Study hints that ancient Earth made its own water — geologically

A new study is helping to answer a longstanding question that has recently moved to the forefront of earth science: Did our planet make its own water through geologic processes, or did water come to us via icy comets from the far reaches of the solar system?

The answer is likely “both,” according to researchers at The Ohio State University– and the same amount of water that currently fills the Pacific Ocean could be buried deep inside the planet right now.

At the American Geophysical Union (AGU) meeting on Wednesday, Dec. 17, they report the discovery of a previously unknown geochemical pathway by which the Earth can sequester water in its interior for billions of years and still release small amounts to the surface via plate tectonics, feeding our oceans from within.

In trying to understand the formation of the early Earth, some researchers have suggested that the planet was dry and inhospitable to life until icy comets pelted the earth and deposited water on the surface.

Wendy Panero, associate professor of earth sciences at Ohio State, and doctoral student Jeff Pigott are pursuing a different hypothesis: that Earth was formed with entire oceans of water in its interior, and has been continuously supplying water to the surface via plate tectonics ever since.

Researchers have long accepted that the mantle contains some water, but how much water is a mystery. And, if some geological mechanism has been supplying water to the surface all this time, wouldn’t the mantle have run out of water by now?

Because there’s no way to directly study deep mantle rocks, Panero and Pigott are probing the question with high-pressure physics experiments and computer calculations.

“When we look into the origins of water on Earth, what we’re really asking is, why are we so different than all the other planets?” Panero said. “In this solar system, Earth is unique because we have liquid water on the surface. We’re also the only planet with active plate tectonics. Maybe this water in the mantle is key to plate tectonics, and that’s part of what makes Earth habitable.”

Central to the study is the idea that rocks that appear dry to the human eye can actually contain water–in the form of hydrogen atoms trapped inside natural voids and crystal defects. Oxygen is plentiful in minerals, so when a mineral contains some hydrogen, certain chemical reactions can free the hydrogen to bond with the oxygen and make water.

Stray atoms of hydrogen could make up only a tiny fraction of mantle rock, the researchers explained. Given that the mantle is more than 80 percent of the planet’s total volume, however, those stray atoms add up to a lot of potential water.

In a lab at Ohio State, the researchers compress different minerals that are common to the mantle and subject them to high pressures and temperatures using a diamond anvil cell–a device that squeezes a tiny sample of material between two diamonds and heats it with a laser–to simulate conditions in the deep Earth. They examine how the minerals’ crystal structures change as they are compressed, and use that information to gauge the minerals’ relative capacities for storing hydrogen. Then, they extend their experimental results using computer calculations to uncover the geochemical processes that would enable these minerals to rise through the mantle to the surface–a necessary condition for water to escape into the oceans.

In a paper now submitted to a peer-reviewed academic journal, they reported their recent tests of the mineral bridgmanite, a high-pressure form of olivine. While bridgmanite is the most abundant mineral in the lower mantle, they found that it contains too little hydrogen to play an important role in Earth’s water supply.

Another research group recently found that ringwoodite, another form of olivine, does contain enough hydrogen to make it a good candidate for deep-earth water storage. So Panero and Pigott focused their study on the depth where ringwoodite is found–a place 325-500 miles below the surface that researchers call the “transition zone”–as the most likely region that can hold a planet’s worth of water. From there, the same convection of mantle rock that produces plate tectonics could carry the water to the surface.

One problem: If all the water in ringwoodite is continually drained to the surface via plate tectonics, how could the planet hold any in reserve?

For the research presented at AGU, Panero and Pigott performed new computer calculations of the geochemistry in the lowest portion of the mantle, some 500 miles deep and more. There, another mineral, garnet, emerged as a likely water-carrier–a go-between that could deliver some of the water from ringwoodite down into the otherwise dry lower mantle.

If this scenario is accurate, the Earth may today hold half as much water in its depths as is currently flowing in oceans on the surface, Panero said–an amount that would approximately equal the volume of the Pacific Ocean. This water is continuously cycled through the transition zone as a result of plate tectonics.

“One way to look at this research is that we’re putting constraints on the amount of water that could be down there,” Pigott added.

Panero called the complex relationship between plate tectonics and surface water “one of the great mysteries in the geosciences.” But this new study supports researchers’ growing suspicion that mantle convection somehow regulates the amount of water in the oceans. It also vastly expands the timeline for Earth’s water cycle.

“If all of the Earth’s water is on the surface, that gives us one interpretation of the water cycle, where we can think of water cycling from oceans into the atmosphere and into the groundwater over millions of years,” she said. “But if mantle circulation is also part of the water cycle, the total cycle time for our planet’s water has to be billions of years.”

Research links soil mineral surfaces to key atmospheric processes

Pictured are, from left, are David Bish, Melissa Donaldson and Jonathan Raff. -  Indiana University
Pictured are, from left, are David Bish, Melissa Donaldson and Jonathan Raff. – Indiana University

Research by Indiana University scientists finds that soil may be a significant and underappreciated source of nitrous acid, a chemical that plays a pivotal role in atmospheric processes such as the formation of smog and determining the lifetime of greenhouse gases.

The study shows for the first time that the surface acidity of common minerals found in soil determines whether the gas nitrous acid will be released into the atmosphere. The finding could contribute to improved models for understanding and controlling air pollution, a significant public health concern.

“We find that the surfaces of minerals in the soil can be much more acidic than the overall pH of the soil would suggest,” said Jonathan Raff, assistant professor in the School of Public and Environmental Affairs and Department of Chemistry. “It’s the acidity of the soil minerals that acts as a knob or a control lever, and that determines whether nitrous acid outgasses from soil or remains as nitrite.”

The article, “Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid,” will be published this week in the journal Proceedings of the National Academy of Sciences. Melissa A. Donaldson, a Ph.D. student in the School of Public and Environmental Affairs, is the lead author. Co-authors are Raff and David L. Bish, the Haydn Murray Chair of Applied Clay Mineralogy in the Department of Geological Sciences.

Nitrous acid, or HONO, plays a key role in regulating atmospheric processes. Sunlight causes it to break down into nitric oxide and the hydroxyl radical, OH. The latter controls the atmospheric lifetime of gases important to air quality and climate change and initiates the chemistry leading to the formation of ground-level ozone, a primary component of smog.

Scientists have known about the nitrous acid’s role in air pollution for 40 years, but they haven’t fully understood how it is produced and destroyed or how it interacts with other substances, because HONO is unstable and difficult to measure.

“Only in the last 10 years have we had the technology to study nitrous acid under environmentally relevant conditions,” Raff said.

