Icelandic volcano sits on massive magma hot spot

This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. -  Morten S. Riishuus, Nordic Volcanological Institute
This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. – Morten S. Riishuus, Nordic Volcanological Institute

Spectacular eruptions at Bárðarbunga volcano in central Iceland have been spewing lava continuously since Aug. 31. Massive amounts of erupting lava are connected to the destruction of supercontinents and dramatic changes in climate and ecosystems.

New research from UC Davis and Aarhus University in Denmark shows that high mantle temperatures miles beneath the Earth’s surface are essential for generating such large amounts of magma. In fact, the scientists found that the Bárðarbunga volcano lies directly above the hottest portion of the North Atlantic mantle plume.

The study, published online Oct. 5 and appearing in the November issue of Nature Geoscience, comes from Charles Lesher, professor of Earth and Planetary Science at UC Davis and a visiting professor at Aarhus University, and his former PhD student, Eric Brown, now a post-doctoral scholar at Aarhus University.

“From time to time the Earth’s mantle belches out huge quantities of magma on a scale unlike anything witnessed in historic times,” Lesher said. “These events provide unique windows into the internal working of our planet.”

Such fiery events have produced large igneous provinces throughout Earth’s history. They are often attributed to upwelling of hot, deeply sourced mantle material, or “mantle plumes.”

Recent models have dismissed the role of mantle plumes in the formation of large igneous provinces, ascribing their origin instead to chemical anomalies in the shallow mantle.

Based on the volcanic record in and around Iceland over the last 56 million years and numerical modeling, Brown and Lesher show that high mantle temperatures are essential for generating the large magma volumes that gave rise to the North Atlantic large igneous provinces bordering Greenland and northern Europe.

Their findings further substantiate the critical role of mantle plumes in forming large igneous provinces.

“Our work offers new tools to constrain the physical and chemical conditions in the mantle responsible for large igneous provinces,” Brown said. “There’s little doubt that the mantle is composed of different types of chemical compounds, but this is not the dominant factor. Rather, locally high mantle temperatures are the key ingredient.”

The research was supported by grants from the US National Science Foundation and by the Niels Bohr Professorship funded by Danish National Research Foundation.

Read the full study at

Textbook theory behind volcanoes may be wrong

In the typical textbook picture, volcanoes, such as those that are forming the Hawaiian islands, erupt when magma gushes out as narrow jets from deep inside Earth. But that picture is wrong, according to a new study from researchers at Caltech and the University of Miami in Florida.

New seismology data are now confirming that such narrow jets don’t actually exist, says Don Anderson, the Eleanor and John R. McMillian Professor of Geophysics, Emeritus, at Caltech. In fact, he adds, basic physics doesn’t support the presence of these jets, called mantle plumes, and the new results corroborate those fundamental ideas.

“Mantle plumes have never had a sound physical or logical basis,” Anderson says. “They are akin to Rudyard Kipling’s ‘Just So Stories’ about how giraffes got their long necks.”

Anderson and James Natland, a professor emeritus of marine geology and geophysics at the University of Miami, describe their analysis online in the September 8 issue of the Proceedings of the National Academy of Sciences.

According to current mantle-plume theory, Anderson explains, heat from Earth’s core somehow generates narrow jets of hot magma that gush through the mantle and to the surface. The jets act as pipes that transfer heat from the core, and how exactly they’re created isn’t clear, he says. But they have been assumed to exist, originating near where the Earth’s core meets the mantle, almost 3,000 kilometers underground-nearly halfway to the planet’s center. The jets are theorized to be no more than about 300 kilometers wide, and when they reach the surface, they produce hot spots.

While the top of the mantle is a sort of fluid sludge, the uppermost layer is rigid rock, broken up into plates that float on the magma-bearing layers. Magma from the mantle beneath the plates bursts through the plate to create volcanoes. As the plates drift across the hot spots, a chain of volcanoes forms-such as the island chains of Hawaii and Samoa.

“Much of solid-Earth science for the past 20 years-and large amounts of money-have been spent looking for elusive narrow mantle plumes that wind their way upward through the mantle,” Anderson says.

