography.

Scientists had previously known that at the end of the last Ice Age, around 14,700 years ago, major changes occurred to the Atlantic Ocean in a period known as the Bolling-Allerod interval. During this period, as glaciers melted and the Earth warmed, the currents of the Atlantic Ocean at its deepest levels changed direction.

The researchers have analysed the chemistry of 24 ancient coral fossils from the North Atlantic Ocean to learn more about the circulation of its waters during the last Ice Age. They found that the corals recorded a high variability in the currents of the Atlantic Ocean at mid-depths, around 2km below the surface, up to 1,000 years prior to the Bolling-Allerod interval. The team suggests that these changes may have been an early warning signal that the world was poised to switch from its glacial state to the warmer world we know today, and that the changes happened first at mid-depths.

The study was carried out by researchers from Imperial College London in conjunction with academics from the Scottish Marine Institute, the University of Bristol and Caltech Division of Geology and Planetary Sciences.

Dr David Wilson, from the Department of Earth Science and Engineering at Imperial College London, said: “The world’s oceans have always been an important barometer when it comes to changes in our planet. Excitingly, the coral fossils we’ve studied are showing us that the North Atlantic Ocean at mid-depths was undergoing changes up to 1,000 years earlier than we had expected. The tantalising prospect is that this high variability may have been a signal that the last Ice Age was about to end.”

The fossil corals analysed by the team come from a species called Desmophyllum dianthus, which are often around 5cm in diameter and look like budding flowers. They typically only live for 100 years, giving the team a rare insight into what was happening to the ocean’s currents during this relatively brief time. Thousands of years ago they grew on the New England Seamounts, which are a chain of undersea mountains approximately 1000km off the east coast of the US, located at mid-depths 2km beneath the surface. This underwater area is important for understanding the North Atlantic’s currents.

While some of the corals analysed by the team come from historical collections, most have been collected by researchers from previous expeditions in 2003 and 2005 to the New England Seamounts. The researchers used deep sea robotic submergence vehicles called Hercules and Alvin to collect the ancient coral fossils.

These ancient coral fossils accumulated rare earth elements from seawater, including neodymium, which leached from rocks on land into the Atlantic Ocean and circulated in its currents, eventually ending up in the coral skeletons. Neodymium isotopes in different regions of the world have specific signatures, created by radioactive decay over billions of years. The scientists studied the chemistry of the coral fossils to determine where the neodymium isotopes had come from, giving them a glimpse into the circulation of the Atlantic Ocean at the end of the Ice Age.

Since the world’s oceans are connected by currents, the next step will see the team integrating the evidence they gathered from the North Atlantic Ocean into a picture of global changes in the mid-depths of oceans around the world. In particular, the team is interested in exploring how the Southern Ocean around Antarctica changed around the same time by analysing neodymium isotopes in a collection of Southern Ocean corals.

Massive study provides first detailed look at how Greenland’s ice is vanishing

The surface of the Greenland Ice Sheet. A new study uses NASA data to provide the first detailed reconstruction of how the ice sheet and its many glaciers are changing. The research was led by University at Buffalo geologist Beata Csatho. -  Beata Csatho
The surface of the Greenland Ice Sheet. A new study uses NASA data to provide the first detailed reconstruction of how the ice sheet and its many glaciers are changing. The research was led by University at Buffalo geologist Beata Csatho. – Beata Csatho

The Greenland Ice Sheet is the second-largest body of ice on Earth. It covers an area about five times the size of New York State and Kansas combined, and if it melts completely, oceans could rise by 20 feet. Coastal communities from Florida to Bangladesh would suffer extensive damage.

Now, a new study is revealing just how little we understand this northern behemoth.

Led by geophysicist Beata Csatho, PhD, an associate professor of geology at the University at Buffalo, the research provides what the authors think is the first comprehensive picture of how Greenland’s ice is vanishing. It suggests that current ice sheet modeling studies are too simplistic to accurately predict the future contributions of the entire Greenland Ice Sheet to sea level rise, and that Greenland may lose ice more rapidly in the near future than previously thought.

“The great importance of our data is that for the first time, we have a comprehensive picture of how all of Greenland’s glaciers have changed over the past decade,” Csatho says.

“This information is crucial for developing and validating numerical models that predict how the ice sheet may change and contribute to global sea level over the next few hundred years,” says Cornelis J. van der Veen, PhD, professor in the Department of Geography at the University of Kansas, who played a key role in interpreting glaciological changes.

The project was a massive undertaking, using satellite and aerial data from NASA’s ICESat spacecraft and Operation IceBridge field campaign to reconstruct how the height of the Greenland Ice Sheet changed at nearly 100,000 locations from 1993 to 2012.