Recent studies have shown nitrous acid to be emitted from soil in many locations. But this was unexpected because, according to basic chemistry, the reactions that release nitrous acid should take place only in extremely acidic soils, typically found in rain forests or the taiga of North America and Eurasia.

The standard method to determine the acidity of soil is to mix bulk soil with water and measure the overall pH. But the IU researchers show that the crucial factor is not overall pH but the acidity at the surface of soil minerals, especially iron oxides and aluminum oxides. At the molecular level, the water adsorbed directly to these minerals is unusually acidic and facilitates the conversion of nitrite in the soil to nitrous acid, which then volatilizes.

“With the traditional approach of calculating soil pH, we were severely underestimating nitrous acid emissions from soil,” Raff said. “I think the source is going to turn out to be more important than was previously imagined.”

The research was carried out using soil from a farm field near Columbus, Ind. But aluminum and iron oxides are ubiquitous in soil, and the researchers say the results suggest that about 70 percent of Earth’s soils could be sources of nitrous acid.

Ultimately, the research will contribute to a better understanding of how nitrous acid is produced and how it affects atmospheric processes. That in turn will improve the computer models used by the U.S. Environmental Protection Agency and other regulatory agencies to control air pollution, which the World Health Organization estimates contributes to 7 million premature deaths annually.

“With improved models, policymakers can make better judgments about the costs and benefits of regulations,” Raff said. “If we don’t get the chemistry right, we’re not going to get the right answers to our policy questions regarding air pollution.”

Rare 2.5-billion-year-old rocks reveal hot spot of sulfur-breathing bacteria

Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. -  Alan J. Kaufman
Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. – Alan J. Kaufman

Wriggle your toes in a marsh’s mucky bottom sediment and you’ll probably inhale a rotten egg smell, the distinctive odor of hydrogen sulfide gas. That’s the biochemical signature of sulfur-using bacteria, one of Earth’s most ancient and widespread life forms.

Among scientists who study the early history of our 4.5 billion-year-old planet, there is a vigorous debate about the evolution of sulfur-dependent bacteria. These simple organisms arose at a time when oxygen levels in the atmosphere were less than one-thousandth of what they are now. Living in ocean waters, they respired (or breathed in) sulfate, a form of sulfur, instead of oxygen. But how did that sulfate reach the ocean, and when did it become abundant enough for living things to use it?

New research by University of Maryland geology doctoral student Iadviga Zhelezinskaia offers a surprising answer. Zhelezinskaia is the first researcher to analyze the biochemical signals of sulfur compounds found in 2.5 billion-year-old carbonate rocks from Brazil. The rocks were formed on the ocean floor in a geologic time known as the Neoarchaean Eon. They surfaced when prospectors drilling for gold in Brazil punched a hole into bedrock and pulled out a 590-foot-long core of ancient rocks.

In research published Nov. 7, 2014 in the journal Science, Zhelezinskaia and three co-authors–physicist John Cliff of the University of Western Australia and geologists Alan Kaufman and James Farquhar of UMD–show that bacteria dependent on sulfate were plentiful in some parts of the Neoarchaean ocean, even though sea water typically contained about 1,000 times less sulfate than it does today.

“The samples Iadviga measured carry a very strong signal that sulfur compounds were consumed and altered by living organisms, which was surprising,” says Farquhar. “She also used basic geochemical models to give an idea of how much sulfate was in the oceans, and finds the sulfate concentrations are very low, much lower than previously thought.”

Geologists study sulfur because it is abundant and combines readily with other elements, forming compounds stable enough to be preserved in the geologic record. Sulfur has four naturally occurring stable isotopes–atomic signatures left in the rock record that scientists can use to identify the elements’ different forms. Researchers measuring sulfur isotope ratios in a rock sample can learn whether the sulfur came from the atmosphere, weathering rocks or biological processes. From that information about the sulfur sources, they can deduce important information about the state of the atmosphere, oceans, continents and biosphere when those rocks formed.

Farquhar and other researchers have used sulfur isotope ratios in Neoarchaean rocks to show that soon after this period, Earth’s atmosphere changed. Oxygen levels soared from just a few parts per million to almost their current level, which is around 21 percent of all the gases in the atmosphere. The Brazilian rocks Zhelezinskaia sampled show only trace amounts of oxygen, a sign they were formed before this atmospheric change.

With very little oxygen, the Neoarchaean Earth was a forbidding place for most modern life forms. The continents were probably much drier and dominated by volcanoes that released sulfur dioxide, carbon dioxide, methane and other greenhouse gases. Temperatures probably ranged between 0 and 100 degrees Celsius (32 to 212 degrees Fahrenheit), warm enough for liquid oceans to form and microbes to grow in them.

Rocks 2.5 billion years old or older are extremely rare, so geologists’ understanding of the Neoarchaean are based on a handful of samples from a few small areas, such as Western Australia, South Africa and Brazil. Geologists theorize that Western Australia and South Africa were once part of an ancient supercontinent called Vaalbara. The Brazilian rock samples are comparable in age, but they may not be from the same supercontinent, Zhelezinskaia says.

Most of the Neoarchaean rocks studied are from Western Australia and South Africa and are black shale, which forms when fine dust settles on the sea floor. The Brazilian prospector’s core contains plenty of black shale and a band of carbonate rock, formed below the surface of shallow seas, in a setting that probably resembled today’s Bahama Islands. Black shale usually contains sulfur-bearing pyrite, but carbonate rock typically does not, so geologists have not focused on sulfur signals in Neoarchaean carbonate rocks until now.

Zhelezinskaia “chose to look at a type of rock that others generally avoided, and what she saw was spectacularly different,” said Kaufman. “It really opened our eyes to the implications of this study.”

The Brazilian carbonate rocks’ isotopic ratios showed they formed in ancient seabed containing sulfate from atmospheric sources, not continental rock. And the isotopic ratios also showed that Neoarchaean bacteria were plentiful in the sediment, respiring sulfate and emitted hydrogen sulfide–the same process that goes on today as bacteria recycle decaying organic matter into minerals and gases.

How could the sulfur-dependent bacteria have thrived during a geologic time when sulfur levels were so low? “It seems that they were in shallow water, where evaporation may have been high enough to concentrate the sulfate, and that would make it abundant enough to support the bacteria,” says Zhelezinskaia.

Zhelezinskaia is now analyzing carbonate rocks of the same age from Western Australia and South Africa, to see if the pattern holds true for rocks formed in other shallow water environments. If it does, the results may change scientists’ understanding of one of Earth’s earliest biological processes.