To look for the hypothetical plumes, researchers analyze global seismic activity. Everything from big quakes to tiny tremors sends seismic waves echoing through Earth’s interior. The type of material that the waves pass through influences the properties of those waves, such as their speeds. By measuring those waves using hundreds of seismic stations installed on the surface, near places such as Hawaii, Iceland, and Yellowstone National Park, researchers can deduce whether there are narrow mantle plumes or whether volcanoes are simply created from magma that’s absorbed in the sponge-like shallower mantle.

No one has been able to detect the predicted narrow plumes, although the evidence has not been conclusive. The jets could have simply been too thin to be seen, Anderson says. Very broad features beneath the surface have been interpreted as plumes or super-plumes, but, still, they’re far too wide to be considered narrow jets.

But now, thanks in part to more seismic stations spaced closer together and improved theory, analysis of the planet’s seismology is good enough to confirm that there are no narrow mantle plumes, Anderson and Natland say. Instead, data reveal that there are large, slow, upward-moving chunks of mantle a thousand kilometers wide.

In the mantle-plume theory, Anderson explains, the heat that is transferred upward via jets is balanced by the slower downward motion of cooled, broad, uniform chunks of mantle. The behavior is similar to that of a lava lamp, in which blobs of wax are heated from below and then rise before cooling and falling. But a fundamental problem with this picture is that lava lamps require electricity, he says, and that is an outside energy source that an isolated planet like Earth does not have.

The new measurements suggest that what is really happening is just the opposite: Instead of narrow jets, there are broad upwellings, which are balanced by narrow channels of sinking material called slabs. What is driving this motion is not heat from the core, but cooling at Earth’s surface. In fact, Anderson says, the behavior is the regular mantle convection first proposed more than a century ago by Lord Kelvin. When material in the planet’s crust cools, it sinks, displacing material deeper in the mantle and forcing it upward.

“What’s new is incredibly simple: upwellings in the mantle are thousands of kilometers across,” Anderson says. The formation of volcanoes then follows from plate tectonics-the theory of how Earth’s plates move and behave. Magma, which is less dense than the surrounding mantle, rises until it reaches the bottom of the plates or fissures that run through them. Stresses in the plates, cracks, and other tectonic forces can squeeze the magma out, like how water is squeezed out of a sponge. That magma then erupts out of the surface as volcanoes. The magma comes from within the upper 200 kilometers of the mantle and not thousands of kilometers deep, as the mantle-plume theory suggests.

“This is a simple demonstration that volcanoes are the result of normal broad-scale convection and plate tectonics,” Anderson says. He calls this theory “top-down tectonics,” based on Kelvin’s initial principles of mantle convection. In this picture, the engine behind Earth’s interior processes is not heat from the core but cooling at the planet’s surface. This cooling and plate tectonics drives mantle convection, the cooling of the core, and Earth’s magnetic field. Volcanoes and cracks in the plate are simply side effects.

The results also have an important consequence for rock compositions-notably the ratios of certain isotopes, Natland says. According to the mantle-plume idea, the measured compositions derive from the mixing of material from reservoirs separated by thousands of kilometers in the upper and lower mantle. But if there are no mantle plumes, then all of that mixing must have happened within the upwellings and nearby mantle in Earth’s top 1,000 kilometers.

The paper is titled “Mantle updrafts and mechanisms of oceanic volcanism.”

Hot mantle drives elevation, volcanism along mid-ocean ridges

Scientists have found that temperature deep in Earth's mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth's crust. -  Dalton Lab / Brown University
Scientists have found that temperature deep in Earth’s mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth’s crust. – Dalton Lab / Brown University

Scientists have shown that temperature differences deep within Earth’s mantle control the elevation and volcanic activity along mid-ocean ridges, the colossal mountain ranges that line the ocean floor. The findings, published April 4 in the journal Science, shed new light on how temperature in the depths of the mantle influences the contours of the Earth’s crust.

