Study hints that ancient Earth made its own water — geologically

A new study is helping to answer a longstanding question that has recently moved to the forefront of earth science: Did our planet make its own water through geologic processes, or did water come to us via icy comets from the far reaches of the solar system?

The answer is likely “both,” according to researchers at The Ohio State University– and the same amount of water that currently fills the Pacific Ocean could be buried deep inside the planet right now.

At the American Geophysical Union (AGU) meeting on Wednesday, Dec. 17, they report the discovery of a previously unknown geochemical pathway by which the Earth can sequester water in its interior for billions of years and still release small amounts to the surface via plate tectonics, feeding our oceans from within.

In trying to understand the formation of the early Earth, some researchers have suggested that the planet was dry and inhospitable to life until icy comets pelted the earth and deposited water on the surface.

Wendy Panero, associate professor of earth sciences at Ohio State, and doctoral student Jeff Pigott are pursuing a different hypothesis: that Earth was formed with entire oceans of water in its interior, and has been continuously supplying water to the surface via plate tectonics ever since.

Researchers have long accepted that the mantle contains some water, but how much water is a mystery. And, if some geological mechanism has been supplying water to the surface all this time, wouldn’t the mantle have run out of water by now?

Because there’s no way to directly study deep mantle rocks, Panero and Pigott are probing the question with high-pressure physics experiments and computer calculations.

“When we look into the origins of water on Earth, what we’re really asking is, why are we so different than all the other planets?” Panero said. “In this solar system, Earth is unique because we have liquid water on the surface. We’re also the only planet with active plate tectonics. Maybe this water in the mantle is key to plate tectonics, and that’s part of what makes Earth habitable.”

Central to the study is the idea that rocks that appear dry to the human eye can actually contain water–in the form of hydrogen atoms trapped inside natural voids and crystal defects. Oxygen is plentiful in minerals, so when a mineral contains some hydrogen, certain chemical reactions can free the hydrogen to bond with the oxygen and make water.

Stray atoms of hydrogen could make up only a tiny fraction of mantle rock, the researchers explained. Given that the mantle is more than 80 percent of the planet’s total volume, however, those stray atoms add up to a lot of potential water.

In a lab at Ohio State, the researchers compress different minerals that are common to the mantle and subject them to high pressures and temperatures using a diamond anvil cell–a device that squeezes a tiny sample of material between two diamonds and heats it with a laser–to simulate conditions in the deep Earth. They examine how the minerals’ crystal structures change as they are compressed, and use that information to gauge the minerals’ relative capacities for storing hydrogen. Then, they extend their experimental results using computer calculations to uncover the geochemical processes that would enable these minerals to rise through the mantle to the surface–a necessary condition for water to escape into the oceans.

In a paper now submitted to a peer-reviewed academic journal, they reported their recent tests of the mineral bridgmanite, a high-pressure form of olivine. While bridgmanite is the most abundant mineral in the lower mantle, they found that it contains too little hydrogen to play an important role in Earth’s water supply.

Another research group recently found that ringwoodite, another form of olivine, does contain enough hydrogen to make it a good candidate for deep-earth water storage. So Panero and Pigott focused their study on the depth where ringwoodite is found–a place 325-500 miles below the surface that researchers call the “transition zone”–as the most likely region that can hold a planet’s worth of water. From there, the same convection of mantle rock that produces plate tectonics could carry the water to the surface.

One problem: If all the water in ringwoodite is continually drained to the surface via plate tectonics, how could the planet hold any in reserve?

For the research presented at AGU, Panero and Pigott performed new computer calculations of the geochemistry in the lowest portion of the mantle, some 500 miles deep and more. There, another mineral, garnet, emerged as a likely water-carrier–a go-between that could deliver some of the water from ringwoodite down into the otherwise dry lower mantle.

If this scenario is accurate, the Earth may today hold half as much water in its depths as is currently flowing in oceans on the surface, Panero said–an amount that would approximately equal the volume of the Pacific Ocean. This water is continuously cycled through the transition zone as a result of plate tectonics.

“One way to look at this research is that we’re putting constraints on the amount of water that could be down there,” Pigott added.

Panero called the complex relationship between plate tectonics and surface water “one of the great mysteries in the geosciences.” But this new study supports researchers’ growing suspicion that mantle convection somehow regulates the amount of water in the oceans. It also vastly expands the timeline for Earth’s water cycle.

“If all of the Earth’s water is on the surface, that gives us one interpretation of the water cycle, where we can think of water cycling from oceans into the atmosphere and into the groundwater over millions of years,” she said. “But if mantle circulation is also part of the water cycle, the total cycle time for our planet’s water has to be billions of years.”

Study hints that ancient Earth made its own water — geologically

A new study is helping to answer a longstanding question that has recently moved to the forefront of earth science: Did our planet make its own water through geologic processes, or did water come to us via icy comets from the far reaches of the solar system?

The answer is likely “both,” according to researchers at The Ohio State University– and the same amount of water that currently fills the Pacific Ocean could be buried deep inside the planet right now.

At the American Geophysical Union (AGU) meeting on Wednesday, Dec. 17, they report the discovery of a previously unknown geochemical pathway by which the Earth can sequester water in its interior for billions of years and still release small amounts to the surface via plate tectonics, feeding our oceans from within.

In trying to understand the formation of the early Earth, some researchers have suggested that the planet was dry and inhospitable to life until icy comets pelted the earth and deposited water on the surface.

Wendy Panero, associate professor of earth sciences at Ohio State, and doctoral student Jeff Pigott are pursuing a different hypothesis: that Earth was formed with entire oceans of water in its interior, and has been continuously supplying water to the surface via plate tectonics ever since.

Researchers have long accepted that the mantle contains some water, but how much water is a mystery. And, if some geological mechanism has been supplying water to the surface all this time, wouldn’t the mantle have run out of water by now?

Because there’s no way to directly study deep mantle rocks, Panero and Pigott are probing the question with high-pressure physics experiments and computer calculations.

“When we look into the origins of water on Earth, what we’re really asking is, why are we so different than all the other planets?” Panero said. “In this solar system, Earth is unique because we have liquid water on the surface. We’re also the only planet with active plate tectonics. Maybe this water in the mantle is key to plate tectonics, and that’s part of what makes Earth habitable.”

Central to the study is the idea that rocks that appear dry to the human eye can actually contain water–in the form of hydrogen atoms trapped inside natural voids and crystal defects. Oxygen is plentiful in minerals, so when a mineral contains some hydrogen, certain chemical reactions can free the hydrogen to bond with the oxygen and make water.