“There is an ongoing debate about when sulfate-reducing bacteria arose and how that fits into the evolution of life on our planet,” says Farquhar. “These rocks are telling us the bacteria were there 2.5 billion years ago, and they were doing something significant enough that we can see them today.”

###

This research was supported by the Fulbright Program (Grantee ID 15110620), the NASA Astrobiology Institute (Grant No. NNA09DA81A) and the National Science Foundation Frontiers in Earth-System Dynamics program (Grant No. 432129). The content of this article does not necessarily reflect the views of these organizations.

“Large sulfur isotope fractionations associated with Neoarchaean microbial sulfate reductions,” Iadviga Zhelezinskaia, Alan J. Kaufman, James Farquhar and John Cliff, was published Nov. 7, 2014 in Science. Download the abstract after 2 p.m. U.S. Eastern time, Nov. 6, 2014: http://www.sciencemag.org/lookup/doi/10.1126/science.1256211

James Farquhar home page

http://www.geol.umd.edu/directory.php?id=13

Alan J. Kaufman home page

http://www.geol.umd.edu/directory.php?id=15

Iadviga Zhelezinskaia home page

http://www.geol.umd.edu/directory.php?id=66

Media Relations Contact: Abby Robinson, 301-405-5845, abbyr@umd.edu

Writer: Heather Dewar

New tracers can identify frack fluids in the environment

Scientists have developed new geochemical tracers that can identify hydraulic fracturing flowback fluids that have been spilled or released into the environment.

The tracers, which were created by a team of U.S. and French researchers, have been field-tested at a spill site in West Virginia and downstream from an oil and gas brine wastewater treatment plant in Pennsylvania.

“This gives us new forensic tools to detect if ‘frac fluids’ are escaping into our water supply and what risks, if any, they might pose,” said Duke University geochemist Avner Vengosh, who co-led the research.

“By characterizing the isotopic and geochemical fingerprints of enriched boron and lithium in flowback water from hydraulic fracturing, we can now track the presence of frac fluids in the environment and distinguish them from wastewater coming from other sources, including conventional oil and gas wells,” Vengosh said.

Using the tracers, scientists can determine where fracturing fluids have or haven’t been released to the environment and, ultimately, help identify ways to improve how shale gas wastewater is treated and disposed of.

Vengosh and his colleagues published their peer-reviewed findings October 20 in the journal Environmental Science & Technology. Their study, which was funded in part by the National Science Foundation, is the first to report on the development of the boron and lithium tracers.

Nathaniel R. Warner, Obering Postdoctoral Fellow at Dartmouth College, was lead author of the study. “This new technology can be combined with other methods to identify specific instances of accidental releases to surface waters in areas of unconventional drilling,” he said. “It could benefit industry as well as federal and state agencies charged with monitoring water quality and protecting the environment.”

Hydraulic fracturing fluids, or frac fluids, typically contain mixes of water, proprietary chemicals and sand. Mixtures can vary from site to site. Drillers inject large volumes of the fluids down gas wells at high pressure to crack open shale formations deep underground and allow natural gas trapped within the shale to flow out and be extracted. After the shale has been fractured, the frac fluids flow back up the well to the surface along with the gas and highly saline brines from the shale formation.

Some people fear that toxic frac fluid chemicals in this flowback could contaminate nearby water supplies if flowback were accidentally spilled or insufficiently treated before being disposed of.

“The flowback fluid that returns to the surface becomes a waste that needs to be managed,” Vengosh explained. “Deep-well injection is the preferable disposal method, but injecting large volumes of wastewater into deep wells can cause earthquakes in sensitive areas and is not geologically available in some states. In Pennsylvania, much of the flowback is now recycled and reused, but a significant amount of it is still discharged into local streams or rivers.”

Vengosh said it’s possible to identify the presence of frac fluid in spilled or discharged flowback by tracing synthetic organic compounds that are added to the fluid before it’s injected down a well. But the proprietary nature of these chemicals, combined with their instability in the environment, limits the usefulness of such tracers.

By contrast, the new boron and lithium tracers remain stable in the environment. “The difference is that we are using tracers based on elements that occur naturally in shale formations,” Vengosh said.

When drillers inject frac fluids into a shale formation, they not only release hydrocarbon but also boron and lithium that are attached to clay minerals within the formation, he explained. As the fluids react and mix at depth, they become enriched in boron and lithium. As they are brought back to the surface, they have distinctive isotopic fingerprints that are different from other types of wastewater, including wastewater from a conventional gas or oil well, as well as from naturally occurring background water.

“This type of forensic research allows us to clearly delineate between the possible sources of wastewater contamination,” Vengosh said.

Geologists dig into science around the globe, on land and at sea

University of Cincinnati geologists will be well represented among geoscientists from around the world at The Geological Society of America’s Annual Meeting and Exposition. The meeting takes place Oct. 19-22, in Vancouver, Canada, and will feature geoscientists representing more than 40 different disciplines. The meeting will feature highlights of UC’s geological research that is taking place globally, from Chile to Costa Rica, Belize, Bulgaria, Scotland, Trinidad and a new project under development in the Canary Islands.

UC faculty and graduate students are lead or supporting authors on more than two dozen Earth Sciences-related research papers and/or PowerPoint and poster exhibitions at the GSA meeting.

The presentations also cover UC’s longtime and extensive exploration and findings in the Cincinnati Arch of the Ohio Valley, world-renowned for its treasure trove of paleontology – plant and animal fossils that were preserved when a shallow sea covered the region 450 million years ago during the Paleozoic Era.

Furthermore, in an effort to diversify the field of researchers in the Earth Sciences, a UC assistant professor of science education and geology, Christopher Atchison, was awarded funding from the National Science Foundation and the Society of Exploration Geophysics to lead a research field trip in Vancouver for students with disabilities. Graduate and undergraduate student participants will conduct the research on Oct. 18 and then join events at the GSA meeting. They’ll be guided by geoscience researchers representing the United Kingdom, New Zealand, Canada and the U.S. Those guides include Atchison and Julie Hendricks, a UC special education major from Batavia, Ohio, who will be using her expertise in American Sign Language (ASL) to assist student researchers representing Deaf and Hard of Hearing communities.

The meeting will also formally introduce Arnold Miller, UC professor of geology, as the new president-elect of the national Paleontological Society Thomas Lowell, professor of geology, is a recently elected Fellow of the Geological Society of America – a recognition for producing a substantial body of research. Lowell joins colleagues Warren Huff, professor of geology, and Lewis Owen, professor and head of the Department of Geology, as GSA Fellows.