Mid-ocean ridges form at the boundaries between tectonic plates, circling the globe like seams on a baseball. As the plates move apart, magma from deep within the Earth rises up to fill the void, creating fresh crust as it cools. The crust formed at these seams is thicker in some places than others, resulting in ridges with widely varying elevations. In some places, the peaks are submerged miles below the ocean surface. In other places – Iceland, for example – the ridge tops are exposed above the water’s surface.

“These variations in ridge depth require an explanation,” said Colleen Dalton, assistant professor of geological sciences at Brown and lead author of the new research. “Something is keeping them either sitting high or sitting low.”

That something, the study found, is the temperature of rocks deep below Earth’s surface.

By analyzing the speeds of seismic waves generated by earthquakes, the researchers show that mantle temperature along the ridges at depths extending below 400 kilometers varies by as much as 250 degrees Celsius. High points on the ridges tend to be associated with higher mantle temperatures, while low points are associated with a cooler mantle. The study also showed that volcanic hot spots along the ridge – volcanoes near Iceland as well as the islands of Ascension, Tristan da Cunha, and elsewhere – all sit above warm spots in Earth’s mantle.

“It is clear from our results that what’s being erupted at the ridges is controlled by temperature deep in the mantle,” Dalton said. “It resolves a long-standing controversy and has not been shown definitively before.”

A CAT scan of the Earth

The mid-ocean ridges provide geologists with a window to the interior of the Earth. The ridges form when mantle material melts, rises into the cracks between tectonic plates, and solidifies again. The characteristics of the ridges provide clues about the properties of the mantle below.

For example, a higher ridge elevation suggests a thicker crust, which in turn suggests that a larger volume of magma was erupted at the surface. This excess molten rock can be caused by very hot temperatures in the mantle. The problem is that hot mantle is not the only way to produce excess magma. The chemical composition of the rocks in Earth’s mantle also controls how much melt is produced. For certain rock compositions, it is possible to generate large volumes of molten rock under cooler conditions. For many decades it has not been clear whether mid-ocean ridge elevations are caused by variations in the temperature of the mantle or variations in the rock composition of the mantle.

To distinguish between these two possibilities, Dalton and her colleagues introduced two additional data sets. One was the chemistry of basalts, the rock that forms from solidification of magma at the mid-ocean ridge. The chemical composition of basalts differs depending upon the temperature and composition of the mantle material from which they’re derived. The authors analyzed the chemistry of nearly 17,000 basalts formed along mid-ocean ridges around the globe.

The other data set was seismic wave tomography. During earthquakes, seismic waves are sent pulsing through the rocks in the crust and mantle. By measuring the velocity of those waves, scientists can gather data about the characteristics of the rocks through which they traveled. “It’s like performing a CAT scan of the inside of the Earth,” Dalton said.

Seismic wave speeds are especially sensitive to the temperature of rocks. In general, waves propagate more quickly in cooler rocks and more slowly in hotter rocks.

Dalton and her colleagues combined the seismic data from hundreds of earthquakes with data on elevation and rock chemistry from the ridges. Correlations among the three data sets revealed that temperature deep in the mantle varied between around 1,300 and 1,550 degrees Celsius underneath about 61,000 kilometers of ridge terrain. “It turned out,” said Dalton, “that seismic tomography was the smoking gun. The only plausible explanation for the seismic wave speeds is a very large temperature range.”

The study showed that as ridge elevation falls, so does mantle temperature. The coolest point beneath the ridges was found near the lowest point, an area of very deep and rugged seafloor known as the Australian-Antarctic discordance in the Indian Ocean. The hottest spot was near Iceland, which is also the ridges’ highest elevation point.

Iceland is also where scientists have long debated whether a mantle plume – a vertical jet of hot rock originating from deep in the Earth – intersects the mid-ocean ridge. This study provides strong support for a mantle plume located beneath Iceland. In fact, this study showed that all regions with above-average temperature are located near volcanic hot spots, which points to mantle plumes as the culprit for the excess volume of magma in these areas.