Stray atoms of hydrogen could make up only a tiny fraction of mantle rock, the researchers explained. Given that the mantle is more than 80 percent of the planet’s total volume, however, those stray atoms add up to a lot of potential water.

In a lab at Ohio State, the researchers compress different minerals that are common to the mantle and subject them to high pressures and temperatures using a diamond anvil cell–a device that squeezes a tiny sample of material between two diamonds and heats it with a laser–to simulate conditions in the deep Earth. They examine how the minerals’ crystal structures change as they are compressed, and use that information to gauge the minerals’ relative capacities for storing hydrogen. Then, they extend their experimental results using computer calculations to uncover the geochemical processes that would enable these minerals to rise through the mantle to the surface–a necessary condition for water to escape into the oceans.

In a paper now submitted to a peer-reviewed academic journal, they reported their recent tests of the mineral bridgmanite, a high-pressure form of olivine. While bridgmanite is the most abundant mineral in the lower mantle, they found that it contains too little hydrogen to play an important role in Earth’s water supply.

Another research group recently found that ringwoodite, another form of olivine, does contain enough hydrogen to make it a good candidate for deep-earth water storage. So Panero and Pigott focused their study on the depth where ringwoodite is found–a place 325-500 miles below the surface that researchers call the “transition zone”–as the most likely region that can hold a planet’s worth of water. From there, the same convection of mantle rock that produces plate tectonics could carry the water to the surface.

One problem: If all the water in ringwoodite is continually drained to the surface via plate tectonics, how could the planet hold any in reserve?

For the research presented at AGU, Panero and Pigott performed new computer calculations of the geochemistry in the lowest portion of the mantle, some 500 miles deep and more. There, another mineral, garnet, emerged as a likely water-carrier–a go-between that could deliver some of the water from ringwoodite down into the otherwise dry lower mantle.

If this scenario is accurate, the Earth may today hold half as much water in its depths as is currently flowing in oceans on the surface, Panero said–an amount that would approximately equal the volume of the Pacific Ocean. This water is continuously cycled through the transition zone as a result of plate tectonics.

“One way to look at this research is that we’re putting constraints on the amount of water that could be down there,” Pigott added.

Panero called the complex relationship between plate tectonics and surface water “one of the great mysteries in the geosciences.” But this new study supports researchers’ growing suspicion that mantle convection somehow regulates the amount of water in the oceans. It also vastly expands the timeline for Earth’s water cycle.

“If all of the Earth’s water is on the surface, that gives us one interpretation of the water cycle, where we can think of water cycling from oceans into the atmosphere and into the groundwater over millions of years,” she said. “But if mantle circulation is also part of the water cycle, the total cycle time for our planet’s water has to be billions of years.”

Earth’s most abundant mineral finally has a name

An ancient meteorite and high-energy X-rays have helped scientists conclude a half century of effort to find, identify and characterize a mineral that makes up 38 percent of the Earth.

And in doing so, a team of scientists led by Oliver Tschauner, a mineralogist at the University of Las Vegas, clarified the definition of the Earth’s most abundant mineral – a high-density form of magnesium iron silicate, now called Bridgmanite – and defined estimated constraint ranges for its formation. Their research was performed at the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE’s Argonne National Laboratory.

The mineral was named after 1964 Nobel laureate and pioneer of high-pressure research Percy Bridgman. The naming does more than fix a vexing gap in scientific lingo; it also will aid our understanding of the deep Earth.

To determine the makeup of the inner layers of the Earth, scientists need to test materials under extreme pressure and temperatures. For decades, scientists have believed a dense perovskite structure makes up 38 percent of the Earth’s volume, and that the chemical and physical properties of Bridgmanite have a large influence on how elements and heat flow through the Earth’s mantle. But since the mineral failed to survive the trip to the surface, no one has been able to test and prove its existence – a requirement for getting a name by the International Mineralogical Association.

Shock-compression that occurs in collisions of asteroid bodies in the solar system create the same hostile conditions of the deep Earth – roughly 2,100 degrees Celsius (3,800 degrees Farenheit) and pressures of about 240,000 times greater than sea-level air pressure. The shock occurs fast enough to inhibit the Bridgmanite breakdown that takes place when it comes under lower pressure, such as the Earth’s surface. Part of the debris from these collisions falls on Earth as meteorites, with the Bridgmanite “frozen” within a shock-melt vein. Previous tests on meteorites using transmission electron microscopy caused radiation damage to the samples and incomplete results.

So the team decided to try a new tactic: non-destructive micro-focused X-rays for diffraction analysis and novel fast-readout area-detector techniques. Tschauner and his colleagues from Caltech and the GeoSoilEnviroCARS, a University of Chicago-operated X-ray beamline at the APS at Argonne National Laboratory, took advantage of the X-rays’ high energy, which gives them the ability to penetrate the meteorite, and their intense brilliance, which leaves little of the radiation behind to cause damage.

The team examined a section of the highly shocked L-chondrite meteorite Tenham, which crashed in Australia in 1879. The GSECARS beamline was optimal for the study because it is one of the nation’s leading locations for conducting high-pressure research.

Bridgmanite grains are rare in the Tenhma meteorite, and they are smaller than 1 micrometer in diameter. Thus the team had to use a strongly focused beam and conduct highly spatially resolved diffraction mapping until an aggregate of Bridgmanite was identified and characterized by structural and compositional analysis.

This first natural specimen of Bridgmanite came with some surprises: It contains an unexpectedly high amount of ferric iron, beyond that of synthetic samples. Natural Bridgmanite also contains much more sodium than most synthetic samples. Thus the crystal chemistry of natural Bridgmanite provides novel crystal chemical insights. This natural sample of Bridgmanite may serve as a complement to experimental studies of deep mantle rocks in the future.

Prior to this study, knowledge about Bridgmanite’s properties has only been based on synthetic samples because it only remains stable below 660 kilometers (410 miles) depth at pressures of above 230 kbar (23 GPa). When it is brought out of the inner Earth, the lower pressures transform it back into less dense minerals. Some scientists believe that some inclusions on diamonds are the marks left by Bridgmanite that changed as the diamonds were unearthed.

The team’s results were published in the November 28 issue of the journal Science as “Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite,” by O. Tschauner at University of Nevada in Las Vegas, N.V.; C. Ma; J.R. Beckett; G.R. Rossman at California Institute of Technology in Pasadena, Calif.; C. Prescher; V.B. Prakapenka at University of Chicago in Chicago, IL.