Here are highlights of the UC research to be presented at the GSA meeting Oct. 19-22:

Staying Put or Moving On? Researchers Develop Model to Identify Migrating Patterns of Different Species

Are plant and animal species what you might call lifelong residents – they never budge from the same place? That’s a relatively common belief in ecology and paleoecology – that classes of organisms tend to stay put over millions of years and either evolve or go extinct as the environment changes. UC researchers developed a series of numerical models simulating shifting habitats in fossil regions to compare whether species changed environments when factoring geological and other changes in the fossil record. They found that geologically driven changes in the quality of the fossil record did not distort the real ecological signal, and that most species maintained their particular habitat preferences through time. They did not evolve to adapt to changing environments, but rather, they migrated, following their preferred environments. That is to say, they did not stay in place geographically but by moving, they were able to track their favored habitats. Field research for the project was conducted in New York state as well as the paleontological-rich region of Cincinnati; Dayton, Ohio, Lexington, Ky.; and Indiana. Funding for the project was supported by The Paleontological Society; The Geological Society of America; The American Museum of Natural History and the UC Geology Department’s Kenneth E. Caster Memorial Fund.

Presenter: Andrew Zaffos, UC geology doctoral student

Co-authors: Arnold Miller, Carlton Brett

Pioneering Study Provides a Better Understanding of What Southern Ohio and Central Kentucky Looked Like Hundreds of Millions of Years Ago

The end of the Ordovician period resulted in one of the largest mass extinction events in the Earth’s history. T.J. Malgieri, a UC master’s student in geology, led this study examining the limestone and shales of the Upper Ordovician Period – the geologic Grant Lake Formation covering southern Ohio and central Kentucky – to recreate how the shoreline looked some 445 million years ago. In this pioneering study of mud cracks and deposits in the rocks, the researchers discovered that the shoreline existed to the south and that the water became deeper toward the north. By determining these ecological parameters, the ramp study provides a better understanding of environments during a time of significant ecological change. Malgieri says the approach can be applied to other basins throughout the world to create depth indicators in paeloenvironments.

Presenter: T.J. Malgieri, UC geology master’s student

Co-authors: Carlton Brett, Cameron Schalbach, Christopher Aucoin, UC; James Thomka (UC, University of Akron); Benjamin Dattilo, Indiana University Purdue University Ft. Wayne

UC Researchers Take a Unique Approach to Monitoring Groundwater Supplies Near Ohio Fracking Sites

A collaborative research project out of UC is examining effects of fracking on groundwater in the Utica Shale region of eastern Ohio. First launched in Carroll County in 2012, the team of researchers is examining methane levels and origins of methane in private wells and springs before, during and after the onset of fracking. The team travels to the region to take water samples four times a year.

Presenter: Claire Botner, a UC geology master’s student

Co-author: Amy Townsend-Small, UC assistant professor of geology

Sawing Through Seagrass to Reveal Clues to the Past

Kelsy Feser, a UC doctoral student in geology, is working at several sites around St. Croix in the Virgin Islands to see if human developments impact marine life. The research focuses on shells of snails and clams that have piled up on the sea floor for thousands of years. Digging through layers of thick seagrass beds on the ocean floor, Feser can examine deeper shells that were abundant thousands of years ago and compare them to shallower layers that include living clams and snails. Early analysis indicates a greater population of potentially pollution-tolerant mussels in an area near a landfill on the island, compared with shells from much earlier time periods. Feser is doing this sea grass analysis around additional sites including tourist resorts, an oil refinery, a power plant and a marina. Funding for the research is provided by the Paleontological Society, the GSA, the American Museum of Natural History and the UC Geology Department.

Presenter: Kelsy Feser, UC geology doctoral student

Co-authors: Arnold Miller

Turning to the Present to Understand the Past

In order to properly interpret changes in climate, vegetation, or animal populations over time, it is necessary to establish a comparative baseline. Stella Mosher, a UC geology master’s student, is studying stable carbon, nitrogen, sulfur and strontium isotopes in modern vegetation from the Canary Islands in order to quantify modern climatic and environmental patterns. Her findings will provide a crucial foundation for future UC research on regional paleoclimatic and paleoenvironmental shifts.

Presenter: Stella Mosher, graduate student in geology

Co-authors: Brooke Crowley, assistant professor of geology; Yurena Yanes, research assistant professor of geology

A Study on the Impact of Sea Spray

Sulfur is an element of interest in both geology and archaeology, because it can reveal information about the diets of ancient cultures. This study takes a novel approach to studying how sea spray can affect the sulfur isotope values in plants on a small island, focusing on the island of Trinidad. Researchers collected leaves from different plant species to get their sulfur isotope value, exploring whether wind direction played a role in how plants were influenced by the marine water from sea spray. Vegetation was collected from the edges of the island to the deeply forested areas. The study found that sulfur isotope values deeper inland and on the calmer west coast were dramatically lower in indicating marine water than vegetation along the edges and the east coast. The findings can help indicate the foraging activities of humans and animals. Funding for the study was supported by the Geological Society of America, the UC Graduate Student Association and the UC Department of Geology.

Presenter: Janine Sparks, UC geology doctoral student

Co-authors: Brooke Crowley, UC assistant professor, geology/anthropology; William Gilhooly III, assistant professor, Earth Sciences, Indiana University-Purdue University Indianapolis

Proxy Wars – The Paleobiology Data Debate

For the past several decades, paleobiologists have built large databases containing information on fossil plants and animals of all geological ages to investigate the timing and extent of major changes in biodiversity – changes such as mass extinctions that have taken place throughout the history of life. Biodiversity researcher Arnold Miller says that in building these databases, it can be a challenge to accurately identify species in the geological record, so it has been common for researchers to instead study biodiversity trends using data compiled at broader levels of biological classification, including the genus level, under the assumption that these patterns are effective proxies for what would be observed among species if the data were available. Miller has been involved in construction of The Paleobiology Database, an extensive public online resource that contains global genus- and species-level data, now permitting a direct, novel look at the similarities and differences between patterns at these two levels. Miller’s discussion aims to set the record straight as to when researchers can effectively use a genus as a proxy for a species and also when it’s inappropriate. This research is funded by the NASA Astrobiology Program.