Ice loss takes place in a complex manner, with the ice sheet both melting and calving ice into the ocean.
The study had two major findings:

  • First, the scientists were able to provide new estimates of annual ice loss at high spatial resolution (see below).

  • Second, the research revealed that current models fail to accurately capture how the entire Greenland Ice Sheet is changing and contributing to rising oceans.

The second point is crucial to climate change modelers.

Today’s simulations use the activity of four well-studied glaciers — Jakobshavn, Helheim, Kangerlussuaq and Petermann — to forecast how the entire ice sheet will dump ice into the oceans.

But the new research shows that activity at these four locations may not be representative of what is happening with glaciers across the ice sheet. In fact, glaciers undergo patterns of thinning and thickening that current climate change simulations fail to address, Csatho says.

“There are 242 outlet glaciers wider than 1.5 km on the Greenland Ice Sheet, and what we see is that their behavior is complex in space and time,” Csatho says. “The local climate and geological conditions, the local hydrology — all of these factors have an effect. The current models do not address this complexity.”

The team identified areas of rapid shrinkage in southeast Greenland that today’s models don’t acknowledge. This leads Csatho to believe that the ice sheet could lose ice faster in the future than today’s simulations would suggest.

The results will be published on Dec. 15 in the Proceedings of the National Academy of Sciences, and the study and all information in this press release are embargoed until 3 p.m. Eastern Time that day.

Photos, data visualizations and video are available by contacting Charlotte Hsu at the University at Buffalo at chsu22@buffalo.edu.

How much ice is the Greenland Ice Sheet losing?

To analyze how the height of the ice sheet was changing, Csatho and UB research professor and photogrammetrist Anton Schenk, PhD, developed a computational technique called Surface Elevation Reconstruction And Change detection to fuse together data from NASA satellite and aerial missions.

The analysis found that the Greenland Ice Sheet lost about 243 metric gigatons of ice annually — equivalent to about 277 cubic kilometers of ice per year — from 2003-09, the period for which the team had the most comprehensive data. This loss is estimated to have added about 0.68 millimeters of water to the oceans annually.

The figures are averages, and ice loss varied from year to year, and from region to region.

Why are today’s projections of sea level rise flawed, and how can we fix them?

Glaciers don’t just gradually lose mass when the temperature rises. That’s one reason it’s difficult to predict their response to global warming.

In the study, scientists found that some of Greenland’s glaciers thickened even when the temperature rose. Others exhibited accelerated thinning. Some displayed both thinning and thickening, with sudden reversals.

As a step toward building better models of sea level rise, the research team divided Greenland’s 242 glaciers into 7 major groups based on their behavior from 2003-09.

“Understanding the groupings will help us pick out examples of glaciers that are representative of the whole,” Csatho says. “We can then use data from these representative glaciers in models to provide a more complete picture of what is happening.”

In a new project, she and colleagues are investigating why different glaciers respond differently to warming. Factors could include the temperature of the surrounding ocean; the level of friction between a glacier and the bedrock below; the amount of water under a glacier; and the geometry of the fjord.

“The physics of these processes are not well understood,” Csatho says.

The NASA missions: A colossal undertaking

The study combined data from various NASA missions, including:

  • NASA’s Ice, Cloud and Land Elevation Satellite (ICESat), which measured the ice sheet’s elevation multiple times a year at each of the nearly 100,000 locations from 2003-09.

  • NASA’s, massive aerial survey that employs highly specialized research aircrafts to collect data at less frequent intervals than ICESat. These missions began measuring the Greenland Ice Sheet’s elevation in 1993. Operation IceBridge was started in 2009 to bridge the time between ICESat-1 and ICESat-2, and will continue until at least 2017, when NASA’s next generation ICESat-2 satellite is expected to come online.

Csatho says the new study shows why careful monitoring is critical: Given the complex nature of glacier behavior, good data is crucial to building better models.

Collaborators

Besides Csatho, Schenk and van der Veen, the project included additional researchers from the University at Buffalo, Utrecht University in The Netherlands, the Technical University of Denmark and Florida Atlantic University.

Massive study provides first detailed look at how Greenland’s ice is vanishing

The surface of the Greenland Ice Sheet. A new study uses NASA data to provide the first detailed reconstruction of how the ice sheet and its many glaciers are changing. The research was led by University at Buffalo geologist Beata Csatho. -  Beata Csatho
The surface of the Greenland Ice Sheet. A new study uses NASA data to provide the first detailed reconstruction of how the ice sheet and its many glaciers are changing. The research was led by University at Buffalo geologist Beata Csatho. – Beata Csatho

The Greenland Ice Sheet is the second-largest body of ice on Earth. It covers an area about five times the size of New York State and Kansas combined, and if it melts completely, oceans could rise by 20 feet. Coastal communities from Florida to Bangladesh would suffer extensive damage.