This research was funded by the U.S. Department of Energy, NASA, and NSF.

Earth’s most abundant mineral finally has a name

An ancient meteorite and high-energy X-rays have helped scientists conclude a half century of effort to find, identify and characterize a mineral that makes up 38 percent of the Earth.

And in doing so, a team of scientists led by Oliver Tschauner, a mineralogist at the University of Las Vegas, clarified the definition of the Earth’s most abundant mineral – a high-density form of magnesium iron silicate, now called Bridgmanite – and defined estimated constraint ranges for its formation. Their research was performed at the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE’s Argonne National Laboratory.

The mineral was named after 1964 Nobel laureate and pioneer of high-pressure research Percy Bridgman. The naming does more than fix a vexing gap in scientific lingo; it also will aid our understanding of the deep Earth.

To determine the makeup of the inner layers of the Earth, scientists need to test materials under extreme pressure and temperatures. For decades, scientists have believed a dense perovskite structure makes up 38 percent of the Earth’s volume, and that the chemical and physical properties of Bridgmanite have a large influence on how elements and heat flow through the Earth’s mantle. But since the mineral failed to survive the trip to the surface, no one has been able to test and prove its existence – a requirement for getting a name by the International Mineralogical Association.

Shock-compression that occurs in collisions of asteroid bodies in the solar system create the same hostile conditions of the deep Earth – roughly 2,100 degrees Celsius (3,800 degrees Farenheit) and pressures of about 240,000 times greater than sea-level air pressure. The shock occurs fast enough to inhibit the Bridgmanite breakdown that takes place when it comes under lower pressure, such as the Earth’s surface. Part of the debris from these collisions falls on Earth as meteorites, with the Bridgmanite “frozen” within a shock-melt vein. Previous tests on meteorites using transmission electron microscopy caused radiation damage to the samples and incomplete results.

So the team decided to try a new tactic: non-destructive micro-focused X-rays for diffraction analysis and novel fast-readout area-detector techniques. Tschauner and his colleagues from Caltech and the GeoSoilEnviroCARS, a University of Chicago-operated X-ray beamline at the APS at Argonne National Laboratory, took advantage of the X-rays’ high energy, which gives them the ability to penetrate the meteorite, and their intense brilliance, which leaves little of the radiation behind to cause damage.

The team examined a section of the highly shocked L-chondrite meteorite Tenham, which crashed in Australia in 1879. The GSECARS beamline was optimal for the study because it is one of the nation’s leading locations for conducting high-pressure research.

Bridgmanite grains are rare in the Tenhma meteorite, and they are smaller than 1 micrometer in diameter. Thus the team had to use a strongly focused beam and conduct highly spatially resolved diffraction mapping until an aggregate of Bridgmanite was identified and characterized by structural and compositional analysis.

This first natural specimen of Bridgmanite came with some surprises: It contains an unexpectedly high amount of ferric iron, beyond that of synthetic samples. Natural Bridgmanite also contains much more sodium than most synthetic samples. Thus the crystal chemistry of natural Bridgmanite provides novel crystal chemical insights. This natural sample of Bridgmanite may serve as a complement to experimental studies of deep mantle rocks in the future.

Prior to this study, knowledge about Bridgmanite’s properties has only been based on synthetic samples because it only remains stable below 660 kilometers (410 miles) depth at pressures of above 230 kbar (23 GPa). When it is brought out of the inner Earth, the lower pressures transform it back into less dense minerals. Some scientists believe that some inclusions on diamonds are the marks left by Bridgmanite that changed as the diamonds were unearthed.

The team’s results were published in the November 28 issue of the journal Science as “Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite,” by O. Tschauner at University of Nevada in Las Vegas, N.V.; C. Ma; J.R. Beckett; G.R. Rossman at California Institute of Technology in Pasadena, Calif.; C. Prescher; V.B. Prakapenka at University of Chicago in Chicago, IL.

This research was funded by the U.S. Department of Energy, NASA, and NSF.

Study of Chile earthquake finds new rock structure that affects earthquake rupture

Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images,  These images revealed a new and previously jknknown rock structure in the Chile fault line. -  Stephen Hicks, University of Liverpool
Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images, These images revealed a new and previously jknknown rock structure in the Chile fault line. – Stephen Hicks, University of Liverpool

Researchers from the University of Liverpool have found an unusual mass of rock deep in the active fault line beneath Chile which influenced the rupture size of a massive earthquake that struck the region in 2010.

The geological structure, which was not previously known about, is unusually dense and large for this depth in the Earth’s crust. The body was revealed using 3-D seismic images of Earth’s interior based on the monitoring of vibrations on the Pacific seafloor caused by aftershocks from the magnitude 8.8 Chile earthquake. This imaging works in a similar way to CT scans that are used in hospitals.

Analysis of the 2010 earthquake also revealed that this structure played a key role in the movement of the fault, causing the rupture to suddenly slow down.

Seismologists think that the block of rock was once part of Earth’s mantle and may have formed around 220 million years ago, during the period of time known as the Triassic.

Liverpool Seismologist, Stephen Hicks from the School of Environmental Sciences, who led the research, said: “It was previously thought that dense geological bodies in an active fault zone may cause more movement of the fault during an earthquake.”

“However, our research suggests that these blocks of rock may in fact cause the earthquake rupture to suddenly slow down. But this slowing down can generate stronger shaking at the surface, which is more damaging to man-made structures.”

“It is now clear that ancient geology plays a big role in the generation of future earthquakes and their subsequent aftershocks.”

Professor Andreas Rietbrock, head of the Earthquake Seismology and Geodynamics research group added: “This work has clearly shown the potential of 3D ‘seismic’ images to further our understanding of the earthquake rupture process.

We are currently establishing the Liverpool Earth Observatory (LEO), which will allow us together with our international partners, to carry out similar studies in other tectonically active regions such as northern Chile, Indonesia, New Zealand and the northwest coast United States. This work is vital for understanding risk exposure in these countries from both ground shaking and tsunamis.”

Chile is located on the Pacific Ring of Fire, where the sinking of tectonic plates generates many of the world’s largest earthquakes.

The 2010 magnitude 8.8 earthquake in Chile is one of the best-recorded earthquakes, giving seismologists the best insight to date into the ruptures of mega-quakes.

###

The research, funded by the Natural Environment Research Council, is published in the journal Earth and Planetary Science Letters.