Presenter: Arnold Miller, UC professor of geology

A Novel New Method for Examining the Distribution of Pores in Rocks

Oil and gas companies take an interest in the porosity of sedimentary rocks because those open spaces can be filled with fuel resources. Companies involved with hydraulic fracturing (“fracking”) are also interested in porosity because it could be a source for storing wastewater as a result of fracking. In this unique study, UC researchers made pore-size measurements similar to those used in crystal size distribution (CSD) theory to determine distribution of pores as a function of their sizes, using thin sections of rock. In addition to providing accurate porosity distribution at a given depth, their approach can be extended to evaluate variation of pore spaces as a function of depth in a drill core, percent of pores in each size range, and pore types and pore geometry. The Texas Bureau of Economic Geology provided the rock samples used in the study. Funding for the study was supported by the Turkish Petroleum Corporation.

Presenter: Ugurlu Ibrahim, master’s student in geology

Co-author: Attila Kilinc, professor of geology

Researchers Turn to 3-D Technology to Examine the Formation of Cliffband Landscapes

A blend of photos and technology takes a new twist on studying cliff landscapes and how they were formed. The method called Structure-From-Motion Photogrammetry – computational photo image processing techniques – is used to study the formation of cliff landscapes in Colorado and Utah and to understand how the layered rock formations in the cliffs are affected by erosion.

Presenter: Dylan Ward, UC assistant professor of geology

Testing the Links Between Climate and Sedimentation in the Atacama Desert, Northern Chile

The Atacama Desert is used as an analog for understanding the surface of Mars. In some localities, there has been no activity for millions of years. UC researchers have been working along the flank of the Andes Mountains in northern Chile, and this particular examination focuses on the large deposits of sediment that are transported down the plateau and gather at the base. The researchers are finding that their samples are not reflecting the million-year-old relics previously found on such expeditions, but may indicate more youthful activity possibly resulting from climatic events. The research is supported by a $273,634 grant from the National Science Foundation to explore glacio-geomorphic constraints on the climate history of subtropical northern Chile.

Presenter: Jason Cesta, UC geology master’s student

Co-author: Dylan Ward, UC assistant professor of geology

Uncovering the Explosive Mysteries Surrounding the Manganese of Northeast Bulgaria

UC’s geology collections hold minerals from field expeditions around the world, including manganese from the Obrochishte mines of northeastern Bulgaria. Found in the region’s sedimentary rock, manganese can be added to metals such as steel to improve strength. It’s widely believed that these manganese formations were the result of ocean water composition at the time the sediments were deposited in the ocean. In this presentation, UC researchers present new information on why they believe the manganese formations resulted from volcanic eruptions, perhaps during the Rupelian stage of the geologic time scale, when bentonite clay minerals were formed. The presentation evolved from an advance class project last spring under the direction of Warren Huff, a UC professor of geology.

Presenter: Jason Cesta, UC geology master’s student

Co-authors: Warren Huff, UC professor of geology; Christopher Aucoin; Michael Harrell; Thomas Malgieri; Barry Maynard; Cameron Schwalbach; Ibrahim Ugurlu; Antony Winrod

Two UC researchers will chair sessions at the GSA meeting: Doctoral student Gary Motz will chair the session, “Topics in Paleoecology: Modern Analogues and Ancient Systems,” on Oct. 19. Matt Vrazo, also a doctoral student in geology, is chairing “Paleontology: Trace Fossils, Taphonomy and Exceptional Preservation” on Oct. 21, and will present, “Taphonomic and Ecological Controls on Eurypterid Lagerstäten: A Model for Preservation in the Mid-Paleozoic.”

###

UC’s nationally ranked Department of Geology conducts field research around the world in areas spanning paleontology, quaternary geology, geomorphology, sedimentology, stratigraphy, tectonics, environmental geology and biogeochemistry.

The Geological Society of America, founded in 1888, is a scientific society with more than 26,500 members from academia, government, and industry in more than 100 countries. Through its meetings, publications, and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind.

Birth of a mineral

<IMG SRC="/Images/904289364.jpg" WIDTH="350" HEIGHT="233" BORDER="0" ALT="An aragonite crystal — with its characteristic 'sheaf of wheat' look — consumed a particle of amorphous calcium carbonate as it formed. – Nielsen et al. 2014/Science“>
An aragonite crystal — with its characteristic ‘sheaf of wheat’ look — consumed a particle of amorphous calcium carbonate as it formed. – Nielsen et al. 2014/Science

One of the most important molecules on earth, calcium carbonate crystallizes into chalk, shells and minerals the world over. In a study led by the Department of Energy’s Pacific Northwest National Laboratory, researchers used a powerful microscope that allows them to see the birth of crystals in real time, giving them a peek at how different calcium carbonate crystals form, they report in September 5 issue of Science.

The results might help scientists understand how to lock carbon dioxide out of the atmosphere as well as how to better reconstruct ancient climates.

“Carbonates are most important for what they represent, interactions between biology and Earth,” said lead researcher James De Yoreo, a materials scientist at PNNL. “For a decade, we’ve been studying the formation pathways of carbonates using high-powered microscopes, but we hadn’t had the tools to watch the crystals form in real time. Now we know the pathways are far more complicated than envisioned in the models established in the twentieth century.”

Earth’s Reserve


Calcium carbonate is the largest reservoir of carbon on the planet. It is found in rocks the world over, shells of both land- and water-dwelling creatures, and pearls, coral, marble and limestone. When carbon resides within calcium carbonate, it is not hanging out in the atmosphere as carbon dioxide, warming the world. Understanding how calcium carbonate turns into various minerals could help scientists control its formation to keep carbon dioxide from getting into the atmosphere.

Calcium carbonate deposits also contain a record of Earth’s history. Researchers reconstructing ancient climates delve into the mineral for a record of temperature and atmospheric composition, environmental conditions and the state of the ocean at the time those minerals formed. A better understanding of its formation pathways will likely provide insights into those events.

To get a handle on mineral formation, researchers at PNNL, the University of California, Berkeley, and Lawrence Berkeley National Laboratory examined the earliest step to becoming a mineral, called nucleation. In nucleation, molecules assemble into a tiny crystal that then grows with great speed. Nucleation has been difficult to study because it happens suddenly and unpredictably, so the scientists needed a microscope that could watch the process in real time.

Come to Order


In the 20th century, researchers established a theory that crystals formed in an orderly fashion. Once the ordered nucleus formed, more molecules added to the crystal, growing the mineral but not changing its structure. Recently, however, scientists have wondered if the process might be more complicated, with other things contributing to mineral formation. For example, in previous experiments they’ve seen forms of calcium carbonate that appear to be dense liquids that could be sources for minerals.

Researchers have also wondered if calcite forms from less stable varieties or directly from calcium and carbonate dissolved in the liquid. Aragonite and vaterite are calcium carbonate minerals with slightly different crystal architectures than calcite and could represent a step in calcite’s formation. The fourth form called amorphous calcium carbonate – or ACC, which could be liquid or solid, might also be a reservoir for sprouting minerals.