Now, a new study is revealing just how little we understand this northern behemoth.

Led by geophysicist Beata Csatho, PhD, an associate professor of geology at the University at Buffalo, the research provides what the authors think is the first comprehensive picture of how Greenland’s ice is vanishing. It suggests that current ice sheet modeling studies are too simplistic to accurately predict the future contributions of the entire Greenland Ice Sheet to sea level rise, and that Greenland may lose ice more rapidly in the near future than previously thought.

“The great importance of our data is that for the first time, we have a comprehensive picture of how all of Greenland’s glaciers have changed over the past decade,” Csatho says.

“This information is crucial for developing and validating numerical models that predict how the ice sheet may change and contribute to global sea level over the next few hundred years,” says Cornelis J. van der Veen, PhD, professor in the Department of Geography at the University of Kansas, who played a key role in interpreting glaciological changes.

The project was a massive undertaking, using satellite and aerial data from NASA’s ICESat spacecraft and Operation IceBridge field campaign to reconstruct how the height of the Greenland Ice Sheet changed at nearly 100,000 locations from 1993 to 2012.

Ice loss takes place in a complex manner, with the ice sheet both melting and calving ice into the ocean.
The study had two major findings:

  • First, the scientists were able to provide new estimates of annual ice loss at high spatial resolution (see below).

  • Second, the research revealed that current models fail to accurately capture how the entire Greenland Ice Sheet is changing and contributing to rising oceans.

The second point is crucial to climate change modelers.

Today’s simulations use the activity of four well-studied glaciers — Jakobshavn, Helheim, Kangerlussuaq and Petermann — to forecast how the entire ice sheet will dump ice into the oceans.

But the new research shows that activity at these four locations may not be representative of what is happening with glaciers across the ice sheet. In fact, glaciers undergo patterns of thinning and thickening that current climate change simulations fail to address, Csatho says.

“There are 242 outlet glaciers wider than 1.5 km on the Greenland Ice Sheet, and what we see is that their behavior is complex in space and time,” Csatho says. “The local climate and geological conditions, the local hydrology — all of these factors have an effect. The current models do not address this complexity.”

The team identified areas of rapid shrinkage in southeast Greenland that today’s models don’t acknowledge. This leads Csatho to believe that the ice sheet could lose ice faster in the future than today’s simulations would suggest.

The results will be published on Dec. 15 in the Proceedings of the National Academy of Sciences, and the study and all information in this press release are embargoed until 3 p.m. Eastern Time that day.

Photos, data visualizations and video are available by contacting Charlotte Hsu at the University at Buffalo at chsu22@buffalo.edu.

How much ice is the Greenland Ice Sheet losing?

To analyze how the height of the ice sheet was changing, Csatho and UB research professor and photogrammetrist Anton Schenk, PhD, developed a computational technique called Surface Elevation Reconstruction And Change detection to fuse together data from NASA satellite and aerial missions.

The analysis found that the Greenland Ice Sheet lost about 243 metric gigatons of ice annually — equivalent to about 277 cubic kilometers of ice per year — from 2003-09, the period for which the team had the most comprehensive data. This loss is estimated to have added about 0.68 millimeters of water to the oceans annually.

The figures are averages, and ice loss varied from year to year, and from region to region.

Why are today’s projections of sea level rise flawed, and how can we fix them?

Glaciers don’t just gradually lose mass when the temperature rises. That’s one reason it’s difficult to predict their response to global warming.

In the study, scientists found that some of Greenland’s glaciers thickened even when the temperature rose. Others exhibited accelerated thinning. Some displayed both thinning and thickening, with sudden reversals.

As a step toward building better models of sea level rise, the research team divided Greenland’s 242 glaciers into 7 major groups based on their behavior from 2003-09.

“Understanding the groupings will help us pick out examples of glaciers that are representative of the whole,” Csatho says. “We can then use data from these representative glaciers in models to provide a more complete picture of what is happening.”

In a new project, she and colleagues are investigating why different glaciers respond differently to warming. Factors could include the temperature of the surrounding ocean; the level of friction between a glacier and the bedrock below; the amount of water under a glacier; and the geometry of the fjord.

“The physics of these processes are not well understood,” Csatho says.