Study of Chile earthquake finds new rock structure that affects earthquake rupture

Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images,  These images revealed a new and previously jknknown rock structure in the Chile fault line. -  Stephen Hicks, University of Liverpool
Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images, These images revealed a new and previously jknknown rock structure in the Chile fault line. – Stephen Hicks, University of Liverpool

Researchers from the University of Liverpool have found an unusual mass of rock deep in the active fault line beneath Chile which influenced the rupture size of a massive earthquake that struck the region in 2010.

The geological structure, which was not previously known about, is unusually dense and large for this depth in the Earth’s crust. The body was revealed using 3-D seismic images of Earth’s interior based on the monitoring of vibrations on the Pacific seafloor caused by aftershocks from the magnitude 8.8 Chile earthquake. This imaging works in a similar way to CT scans that are used in hospitals.

Analysis of the 2010 earthquake also revealed that this structure played a key role in the movement of the fault, causing the rupture to suddenly slow down.

Seismologists think that the block of rock was once part of Earth’s mantle and may have formed around 220 million years ago, during the period of time known as the Triassic.

Liverpool Seismologist, Stephen Hicks from the School of Environmental Sciences, who led the research, said: “It was previously thought that dense geological bodies in an active fault zone may cause more movement of the fault during an earthquake.”

“However, our research suggests that these blocks of rock may in fact cause the earthquake rupture to suddenly slow down. But this slowing down can generate stronger shaking at the surface, which is more damaging to man-made structures.”

“It is now clear that ancient geology plays a big role in the generation of future earthquakes and their subsequent aftershocks.”

Professor Andreas Rietbrock, head of the Earthquake Seismology and Geodynamics research group added: “This work has clearly shown the potential of 3D ‘seismic’ images to further our understanding of the earthquake rupture process.

We are currently establishing the Liverpool Earth Observatory (LEO), which will allow us together with our international partners, to carry out similar studies in other tectonically active regions such as northern Chile, Indonesia, New Zealand and the northwest coast United States. This work is vital for understanding risk exposure in these countries from both ground shaking and tsunamis.”

Chile is located on the Pacific Ring of Fire, where the sinking of tectonic plates generates many of the world’s largest earthquakes.

The 2010 magnitude 8.8 earthquake in Chile is one of the best-recorded earthquakes, giving seismologists the best insight to date into the ruptures of mega-quakes.

###

The research, funded by the Natural Environment Research Council, is published in the journal Earth and Planetary Science Letters.

Icelandic volcano sits on massive magma hot spot

This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. -  Morten S. Riishuus, Nordic Volcanological Institute
This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. – Morten S. Riishuus, Nordic Volcanological Institute

Spectacular eruptions at Bárðarbunga volcano in central Iceland have been spewing lava continuously since Aug. 31. Massive amounts of erupting lava are connected to the destruction of supercontinents and dramatic changes in climate and ecosystems.

New research from UC Davis and Aarhus University in Denmark shows that high mantle temperatures miles beneath the Earth’s surface are essential for generating such large amounts of magma. In fact, the scientists found that the Bárðarbunga volcano lies directly above the hottest portion of the North Atlantic mantle plume.

The study, published online Oct. 5 and appearing in the November issue of Nature Geoscience, comes from Charles Lesher, professor of Earth and Planetary Science at UC Davis and a visiting professor at Aarhus University, and his former PhD student, Eric Brown, now a post-doctoral scholar at Aarhus University.

“From time to time the Earth’s mantle belches out huge quantities of magma on a scale unlike anything witnessed in historic times,” Lesher said. “These events provide unique windows into the internal working of our planet.”

Such fiery events have produced large igneous provinces throughout Earth’s history. They are often attributed to upwelling of hot, deeply sourced mantle material, or “mantle plumes.”

Recent models have dismissed the role of mantle plumes in the formation of large igneous provinces, ascribing their origin instead to chemical anomalies in the shallow mantle.

Based on the volcanic record in and around Iceland over the last 56 million years and numerical modeling, Brown and Lesher show that high mantle temperatures are essential for generating the large magma volumes that gave rise to the North Atlantic large igneous provinces bordering Greenland and northern Europe.

Their findings further substantiate the critical role of mantle plumes in forming large igneous provinces.

“Our work offers new tools to constrain the physical and chemical conditions in the mantle responsible for large igneous provinces,” Brown said. “There’s little doubt that the mantle is composed of different types of chemical compounds, but this is not the dominant factor. Rather, locally high mantle temperatures are the key ingredient.”

The research was supported by grants from the US National Science Foundation and by the Niels Bohr Professorship funded by Danish National Research Foundation.

Read the full study at http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2264.html.

Icelandic volcano sits on massive magma hot spot

This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. -  Morten S. Riishuus, Nordic Volcanological Institute
This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. – Morten S. Riishuus, Nordic Volcanological Institute

Spectacular eruptions at Bárðarbunga volcano in central Iceland have been spewing lava continuously since Aug. 31. Massive amounts of erupting lava are connected to the destruction of supercontinents and dramatic changes in climate and ecosystems.

New research from UC Davis and Aarhus University in Denmark shows that high mantle temperatures miles beneath the Earth’s surface are essential for generating such large amounts of magma. In fact, the scientists found that the Bárðarbunga volcano lies directly above the hottest portion of the North Atlantic mantle plume.

The study, published online Oct. 5 and appearing in the November issue of Nature Geoscience, comes from Charles Lesher, professor of Earth and Planetary Science at UC Davis and a visiting professor at Aarhus University, and his former PhD student, Eric Brown, now a post-doctoral scholar at Aarhus University.

“From time to time the Earth’s mantle belches out huge quantities of magma on a scale unlike anything witnessed in historic times,” Lesher said. “These events provide unique windows into the internal working of our planet.”

Such fiery events have produced large igneous provinces throughout Earth’s history. They are often attributed to upwelling of hot, deeply sourced mantle material, or “mantle plumes.”

Recent models have dismissed the role of mantle plumes in the formation of large igneous provinces, ascribing their origin instead to chemical anomalies in the shallow mantle.

Based on the volcanic record in and around Iceland over the last 56 million years and numerical modeling, Brown and Lesher show that high mantle temperatures are essential for generating the large magma volumes that gave rise to the North Atlantic large igneous provinces bordering Greenland and northern Europe.

Their findings further substantiate the critical role of mantle plumes in forming large igneous provinces.

“Our work offers new tools to constrain the physical and chemical conditions in the mantle responsible for large igneous provinces,” Brown said. “There’s little doubt that the mantle is composed of different types of chemical compounds, but this is not the dominant factor. Rather, locally high mantle temperatures are the key ingredient.”