To find out, the team created a miniature lab under a transmission electron microscope at the Molecular Foundry, a DOE Office of Science User Facility at LBNL. In this miniature lab, they mixed sodium bicarbonate (used to make club soda) and calcium chloride (similar to table salt) in water. At high enough concentrations, crystals grew. Videos of nucleating and growing crystals recorded what happened [URLs to come].

Morphing Minerals


The videos revealed that mineral growth took many pathways. Some crystals formed through a two-step process. For example, droplet-like particles of ACC formed, then crystals of aragonite or vaterite appeared on the surface of the droplets. As the new crystals formed, they consumed the calcium carbonate within the drop on which they nucleated.

Other crystals formed directly from the solution, appearing by themselves far away from any ACC particles. Multiple forms often nucleated in a single experiment — at least one calcite crystal formed on top of an aragonite crystal while vaterite crystals grew nearby.

What the team didn’t see in and among the many options, however, was calcite forming from ACC even though researchers widely expect it to happen. Whether that means it never does, De Yoreo can’t say for certain. But after looking at hundreds of nucleation events, he said it is a very unlikely event.

“This is the first time we have directly visualized the formation process,” said De Yoreo. “We observed many pathways happening simultaneously. And they happened randomly. We were never able to predict what was going to come up next. In order to control the process, we’d need to introduce some kind of template that can direct which crystal forms and where.”

In future work, De Yoreo and colleagues plan to investigate how living organisms control the nucleation process to build their shells and pearls. Biological organisms keep a store of mineral components in their cells and have evolved ways to make nucleation happen when and where needed. The team is curious to know how they use cellular molecules to achieve this control.




Video
Click on this image to view the .mp4 video
Diamond-shaped crystals of calcite form directly from solution. A round particle that could be either amorphous calcium carbonate or vaterite forms nearby. – Nielsen et al. 2014/Science

Scientists obtain new data on the weather 10,000 years ago from sediments of a lake in Sierra Nevada

University of Granada researchers are collecting samples in an Alpine lake in Sierra Nevada (Granada). -  UGRdivulga
University of Granada researchers are collecting samples in an Alpine lake in Sierra Nevada (Granada). – UGRdivulga

A research project which counts with the participation of the University of Granada has revealed new data on the climate change that took place in the Iberian Peninsula around the mid Holocene (around 6.000 years ago), when the amount of atmospheric dust coming from the Sahara increased. The data came from a study of the sediments found in an Alpine lake in Sierra Nevada (Granada)

This study, published in the journal Chemical Geology, is based on the sedimentation of atmospheric dust from the Sahara, a very frequent phenomenon in the South of the Iberian Peninsula. This phenomenon is easily identified currently, for instance, when a thin layer of red dust can be occasionally found on vehicles.

Scientists have studied an Alpine lake in Sierra Nevada, 3020 metres above sea level, called Rio Seco lake. They collected samples from sediments 1,5 metres deep, which represent approximately the last 11.000 years (a period known as Holocene), and they found, among other paleoclimate indicators, evidence of atmospheric dust coming from the Sahara. According to one of the researchers in this study, Antonio García-Alix Daroca, from the University of Granada, “the sedimentation of this atmospheric dust over the course of the Holocene has affected the vital cycles of the lakes in Sierra Nevada, since such dust contains a variety of nutrients and / or minerals which do not abound at such heights and which are required by certain organisms which dwell there.”

More atmospheric dust from the Sahara

This study has also revealed the existence of a relatively humid period during the early phase of the Holocene (10.000 – 6.000 years approximately). This period witnessed the onset of an aridification tendency which has lasted until our days, and it has coincided with an increase in the fall of atmospheric dust in the South of the Ibeian Peninsula, as a result of African dust storms.

“We have also detected certain climate cycles ultimately related to solar causes or the North Atlantic Oscillacion (NAO)”, according to García-Alix. “Since we do not have direct indicators of these climate and environmental changes, such as humidity and temperature data, in order to conduct this research we have resorted to indirect indicators, such as fossil polen, carbons and organic and inorganic geochemistry within the sediments”.

From ‘Finding Nemo’ to minerals — what riches lie in the deep sea?

Left: The first species ever recovered from the deep sea. Center: Rockfish use deep-sea carbonate formations at Hydrate Ridge, US, as a refuge. Right: Deep-sea corals such as the one pictured are a source of jewelery and other riches. -  SERPENT Project/D.O.B. Jones, L. Levin, UK's BIS Department
Left: The first species ever recovered from the deep sea. Center: Rockfish use deep-sea carbonate formations at Hydrate Ridge, US, as a refuge. Right: Deep-sea corals such as the one pictured are a source of jewelery and other riches. – SERPENT Project/D.O.B. Jones, L. Levin, UK’s BIS Department

As fishing and the harvesting of metals, gas and oil have expanded deeper and deeper into the ocean, scientists are drawing attention to the services provided by the deep sea, the world’s largest environment. “This is the time to discuss deep-sea stewardship before exploitation is too much farther underway,” says lead-author Andrew Thurber. In a review published today in Biogeosciences, a journal of the European Geosciences Union (EGU), Thurber and colleagues summarise what this habitat provides to humans, and emphasise the need to protect it.

“The deep sea realm is so distant, but affects us in so many ways. That’s where the passion lies: to tell everyone what’s down there and that we still have a lot to explore,” says co-author Jeroen Ingels of Plymouth Marine Laboratory in the UK.

“What we know highlights that it provides much directly to society,” says Thurber, a researcher at the College of Earth, Ocean and Atmospheric Sciences at Oregon State University in the US. Yet, the deep sea is facing impacts from climate change and, as resources are depleted elsewhere, is being increasingly exploited by humans for food, energy and metals like gold and silver.

“We felt we had to do something,” says Ingels. “We all felt passionate about placing the deep sea in a relevant context and found that there was little out there aimed at explaining what the deep sea does for us to a broad audience that includes scientists, the non-specialists and ultimately the policy makers. There was a gap to be filled. So we said: ‘Let’s just make this happen’.”

In the review of over 200 scientific papers, the international team of researchers points out how vital the deep sea is to support our current way of life. It nurtures fish stocks, serves as a dumping ground for our waste, and is a massive reserve of oil, gas, precious metals and the rare minerals we use in modern electronics, such as cell phones and hybrid-car batteries. Further, hydrothermal vents and other deep-sea environments host life forms, from bacteria to sponges, that are a source of new antibiotics and anti-cancer chemicals. It also has a cultural value, with its strange species and untouched habitats inspiring books and films from 20,000 Leagues Under the Sea to Finding Nemo.