The NASA missions: A colossal undertaking

The study combined data from various NASA missions, including:

  • NASA’s Ice, Cloud and Land Elevation Satellite (ICESat), which measured the ice sheet’s elevation multiple times a year at each of the nearly 100,000 locations from 2003-09.

  • NASA’s, massive aerial survey that employs highly specialized research aircrafts to collect data at less frequent intervals than ICESat. These missions began measuring the Greenland Ice Sheet’s elevation in 1993. Operation IceBridge was started in 2009 to bridge the time between ICESat-1 and ICESat-2, and will continue until at least 2017, when NASA’s next generation ICESat-2 satellite is expected to come online.

Csatho says the new study shows why careful monitoring is critical: Given the complex nature of glacier behavior, good data is crucial to building better models.

Collaborators

Besides Csatho, Schenk and van der Veen, the project included additional researchers from the University at Buffalo, Utrecht University in The Netherlands, the Technical University of Denmark and Florida Atlantic University.

Migrating ‘supraglacial’ lakes could trigger future Greenland ice loss

Supraglacial lakes on the Greenland ice sheet can be seen as dark blue specks in the center and to the right of this satellite image. -  USGS/NASA Landsat
Supraglacial lakes on the Greenland ice sheet can be seen as dark blue specks in the center and to the right of this satellite image. – USGS/NASA Landsat

Predictions of Greenland ice loss and its impact on rising sea levels may have been greatly underestimated, according to scientists at the University of Leeds.

The finding follows a new study, which is published today in Nature Climate Change, in which the future distribution of lakes that form on the ice sheet surface from melted snow and ice – called supraglacial lakes – have been simulated for the first time.

Previously, the impact of supraglacial lakes on Greenland ice loss had been assumed to be small, but the new research has shown that they will migrate farther inland over the next half century, potentially altering the ice sheet flow in dramatic ways.

Dr Amber Leeson from the School of Earth and Environment and a member of the Centre for Polar Observation and Modelling (CPOM) team, who led the study, said: “Supraglacial lakes can increase the speed at which the ice sheet melts and flows, and our research shows that by 2060 the area of Greenland covered by them will double.”

Supraglacial lakes are darker than ice, so they absorb more of the Sun’s heat, which leads to increased melting. When the lakes reach a critical size, they drain through ice fractures, allowing water to reach the ice sheet base which causes it to slide more quickly into the oceans. These changes can also trigger further melting.

Dr Leeson explained: “When you pour pancake batter into a pan, if it rushes quickly to the edges of the pan, you end up with a thin pancake. It’s similar to what happens with ice sheets: the faster it flows, the thinner it will be.

“When the ice sheet is thinner, it is at a slightly lower elevation and at the mercy of warmer air temperatures than it would have been if it were thicker, increasing the size of the melt zone around the edge of the ice sheet.”

Until now, supraglacial lakes have formed at low elevations around the coastline of Greenland, in a band that is roughly 100 km wide. At higher elevations, today’s climate is just too cold for lakes to form.

In the study, the scientists used observations of the ice sheet from the Environmental Remote Sensing satellites operated by the European Space Agency and estimates of future ice melting drawn from a climate model to drive simulations of how meltwater will flow and pool on the ice surface to form supraglacial lakes.

Since the 1970s, the band in which supraglacial lakes can form on Greenland has crept 56km further inland. From the results of the new study, the researchers predict that, as Arctic temperatures rise, supraglacial lakes will spread much farther inland – up to 110 km by 2060 – doubling the area of Greenland that they cover today.

Dr Leeson said: “The location of these new lakes is important; they will be far enough inland so that water leaking from them will not drain into the oceans as effectively as it does from today’s lakes that are near to the coastline and connected to a network of drainage channels.”

“In contrast, water draining from lakes farther inland could lubricate the ice more effectively, causing it to speed up.”

Ice losses from Greenland had been expected to contribute 22cm to global sea-level rise by 2100. However, the models used to make this projection did not account for changes in the distribution of supraglacial lakes, which Dr Leeson’s study reveals will be considerable.

If new lakes trigger further increases in ice melting and flow, then Greenland’s future ice losses and its contribution to global sea-level rise have been underestimated.

The Director of CPOM, Professor Andrew Shepherd, who is also from the School of Earth and Environment at the University of Leeds and is a co-author of the study, said: “Because ice losses from Greenland are a key signal of global climate change, it’s important that we consider all factors that could affect the rate at which it will lose ice as climate warms.

“Our findings will help to improve the next generation of ice sheet models, so that we can have greater confidence in projections of future sea-level rise. In the meantime, we will continue to monitor changes in the ice sheet losses using satellite measurements.”