The research was supported by grants from the US National Science Foundation and by the Niels Bohr Professorship funded by Danish National Research Foundation.

Read the full study at http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2264.html.

2015 DOE JGI’s science portfolio delves deeper into the Earth’s data mine

The U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science user facility, has announced that 32 new projects have been selected for the 2015 Community Science Program (CSP). From sampling Antarctic lakes to Caribbean waters, and from plant root micro-ecosystems, to the subsurface underneath the water table in forested watersheds, the CSP 2015 projects portfolio highlights diverse environments where DOE mission-relevant science can be extracted.

“These projects catalyze JGI’s strategic shift in emphasis from solving an organism’s genome sequence to enabling an understanding of what this information enables organisms to do,” said Jim Bristow, DOE JGI Science Deputy who oversees the CSP. “To accomplish this, the projects selected combine DNA sequencing with large-scale experimental and computational capabilities, and in some cases include JGI’s new capability to write DNA in addition to reading it. These projects will expand research communities, and help to meet the DOE JGI imperative to translate sequence to function and ultimately into solutions for major energy and environmental problems.”

The CSP 2015 projects were selected by an external review panel from 76 full proposals received that resulted from 85 letters of intent submitted. The total allocation for the CSP 2015 portfolio is expected to exceed 60 trillion bases (terabases or Tb)-or the equivalent of 20,000 human genomes of plant, fungal and microbial genome sequences. The full list of projects may be found at http://jgi.doe.gov/our-projects/csp-plans/fy-2015-csp-plans/. The DOE JGI Community Science Program also accepts proposals for smaller-scale microbial, resequencing and DNA synthesis projects and reviews them twice a year. The CSP advances projects that harness DOE JGI’s capability in massive-scale DNA sequencing, analysis and synthesis in support of the DOE missions in alternative energy, global carbon cycling, and biogeochemistry.

Among the CSP 2015 projects selected is one from Regina Lamendella of Juniata College, who will investigate how microbial communities in Marcellus shale, the country’s largest shale gas field, respond to hydraulic fracturing and natural gas extraction. For example, as fracking uses chemicals, researchers are interested in how the microbial communities can break down environmental contaminants, and how they respond to the release of methane during oil extraction operations.

Some 1,500 miles south from those gas extraction sites, Monica Medina-Munoz of Penn State University will study the effect of thermal stress on the Caribbean coral Orbicella faveolata and the metabolic contribution of its coral host Symbiodinium. The calcium carbonate in coral reefs acts as carbon sinks, but reef health depends on microbial communities. If the photosynthetic symbionts are removed from the coral host, for example, the corals can die and calcification rates decrease. Understanding how to maintain stability in the coral-microbiome community can provide information on the coral’s contribution to the global ocean carbon cycle.

Longtime DOE JGI collaborator Jill Banfield of the University of California (UC), Berkeley is profiling the diversity of microbial communities found in the subsurface from the Rifle aquifer adjacent to the Colorado River. The subsurface is a massive, yet poorly understood, repository of organic carbon as well as greenhouse gases. Another research question, based on having the microbial populations close to both the water table and the river, is how they impact carbon, nitrogen and sulfur cycles. Her project is part of the first coordinated attempt to quantify the metabolic potential of an entire subsurface ecosystem under the aegis of the Lawrence Berkeley National Laboratory’s Subsurface Biogeochemistry Scientific Focus Area.

Banfield also successfully competed for a second CSP project to characterize the tree-root microbial interactions that occur below the soil mantle in the unsaturated zone or vadose zone, which extends into unweathered bedrock. The project’s goal is to understand how microbial communities this deep underground influence tree-based carbon fixation in forested watersheds by the Eel River in northwestern California.

Several fungal projects were selected for the 2015 CSP portfolio, including one led by Kabir Peay of Stanford University. He and his colleagues will study how fungal communities in animal feces decompose organic matter. His project has a stated end goal of developing a model system that emulates the ecosystem at Point Reyes National Seashore, where Tule elk are the largest native herbivores.

Another selected fungal project comes from Timothy James of University of Michigan, who will explore the so-called “dark matter fungi” – those not represented in culture collections. By sequencing several dozen species of unculturable zoosporic fungi from freshwater, soils and animal feces, he and his colleagues hope to develop a kingdom-wide fungal phylogenetic framework.

Christian Wurzbacher of Germany’s the Leibniz Institute of Freshwater Ecology and Inland Fisheries, IGB, will characterize fungi from the deep sea to peatlands to freshwater streams to understand the potentially novel adaptations that are necessary to thrive in their aquatic environments. The genomic information would provide information on their metabolic capabilities for breaking down cellulose, lignin and other plant cell wall components, and animal polymers such as keratin and chitin.

Many of the selected projects focus on DOE JGI Flagship Plant Genomes, with most centered on the poplar (Populus trichocarpa.) For example, longtime DOE JGI collaborator Steve DiFazio of West Virginia University is interested in poplar but will study its reproductive development with the help of a close relative, the willow (Salix purpurea). With its shorter generation time, the plant is a good model system and comparator for understanding sex determination, which can help bioenergy crop breeders by, for example, either accelerating or preventing flowering.

Another project comes from Posy Busby of the University of Washington, who will study the interactions between the poplar tree and its fungal, non-pathogenic symbionts or endophytes. As disease-causing pathogens interact with endophytes in leaves, he noted in his proposal, understanding the roles and functions of endophytes could prove useful to meeting future fuel and food requirements.

Along the lines of poplar endophytes, Carolin Frank at UC Merced will investigate the nitrogen-fixing endophytes in poplar, willow, and pine, with the aim of improving growth in grasses and agricultural crops under nutrient-poor conditions.

Rotem Sorek from the Weizmann Institute of Science in Israel takes a different approach starting from the hypothesis that poplar trees have an adaptive immunity system rooted in genome-encoded immune memory. Through deep sequencing of tissues from single poplar trees (some over a century old, others younger) his team hopes to gain insights into the tree genome’s short-term evolution and how its gene expression profiles change over time, as well as to predict how trees might respond under various climate change scenarios.

Tackling a different DOE JGI Flagship Plant Genome, Debbie Laudencia-Chingcuangco of the USDA-ARS will develop a genome-wide collection of several thousand mutants of the model grass Brachypodium distachyon to help domesticate the grasses that are being considered as candidate bioenergy feedstocks. This work is being done in collaboration with researchers at the Great Lakes Bioenergy Research Center, as the team there considers Brachypodium “critical to achieving its mission of developing productive energy crops that can be easily processed into fuels.”