“From jewellery to oil and gas and future potential energy reserves as well as novel pharmaceuticals, deep-sea’s worth should be recognised so that, as we decide how to use it more in the future, we do not inhibit or lose the services that it already provides,” says Thurber.

The deep sea (ocean areas deeper than 200m) represents 98.5% of the volume of our planet that is hospitable to animals. It has received less attention than other environments because it is vast, dark and remote, and much of it is inaccessible to humans. But it has important global functions. In the Biogeosciences review the team shows that deep-sea marine life plays a crucial role in absorbing carbon dioxide from the atmosphere, as well as methane that occasionally leaks from under the seafloor. In doing so, the deep ocean has limited much of the effects of climate change.

This type of process occurs over a vast area and at a slow rate. Thurber gives other examples: manganese nodules, deep-sea sources of nickel, copper, cobalt and rare earth minerals, take centuries or longer to form and are not renewable. Likewise, slow-growing and long-lived species of fish and coral in the deep sea are more susceptible to overfishing. “This means that a different approach needs to be taken as we start harvesting the resources within it.”

By highlighting the importance of the deep sea and identifying the traits that differentiate this environment from others, the researchers hope to provide the tools for effective and sustainable management of this habitat.

“This study is one of the steps in making sure that the benefits of the deep sea are understood by those who are trying to, or beginning to, regulate its resources,” concludes Thurber. “We ultimately hope that it will be a useful tool for policy makers.”

NMR under pressure: Reproducing deep-Earth chemistry

A new pressure cell invented by UC Davis researchers makes it possible to simulate chemical reactions deep in the Earth’s crust. The cell allows researchers to perform nuclear magnetic resonance (NMR) measurements on as little as 10 microliters of liquid at pressures up to 20 kiloBar.

“NMR is our window into the chemical world,” said Brent Pautler, a postdoctoral researcher in chemistry at UC Davis and first author on the paper published July 2 in the online edition of the journal Angewandte Chemie. “It lets us see chemical reactions as they are happening.”

The new device allows researchers for the first time to study chemical reactions in liquid water under pressure, without it freezing into a solid.

“We were able to get to the point where we could no longer ignore the compressibility of the water molecules,” Pautler said. “This is the first time this has ever been reported.”

Geochemists want to know what kind of chemistry is happening deep in the Earth’s crust, beyond the reach of boreholes. These chemical reactions could affect water and minerals that eventually migrate to the surface, or the behavior of carbon cycling between the Earth’s depths and the surface.

“Aqueous fluids deep in the Earth are the great unknown for geochemists,” said Chris Colla, a graduate student in Earth & Physical Sciences at UC Davis and co-author on the paper. “By doing NMR we can get an inside view of what is occurring deep in the Earth’s crust.”

For example, Pautler, Colla and colleagues have already looked at calcium ions in solution. Dissolved calcium ions can be surrounded by four, six or eight water molecules. High pressure forces dissolved calcium into an eight-water state, they found.

The high-pressure measurements could also shed light on chemical processes involved in hydraulic fracturing, or “fracking,” and the behavior of buried nuclear waste over long periods of time. Fracking is the process of extracting oil and gas by injecting liquids under high pressure into rocks.

The high-pressure NMR cell was built in the machine shop at the Crocker Nuclear Laboratory with the help of Peter Klavins, research specialist in the Department of Physics, and Steve Harley, a former UC Davis graduate student now at the Lawrence Livermore National Laboratory.




Video
Click on this image to view the .mp4 video
Chemists want to understand chemical reactions that happen in solutions under high pressure in the Earth’s crust. A new device invented at UC Davis allows chemists to make nuclear magnetic resonance measurements of chemical solutions up to pressures of 20 kiloBar. – Video by Andy Fell/UC Davis Strategic Communications.

New view of Rainier’s volcanic plumbing

This image was made by measuring how the ground conducts or resists electricity in a study co-authored by geophysicist Phil Wannamaker of the University of Utah Energy & Geoscience Institute. It  shows the underground plumbing system that provides molten and partly molten rock to the magma chamber beneath the Mount Rainier volcano in Washington state. The scale at left is miles depth. The scale at bottom is miles from the Pacific Coast. The Juan de Fuca plate of Earth's Pacific seafloor crust and upper mantle is shown in blue on the left half of the image as it dives or 
'subducts' eastward beneath Washington state. The reddish orange and yellow colors represent molten and partly molten rock forming atop the Juan de Fuca plate or 'slab.' The image shows the rock begins to melt about 50 miles beneath Mount Rainier (the red triangle at top). Some is pulled downward and eastward as the slab keeps diving, but other melts move upward to the orange magma chamber shown under but west of Mount Rainier. The line of sensors used to make this image were placed north of the 14,410-foot peak, so the image may be showing a lobe of the magma chamber that extends northwest of the mountain. Red ovals on the left half of the page are the hypocenters of earthquakes. -  R Shane McGary, Woods Hole Oceanographic Institution.
This image was made by measuring how the ground conducts or resists electricity in a study co-authored by geophysicist Phil Wannamaker of the University of Utah Energy & Geoscience Institute. It shows the underground plumbing system that provides molten and partly molten rock to the magma chamber beneath the Mount Rainier volcano in Washington state. The scale at left is miles depth. The scale at bottom is miles from the Pacific Coast. The Juan de Fuca plate of Earth’s Pacific seafloor crust and upper mantle is shown in blue on the left half of the image as it dives or
‘subducts’ eastward beneath Washington state. The reddish orange and yellow colors represent molten and partly molten rock forming atop the Juan de Fuca plate or ‘slab.’ The image shows the rock begins to melt about 50 miles beneath Mount Rainier (the red triangle at top). Some is pulled downward and eastward as the slab keeps diving, but other melts move upward to the orange magma chamber shown under but west of Mount Rainier. The line of sensors used to make this image were placed north of the 14,410-foot peak, so the image may be showing a lobe of the magma chamber that extends northwest of the mountain. Red ovals on the left half of the page are the hypocenters of earthquakes. – R Shane McGary, Woods Hole Oceanographic Institution.

By measuring how fast Earth conducts electricity and seismic waves, a University of Utah researcher and colleagues made a detailed picture of Mount Rainier’s deep volcanic plumbing and partly molten rock that will erupt again someday.