Further information:


The study was funded by the Natural Environment Research Council (NERC) through their support of the Centre for Polar Observation and Modelling and the National Centre for Earth Observation.

The research paper, Supraglacial lakes on the Greenland ice sheet advance inland under warming climate, is published in Nature Climate Change on 15 December 2014.

Dr Amber Leeson and Professor Andrew Shepherd are available for interview. Please contact the University of Leeds Press Office on 0113 343 4031 or email pressoffice@leeds.ac.uk

Migrating ‘supraglacial’ lakes could trigger future Greenland ice loss

Supraglacial lakes on the Greenland ice sheet can be seen as dark blue specks in the center and to the right of this satellite image. -  USGS/NASA Landsat
Supraglacial lakes on the Greenland ice sheet can be seen as dark blue specks in the center and to the right of this satellite image. – USGS/NASA Landsat

Predictions of Greenland ice loss and its impact on rising sea levels may have been greatly underestimated, according to scientists at the University of Leeds.

The finding follows a new study, which is published today in Nature Climate Change, in which the future distribution of lakes that form on the ice sheet surface from melted snow and ice – called supraglacial lakes – have been simulated for the first time.

Previously, the impact of supraglacial lakes on Greenland ice loss had been assumed to be small, but the new research has shown that they will migrate farther inland over the next half century, potentially altering the ice sheet flow in dramatic ways.

Dr Amber Leeson from the School of Earth and Environment and a member of the Centre for Polar Observation and Modelling (CPOM) team, who led the study, said: “Supraglacial lakes can increase the speed at which the ice sheet melts and flows, and our research shows that by 2060 the area of Greenland covered by them will double.”

Supraglacial lakes are darker than ice, so they absorb more of the Sun’s heat, which leads to increased melting. When the lakes reach a critical size, they drain through ice fractures, allowing water to reach the ice sheet base which causes it to slide more quickly into the oceans. These changes can also trigger further melting.

Dr Leeson explained: “When you pour pancake batter into a pan, if it rushes quickly to the edges of the pan, you end up with a thin pancake. It’s similar to what happens with ice sheets: the faster it flows, the thinner it will be.

“When the ice sheet is thinner, it is at a slightly lower elevation and at the mercy of warmer air temperatures than it would have been if it were thicker, increasing the size of the melt zone around the edge of the ice sheet.”

Until now, supraglacial lakes have formed at low elevations around the coastline of Greenland, in a band that is roughly 100 km wide. At higher elevations, today’s climate is just too cold for lakes to form.

In the study, the scientists used observations of the ice sheet from the Environmental Remote Sensing satellites operated by the European Space Agency and estimates of future ice melting drawn from a climate model to drive simulations of how meltwater will flow and pool on the ice surface to form supraglacial lakes.

Since the 1970s, the band in which supraglacial lakes can form on Greenland has crept 56km further inland. From the results of the new study, the researchers predict that, as Arctic temperatures rise, supraglacial lakes will spread much farther inland – up to 110 km by 2060 – doubling the area of Greenland that they cover today.

Dr Leeson said: “The location of these new lakes is important; they will be far enough inland so that water leaking from them will not drain into the oceans as effectively as it does from today’s lakes that are near to the coastline and connected to a network of drainage channels.”

“In contrast, water draining from lakes farther inland could lubricate the ice more effectively, causing it to speed up.”

Ice losses from Greenland had been expected to contribute 22cm to global sea-level rise by 2100. However, the models used to make this projection did not account for changes in the distribution of supraglacial lakes, which Dr Leeson’s study reveals will be considerable.

If new lakes trigger further increases in ice melting and flow, then Greenland’s future ice losses and its contribution to global sea-level rise have been underestimated.

The Director of CPOM, Professor Andrew Shepherd, who is also from the School of Earth and Environment at the University of Leeds and is a co-author of the study, said: “Because ice losses from Greenland are a key signal of global climate change, it’s important that we consider all factors that could affect the rate at which it will lose ice as climate warms.

“Our findings will help to improve the next generation of ice sheet models, so that we can have greater confidence in projections of future sea-level rise. In the meantime, we will continue to monitor changes in the ice sheet losses using satellite measurements.”

Further information:


The study was funded by the Natural Environment Research Council (NERC) through their support of the Centre for Polar Observation and Modelling and the National Centre for Earth Observation.

The research paper, Supraglacial lakes on the Greenland ice sheet advance inland under warming climate, is published in Nature Climate Change on 15 December 2014.

Dr Amber Leeson and Professor Andrew Shepherd are available for interview. Please contact the University of Leeds Press Office on 0113 343 4031 or email pressoffice@leeds.ac.uk