Continuing the theme of candidate bioenergy grasses, Kankshita Swaminathan from the University of Illinois will study gene expression in polyploidy grasses Miscanthus and sugarcane, comparing them against the closely related diploid grass sorghum to understand how these plants recycle nutrients.

Baohong Zhang of East Carolina University also focused on a bioenergy grass, and his project will look at the microRNAs in switchgrass. These regulatory molecules are each just a couple dozen nucleotides in length and can downregulate (decrease the quantity of) a cellular component. With a library of these small transcripts, he and his team hope to identify the gene expression variation associated with desirable biofuel traits in switchgrass such as increased biomass and responses to drought and salinity stressors.

Nitin Baliga of the Institute of Systems Biology will use DOE JGI genome sequences to build a working model of the networks that regulate lipid accumulation in Chlamydomonas reinhardtii, still another DOE JGI Plant Flagship Genome and a model for characterizing biofuel production by algae.

Other accepted projects include:

The study of the genomes of 32 fungi of the Agaricales order, including 16 fungi to be sequenced for the first time, will be carried out by Jose Maria Barrasa of Spain’s University of Alcala. While many of the basidiomycete fungi involved in wood degradation that have been sequenced are from the Polyporales, he noted in his proposal, many of the fungi involved in breaking down leaf litter and buried wood are from the order Agaricales.

Now at the University of Connecticut, Jonathan Klassen conducted postdoctoral studies at GLBRC researcher Cameron Currie’s lab at University of Wisconsin-Madison. His project will study interactions in ant-microbial community fungus gardens in three states to learn more about how the associated bacterial metagenomes contribute to carbon and nitrogen cycling.

Hinsby Cadillo-Quiroz, at Arizona State University, will conduct a study of the microbial communities in the Amazon peatlands to understand their roles in both emitting greenhouse gases and in storing and cycling carbon. The peatlands are hotspots of soil organic carbon accumulation, and in the tropical regions, they are estimated to hold between 11 percent and 14 percent, or nearly 90 gigatons, of the global carbon stored in soils.

Barbara Campbell, Clemson University will study carbon cycling mechanisms of active bacteria and associated viruses in the freshwater to marine transition zone of the Delaware Bay. Understanding the microbes’ metabolism would help researchers understand they capabilities with regard to dealing with contaminants, and their roles in the nitrogen, sulfur and carbon cycles.

Jim Fredrickson of Pacific Northwest National Laboratory will characterize functional profiles of microbial mats in California, Washington and Yellowstone National Park to understand various functions such as how they produce hydrogen and methane, and break down cellulose.

Joyce Loper of USDA-ARS will carry out a comparative analysis of all Pseudomonas bacteria getting from DOE JGI the sequences of just over 100 type strains to infer a evolutionary history of the this genus — a phylogeny — to characterize the genomic diversity, and determine the distribution of genes linked to key observable traits in this non-uniform group of bacteria.

Holly Simon of Oregon Health & Science University is studying microbial populations in the Columbia River estuary, in part to learn how they enhance greenhouse gas CO2 methane and nitrous oxide production.

Michael Thon from Spain’s University of Salamanca will explore sequences of strains of the Colletotrichum species complex, which include fungal pathogens that infect many crops. One of the questions he and his team will ask is how these fungal strains have adapted to break down the range of plant cell wall compositions.

Kathleen Treseder of UC Irvine will study genes involved in sensitivity to higher temperatures in fungi from a warming experiment in an Alaskan boreal forest. The team’s plan is to fold the genomic information gained into a trait-based ecosystem model called DEMENT to predict carbon dioxide emissions under global warming.

Mary Wildermuth of UC Berkeley will study nearly a dozen genomes of powdery mildew fungi, including three that infect designated bioenergy crops. The project will identify the mechanisms by which the fungi successfully infect plants, information that could lead to the development of crops with improved resistance to fungal infection and limiting fungicide use to allow more sustainable agricultural practices.

Several researchers who have previously collaborated with the DOE JGI have new projects:

Ludmila Chistoserdova from the University of Washington had a pioneering collaboration with the DOE JGI to study microbial communities in Lake Washington. In her new project, she and her team will look at the microbes in the Lake Washington sediment to understand their role in metabolizing the potent greenhouse gas methane.

Rick Cavicchioli of Australia’s University of New South Wales will track how microbial communities change throughout a complete annual cycle in three millennia-old Antarctic lakes and a near-shore marine site. By establishing what the microbes do in different seasons, he noted in his proposal, he and his colleagues hope to learn which microbial processes change and about the factors that control the evolution and speciation of marine-derived communities in cold environments.

With samples collected from surface waters down to the deep ocean, Steve Hallam from Canada’s University of British Columbia will explore metabolic pathways and compounds involved in marine carbon cycling processes to understand how carbon is regulated in the oceans.

The project of Hans-Peter Klenk, of DSMZ in Germany, will generate sequences of 1,000 strains of Actinobacteria, which represent the third most populated bacterial phylum and look for genes that encode cellulose-degrading enzymes or enzymes involved in synthesizing novel, natural products.

Han Wosten of the Netherlands’ Utrecht University will carry out a functional genomics approach to wood degradation by looking at Agaricomycetes, in particular the model white rot fungus Schizophyllum commune and the more potent wood-degrading white rots Phanaerochaete chrysosporium and Pleurotus ostreatus that the DOE JGI has previously sequenced.

Wen-Tso Liu of the University of Illinois and his colleagues want to understand the microbial ecology in anaerobic digesters, key components of the wastewater treatment process. They will study microbial communities in anaerobic digesters from the United States, East Asia and Europe to understand the composition and function of the microbes as they are harnessed for this low-cost municipal wastewater strategy efficiently removes waster and produces methane as a sustainable energy source.

Another project that involves wastewater, albeit indirectly, comes from Erica Young of the University of Wisconsin. She has been studying algae grown in wastewater to track how they use nitrogen and phosphorus, and how cellulose and lipids are produced. Her CSP project will characterize the relationship between the algae and the bacteria that help stabilize these algal communities, particularly the diversity of the bacterial community and the pathways and interactions involved in nutrient uptake and carbon sequestration.

Previous CSP projects and other DOE JGI collaborations are highlighted in some of the DOE JGI Annual User Meeting talks that can be seen here: http://usermeeting.jgi.doe.gov/past-speakers/. The 10th Annual Genomics of Energy and Environment Meeting will be held March 24-26, 2015 in Walnut Creek, Calif. A preliminary speakers list is posted here (http://usermeeting.jgi.doe.gov/) and registration will be opened in the first week of November.