Understanding a churning planet

Despite being made of solid rock, Earth’s mantle doesn’t sit still. It undergoes convection, a slow churning of material from the depths of the Earth toward the surface and back again.

“Convection is why we have plate tectonics and earthquakes,” Dalton said. “It’s also responsible for almost all volcanism at the surface. So understanding mantle convection is crucial to understanding many fundamental questions about the Earth.”

Two factors influence how that convection works: variations in the composition of the mantle and variations in its temperature. This work, says Dalton, points to temperature as a primary factor in how convection is expressed on the surface.

“We get consistent and coherent temperature measurements from the mantle from three independent datasets,” Dalton said. “All of them suggest that what we see at the surface is due to temperature, and that composition is only a secondary factor. What is surprising is that the data require the temperature variations to exist not only near the surface but also many hundreds of kilometers deep inside the Earth.”

The findings from this study will also be useful in future research using seismic waves, Dalton says. Because the temperature readings as indicated by seismology were backed up by the other datasets, they can be used to calibrate seismic readings for places where geochemical samples aren’t available. This makes it possible to estimate temperature deep in Earth’s mantle all over the globe.

That will help geologists gain a new insights into how processes deep within the Earth mold the ground beneath our feet.

Danish research center to explore mysteries of Earth’s interior

The DanSeis Centre at the University of Copenhagen has just received a grant of more than ?3 million from the Danish Ministry of Science, Innovation and Higher Education to investigate and tackle one of geoscience’s great mysteries: do mantle plumes, hypothetically buoyant regions of heated mantle material rising towards the earth’s surface, actually exist?

“It is believed that there are roughly 30 mantle plumes scattered about the planet. From them, heated mantle material rises from the Earth’s liquid core, into the lithosphere and towards the crust. Some of the most impressive plumes are presumed to be located beneath Iceland, Hawaii and Yellowstone National Park in the US state of Wyoming – all areas with significant volcanic activity and hot spots. Until now, the sciences have been unable to prove their existence. With the DanSeis Centre and its research staff, we will be equipped to provide new data and settle the question,” says Professor Hans Thybo of the University of Copenhagen’s Department of Geography and Geology (ICG). The Department is behind the DanSeis national instrument centre.

Hundreds of kilometers within the Earth

To solve the mantle plume mystery, Hans Thybo and colleagues will lower advanced seismographic equipment onto the Atlantic seabed in a 1000 km radius surrounding Iceland – well into the zone of Greenland’s bedrock and around the Faroe Islands.

“Using new methods and instruments, we can take geologic measurements much deeper within the Earth than before. Now, down to 500 and 1000 kilometers! Methods in current use, by the oil industry among others, provide information for areas down to between 6 and 10 kilometers,” explains Professor Thybo.

The mantle plume mystery

Determining the existence of mantle plumes has been a fundamental question since the development of plate tectonics in the 1960’s and 70’s. Plate tectonics is a geophysics-geologic theory built upon the premise that Earth’s exterior is divided into plates which shift in relation to one another. Science, the world’s leading scientific journal, regards the mantle plume mystery as the today’s most important geoscientific question. Are mantle plumes a means of transporting heat from the Earth’s core to its surface? Or, is heat from the center of the Earth diffused more evenly throughout the planet’s oceans and continents?

Future oil exploration

Professor Hans Thybo has previously attracted international attention with his examination of Lake Baikal, the planet’s deepest lake, found in Siberia. At the time, tons of dynamite were bored underground and set off at a depth of 70 metres to investigate the unique Baikal Rift Zone, upon which the 1700 metre deep Lake Bailkal is saddled. Rift Zones are elongated geologic depressions, also known as crustal fractures. They can plunge up to ten kilometres into the Earth’s crust and contribute to the fracturing of tectonic plates upon which continents rest.

“The Baikal project allowed us to follow sound waves, produced by explosions, into the Earth’s interior. The same method will be deployed up in Iceland. Using the recordings of earthquake waves and so called ‘air canons’ loaded with compressed air, we will be able to examine the composition of rock deep within the Earth,” explains Thybo, who adds that the technique might also be adapted for oil exploration.