“This is the most direct image yet capturing the melting process that feeds magma into a crustal reservoir that eventually is tapped for eruptions,” says geophysicist Phil Wannamaker, of the university’s Energy & Geoscience Institute and Department of Civil and Environmental Engineering. “But it does not provide any information on the timing of future eruptions from Mount Rainier or other Cascade Range volcanoes.”

The study was published today in the journal Nature by Wannamaker and geophysicists from the Woods Hole Oceanographic Institution in Massachusetts, the College of New Jersey and the University of Bergen, Norway.

In an odd twist, the image appears to show that at least part of Mount Rainier’s partly molten magma reservoir is located about 6 to 10 miles northwest of the 14,410-foot volcano, which is 30 to 45 miles southeast of the Seattle-Tacoma area.

But that could be because the 80 electrical sensors used for the experiment were placed in a 190-mile-long, west-to-east line about 12 miles north of Rainier. So the main part of the magma chamber could be directly under the peak, but with a lobe extending northwest under the line of detectors, Wannamaker says.

The top of the magma reservoir in the image is 5 miles underground and “appears to be 5 to 10 miles thick, and 5 to 10 miles wide in east-west extent,” he says. “We can’t really describe the north-south extent because it’s a slice view.”

Wannamaker estimates the reservoir is roughly 30 percent molten. Magma chambers are like a sponge of hot, soft rock containing pockets of molten rock.

The new image doesn’t reveal the plumbing tying Mount Rainier to the magma chamber 5 miles below it. Instead, it shows water and partly molten and molten rock are generated 50 miles underground where one of Earth’s seafloor crustal plates or slabs is “subducting” or diving eastward and downward beneath the North America plate, and how and where those melts rise to Rainier’s magma chamber.

The study was funded largely by the National Science Foundation’s Earthscope program, which also has made underground images of the United States using seismic or sound-wave tomography, much like CT scans show the body’s interior using X-rays.

The new study used both seismic imaging and magnetotelluric measurements, which make images by showing how electrical and magnetic fields in the ground vary due to differences in how much underground rock and fluids conduct or resist electricity.

Wannamaker says it is the most detailed cross-section view yet under a Cascades volcanic system using electrical and seismic imaging. Earlier seismic images indicated water and partly molten rock atop the diving slab. The new image shows melting “from the surface of the slab to the upper crust, where partly molten magma accumulates before erupting,” he adds.

Wannamaker and Rob L. Evans, of the Woods Hole Oceanographic Institution, conceived the study. First author R Shane McGary – then at Woods Hole and now at the College of New Jersey – did the data analysis. Other co-authors were Jimmy Elsenbeck of Woods Hole and Stéphane Rondenay of the University of Bergen.

Mount Rainier: Hazardous Backdrop to Metropolitan Seattle-Tacoma

Mount Rainier, the tallest peak in the Cascades, “is an active volcano that will erupt again,” says the U.S. Geological Survey. Rainier sits atop volcanic flows up to 36 million years old. An ancestral Rainier existed 2 million to 1 million years ago. Frequent eruptions built the mountain’s modern edifice during the past 500,000 years. During the past 11,000 years, Rainier erupted explosively dozens of times, spewing ash and pumice.

Rainier once was taller until it collapsed during an eruption 5,600 years ago to form a large crater open to the northeast, much like the crater formed by Mount St. Helens’ 1980 eruption. The 5,600-year-old eruption sent a huge mudflow west to Puget Sound, covering parts or all of the present sites of the Port of Tacoma, Seattle suburbs Kent and Auburn, and the towns Puyallup, Orting, Buckley, Sumner and Enumclaw.

Rainier’s last lava flows were 2,200 years ago, the last flows of hot rock and ash were 1,100 years ago and the last big mudflow 500 years ago. There are disputed reports of steam eruptions in the 1800s.

Subduction Made Simple – and a Peek beneath a Peak

The “ring of fire” is a zone of active volcanoes and frequent earthquake activity surrounding the Pacific Ocean. It exists where Earth’s tectonic plates collide – specifically, plates that make up the seafloor converge with plates that carry continents.

From Cape Mendocino in northern California and north past Oregon, Washington state and into British Columbia, an oceanic plate is being pushed eastward and downward – a process called subduction – beneath the North American plate. This relatively small Juan de Fuca plate is located between the huge Pacific plate and the Pacific Northwest.

New seafloor rock – rich with water in cracks and minerals – emerges from an undersea volcanic ridge some 250 miles off the coast, from northern California into British Columbia. That seafloor adds to the western edge of the Juan de Fuca plate and pushes it east-northeast under the Pacific Northwest, as far as Idaho.

The part of the plate diving eastward and downward is called the slab, which ranges from 30 to 60 miles thick as it is jammed under the North American plate. The part of the North American plate above the diving slab is shaped like a wedge.

When the leading, eastern edge of the diving slab descends deep enough, where pressures and temperatures are high, water-bearing minerals such as chlorite and amphibole release water from the slab, and the slab and surrounding mantle rock begin to melt. That is why the Cascade Range of active volcanoes extends north-to-south – above the slab and parallel but about 120 miles inland from the coast – from British Columbia south to Mount Shasta and Lassen Peak in northern California.

In the new image, yellow-orange-red areas correspond to higher electrical conductivity (or lower resistivity) in places where fluids and melts are located.

The underground image produced by the new study shows where water and molten rock accumulate atop the descending slab, and the route they take to the magma chamber that feeds eruptions of Mount Rainier:

– The rock begins to melt atop the slab about 50 miles beneath Mount Rainier. Wannamaker says it is best described as partly molten rock that contains about 2 percent water and “is a mush of crystals within an interlacing a network of molten rock.”

– Some water and partly molten rock actually gets dragged downward atop the descending slab, to depths of 70 miles or more.

– Other partly molten rock rises up through the upper mantle wedge, crosses into the crust at a depth of about 25 miles, and then rises into Rainier’s magma chamber – or at least the lobe of the chamber that crosses under the line of sensors used in the study. Evidence suggests the magma moves upward at least 0.4 inches per year.

– The new magnetotelluric image also shows a shallower zone of fluid perhaps 60 miles west of Rainier and 25 miles deep at the crust-mantle boundary. Wannamaker says it is largely water released from minerals as the slab is squeezed and heated as it dives.

The seismic data were collected during 2008-2009 for other studies. The magnetotelluric data were gathered during 2009-2010 by authors of the new study.

Wannamaker and colleagues placed an east-west line of magnetotelluric sensors: 60 that made one-day measurements and looked as deep as 30 miles into the Earth, and 20 that made measurements for a month and looked at even greater depths.