2015 DOE JGI’s science portfolio delves deeper into the Earth’s data mine

The U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science user facility, has announced that 32 new projects have been selected for the 2015 Community Science Program (CSP). From sampling Antarctic lakes to Caribbean waters, and from plant root micro-ecosystems, to the subsurface underneath the water table in forested watersheds, the CSP 2015 projects portfolio highlights diverse environments where DOE mission-relevant science can be extracted.

“These projects catalyze JGI’s strategic shift in emphasis from solving an organism’s genome sequence to enabling an understanding of what this information enables organisms to do,” said Jim Bristow, DOE JGI Science Deputy who oversees the CSP. “To accomplish this, the projects selected combine DNA sequencing with large-scale experimental and computational capabilities, and in some cases include JGI’s new capability to write DNA in addition to reading it. These projects will expand research communities, and help to meet the DOE JGI imperative to translate sequence to function and ultimately into solutions for major energy and environmental problems.”

The CSP 2015 projects were selected by an external review panel from 76 full proposals received that resulted from 85 letters of intent submitted. The total allocation for the CSP 2015 portfolio is expected to exceed 60 trillion bases (terabases or Tb)-or the equivalent of 20,000 human genomes of plant, fungal and microbial genome sequences. The full list of projects may be found at http://jgi.doe.gov/our-projects/csp-plans/fy-2015-csp-plans/. The DOE JGI Community Science Program also accepts proposals for smaller-scale microbial, resequencing and DNA synthesis projects and reviews them twice a year. The CSP advances projects that harness DOE JGI’s capability in massive-scale DNA sequencing, analysis and synthesis in support of the DOE missions in alternative energy, global carbon cycling, and biogeochemistry.

Among the CSP 2015 projects selected is one from Regina Lamendella of Juniata College, who will investigate how microbial communities in Marcellus shale, the country’s largest shale gas field, respond to hydraulic fracturing and natural gas extraction. For example, as fracking uses chemicals, researchers are interested in how the microbial communities can break down environmental contaminants, and how they respond to the release of methane during oil extraction operations.

Some 1,500 miles south from those gas extraction sites, Monica Medina-Munoz of Penn State University will study the effect of thermal stress on the Caribbean coral Orbicella faveolata and the metabolic contribution of its coral host Symbiodinium. The calcium carbonate in coral reefs acts as carbon sinks, but reef health depends on microbial communities. If the photosynthetic symbionts are removed from the coral host, for example, the corals can die and calcification rates decrease. Understanding how to maintain stability in the coral-microbiome community can provide information on the coral’s contribution to the global ocean carbon cycle.

Longtime DOE JGI collaborator Jill Banfield of the University of California (UC), Berkeley is profiling the diversity of microbial communities found in the subsurface from the Rifle aquifer adjacent to the Colorado River. The subsurface is a massive, yet poorly understood, repository of organic carbon as well as greenhouse gases. Another research question, based on having the microbial populations close to both the water table and the river, is how they impact carbon, nitrogen and sulfur cycles. Her project is part of the first coordinated attempt to quantify the metabolic potential of an entire subsurface ecosystem under the aegis of the Lawrence Berkeley National Laboratory’s Subsurface Biogeochemistry Scientific Focus Area.

Banfield also successfully competed for a second CSP project to characterize the tree-root microbial interactions that occur below the soil mantle in the unsaturated zone or vadose zone, which extends into unweathered bedrock. The project’s goal is to understand how microbial communities this deep underground influence tree-based carbon fixation in forested watersheds by the Eel River in northwestern California.

Several fungal projects were selected for the 2015 CSP portfolio, including one led by Kabir Peay of Stanford University. He and his colleagues will study how fungal communities in animal feces decompose organic matter. His project has a stated end goal of developing a model system that emulates the ecosystem at Point Reyes National Seashore, where Tule elk are the largest native herbivores.

Another selected fungal project comes from Timothy James of University of Michigan, who will explore the so-called “dark matter fungi” – those not represented in culture collections. By sequencing several dozen species of unculturable zoosporic fungi from freshwater, soils and animal feces, he and his colleagues hope to develop a kingdom-wide fungal phylogenetic framework.

Christian Wurzbacher of Germany’s the Leibniz Institute of Freshwater Ecology and Inland Fisheries, IGB, will characterize fungi from the deep sea to peatlands to freshwater streams to understand the potentially novel adaptations that are necessary to thrive in their aquatic environments. The genomic information would provide information on their metabolic capabilities for breaking down cellulose, lignin and other plant cell wall components, and animal polymers such as keratin and chitin.

Many of the selected projects focus on DOE JGI Flagship Plant Genomes, with most centered on the poplar (Populus trichocarpa.) For example, longtime DOE JGI collaborator Steve DiFazio of West Virginia University is interested in poplar but will study its reproductive development with the help of a close relative, the willow (Salix purpurea). With its shorter generation time, the plant is a good model system and comparator for understanding sex determination, which can help bioenergy crop breeders by, for example, either accelerating or preventing flowering.

Another project comes from Posy Busby of the University of Washington, who will study the interactions between the poplar tree and its fungal, non-pathogenic symbionts or endophytes. As disease-causing pathogens interact with endophytes in leaves, he noted in his proposal, understanding the roles and functions of endophytes could prove useful to meeting future fuel and food requirements.

Along the lines of poplar endophytes, Carolin Frank at UC Merced will investigate the nitrogen-fixing endophytes in poplar, willow, and pine, with the aim of improving growth in grasses and agricultural crops under nutrient-poor conditions.

Rotem Sorek from the Weizmann Institute of Science in Israel takes a different approach starting from the hypothesis that poplar trees have an adaptive immunity system rooted in genome-encoded immune memory. Through deep sequencing of tissues from single poplar trees (some over a century old, others younger) his team hopes to gain insights into the tree genome’s short-term evolution and how its gene expression profiles change over time, as well as to predict how trees might respond under various climate change scenarios.

Tackling a different DOE JGI Flagship Plant Genome, Debbie Laudencia-Chingcuangco of the USDA-ARS will develop a genome-wide collection of several thousand mutants of the model grass Brachypodium distachyon to help domesticate the grasses that are being considered as candidate bioenergy feedstocks. This work is being done in collaboration with researchers at the Great Lakes Bioenergy Research Center, as the team there considers Brachypodium “critical to achieving its mission of developing productive energy crops that can be easily processed into fuels.”

Continuing the theme of candidate bioenergy grasses, Kankshita Swaminathan from the University of Illinois will study gene expression in polyploidy grasses Miscanthus and sugarcane, comparing them against the closely related diploid grass sorghum to understand how these plants recycle nutrients.

Baohong Zhang of East Carolina University also focused on a bioenergy grass, and his project will look at the microRNAs in switchgrass. These regulatory molecules are each just a couple dozen nucleotides in length and can downregulate (decrease the quantity of) a cellular component. With a library of these small transcripts, he and his team hope to identify the gene expression variation associated with desirable biofuel traits in switchgrass such as increased biomass and responses to drought and salinity stressors.

Nitin Baliga of the Institute of Systems Biology will use DOE JGI genome sequences to build a working model of the networks that regulate lipid accumulation in Chlamydomonas reinhardtii, still another DOE JGI Plant Flagship Genome and a model for characterizing biofuel production by algae.

Other accepted projects include:

The study of the genomes of 32 fungi of the Agaricales order, including 16 fungi to be sequenced for the first time, will be carried out by Jose Maria Barrasa of Spain’s University of Alcala. While many of the basidiomycete fungi involved in wood degradation that have been sequenced are from the Polyporales, he noted in his proposal, many of the fungi involved in breaking down leaf litter and buried wood are from the order Agaricales.

Now at the University of Connecticut, Jonathan Klassen conducted postdoctoral studies at GLBRC researcher Cameron Currie’s lab at University of Wisconsin-Madison. His project will study interactions in ant-microbial community fungus gardens in three states to learn more about how the associated bacterial metagenomes contribute to carbon and nitrogen cycling.

Hinsby Cadillo-Quiroz, at Arizona State University, will conduct a study of the microbial communities in the Amazon peatlands to understand their roles in both emitting greenhouse gases and in storing and cycling carbon. The peatlands are hotspots of soil organic carbon accumulation, and in the tropical regions, they are estimated to hold between 11 percent and 14 percent, or nearly 90 gigatons, of the global carbon stored in soils.

Barbara Campbell, Clemson University will study carbon cycling mechanisms of active bacteria and associated viruses in the freshwater to marine transition zone of the Delaware Bay. Understanding the microbes’ metabolism would help researchers understand they capabilities with regard to dealing with contaminants, and their roles in the nitrogen, sulfur and carbon cycles.

Jim Fredrickson of Pacific Northwest National Laboratory will characterize functional profiles of microbial mats in California, Washington and Yellowstone National Park to understand various functions such as how they produce hydrogen and methane, and break down cellulose.

Joyce Loper of USDA-ARS will carry out a comparative analysis of all Pseudomonas bacteria getting from DOE JGI the sequences of just over 100 type strains to infer a evolutionary history of the this genus — a phylogeny — to characterize the genomic diversity, and determine the distribution of genes linked to key observable traits in this non-uniform group of bacteria.

Holly Simon of Oregon Health & Science University is studying microbial populations in the Columbia River estuary, in part to learn how they enhance greenhouse gas CO2 methane and nitrous oxide production.

Michael Thon from Spain’s University of Salamanca will explore sequences of strains of the Colletotrichum species complex, which include fungal pathogens that infect many crops. One of the questions he and his team will ask is how these fungal strains have adapted to break down the range of plant cell wall compositions.

Kathleen Treseder of UC Irvine will study genes involved in sensitivity to higher temperatures in fungi from a warming experiment in an Alaskan boreal forest. The team’s plan is to fold the genomic information gained into a trait-based ecosystem model called DEMENT to predict carbon dioxide emissions under global warming.

Mary Wildermuth of UC Berkeley will study nearly a dozen genomes of powdery mildew fungi, including three that infect designated bioenergy crops. The project will identify the mechanisms by which the fungi successfully infect plants, information that could lead to the development of crops with improved resistance to fungal infection and limiting fungicide use to allow more sustainable agricultural practices.

Several researchers who have previously collaborated with the DOE JGI have new projects:

Ludmila Chistoserdova from the University of Washington had a pioneering collaboration with the DOE JGI to study microbial communities in Lake Washington. In her new project, she and her team will look at the microbes in the Lake Washington sediment to understand their role in metabolizing the potent greenhouse gas methane.

Rick Cavicchioli of Australia’s University of New South Wales will track how microbial communities change throughout a complete annual cycle in three millennia-old Antarctic lakes and a near-shore marine site. By establishing what the microbes do in different seasons, he noted in his proposal, he and his colleagues hope to learn which microbial processes change and about the factors that control the evolution and speciation of marine-derived communities in cold environments.

With samples collected from surface waters down to the deep ocean, Steve Hallam from Canada’s University of British Columbia will explore metabolic pathways and compounds involved in marine carbon cycling processes to understand how carbon is regulated in the oceans.

The project of Hans-Peter Klenk, of DSMZ in Germany, will generate sequences of 1,000 strains of Actinobacteria, which represent the third most populated bacterial phylum and look for genes that encode cellulose-degrading enzymes or enzymes involved in synthesizing novel, natural products.

Han Wosten of the Netherlands’ Utrecht University will carry out a functional genomics approach to wood degradation by looking at Agaricomycetes, in particular the model white rot fungus Schizophyllum commune and the more potent wood-degrading white rots Phanaerochaete chrysosporium and Pleurotus ostreatus that the DOE JGI has previously sequenced.

Wen-Tso Liu of the University of Illinois and his colleagues want to understand the microbial ecology in anaerobic digesters, key components of the wastewater treatment process. They will study microbial communities in anaerobic digesters from the United States, East Asia and Europe to understand the composition and function of the microbes as they are harnessed for this low-cost municipal wastewater strategy efficiently removes waster and produces methane as a sustainable energy source.

Another project that involves wastewater, albeit indirectly, comes from Erica Young of the University of Wisconsin. She has been studying algae grown in wastewater to track how they use nitrogen and phosphorus, and how cellulose and lipids are produced. Her CSP project will characterize the relationship between the algae and the bacteria that help stabilize these algal communities, particularly the diversity of the bacterial community and the pathways and interactions involved in nutrient uptake and carbon sequestration.

Previous CSP projects and other DOE JGI collaborations are highlighted in some of the DOE JGI Annual User Meeting talks that can be seen here: http://usermeeting.jgi.doe.gov/past-speakers/. The 10th Annual Genomics of Energy and Environment Meeting will be held March 24-26, 2015 in Walnut Creek, Calif. A preliminary speakers list is posted here (http://usermeeting.jgi.doe.gov/) and registration will be opened in the first week of November.