Terrestrial conditions below a depth of 50 kilometres will be investigated by recording the shock waves of distant earthquakes. This monitoring requires that the instruments be stationed on the Atlantic seabed for two years. Beyond their work shedding a vigorous and much anticipated new light upon the mantle plume mystery, DanSeis will also address other basic research challenges, such as investigating the origin of mountains found in the North Atlantic area – Norway and Greenland included.

DanSeis has been awarded ?3.35 million by the Danish Ministry of Science, Innovation and Higher Education. DanSeis is headquartered at the University of Copenhagen’s Department of Geography and Geology and will begin operations from Spring 2012.

Volcanoes deliver 2 flavors of water

Seawater circulation pumps hydrogen and boron into the oceanic plates that make up the seafloor, and some of this seawater remains trapped as the plates descend into the mantle at areas called subduction zones. By analyzing samples of submarine volcanic glass near one of these areas, scientists found unexpected changes in isotopes of hydrogen and boron from the deep mantle. They expected to see the isotope “fingerprint” of seawater. But in volcanoes from the Manus Basin they also discovered evidence of seawater distilled long ago from a more ancient plate descent event, preserved for as long as 1 billion years. The data indicate that these ancient oceanic “slabs” can return to the upper mantle in some areas, and that rates of hydrogen exchange in the deep Earth may not conform to experiments. The research is published in the February 26, 2012, advanced on line publication of Nature Geoscience.

As Carnegie coauthor Erik Hauri explained, “Hydrogen and boron have both light and heavy isotopes. Isotopes are atoms of the same element with different numbers of neutrons. The volcanoes in the Manus Basin are delivering a mixture of heavy and light isotopes that have been observed nowhere else. The mantle under the Manus Basin appears to contain a highly distilled ancient water that is mixing with modern seawater.”

When seawater-soaked oceanic plates descend into the mantle, heavy isotopes of hydrogen and boron are preferentially distilled away from the slab, leaving behind the light isotopes, but also leaving it dry and depleted of these elements, making the “isotope fingerprint” of the distillation process difficult to identify. But this process appears to have been preserved in at least one area: submarine volcanoes in the Manus Basin of Papua New Guinea, which erupted under more than a mile of seawater (2,000 meters). Those pressures trap water from the deep mantle within the volcanic glass.

Lead author Alison Shaw and coauthor Mark Behn, both former Carnegie postdoctoral researchers, recognized another unique feature of the data. Lab experiments have shown very high diffusion rates for hydrogen isotopes, which move through the mantle as tiny protons. This diffusion should have long-ago erased the hydrogen isotope differences observed in the Manus Basin volcanoes.

“That is what we typically see at mid-ocean ridges,” remarked Hauri. “But that is not what we found at Manus Basin. Instead we found a huge range in isotope abundances that indicates hydrogen diffusion in the deep Earth may not be analogous to what is observed in the lab.”

The team’s * finding means is that surface water can be carried into the deep Earth by oceanic plates and be preserved for as long as 1 billion years. They also indicate that the hydrogen diffusion rates in the deep Earth appear to be much slower than experiments show. It further suggests that these ancient slabs may not only return to the upper mantle in areas like the Manus Basin, they may also come back up in hotspot volcanoes like Hawaii that are produced by mantle plumes.

The results are important to understanding how water is transferred and preserved in the mantle and how it and other chemicals are recycled to the surface.

Geological cycle causes biodiversity booms and busts every 60 million years, research suggests

A mysterious cycle of booms and busts in marine biodiversity over the past 500 million years could be tied to a periodic uplifting of the world’s continents, scientists report in the March issue of The Journal of Geology.

The researchers discovered periodic increases in the amount of the isotope strontium-87 found in marine fossils. The timing of these increases corresponds to previously discovered low points in marine biodiversity that occur in the fossil record roughly every 60 million years. Adrian Melott, a Professor of Physics and Astronomy at the University of Kansas and the study’s lead author, thinks these periodic extinctions and the increased amounts Sr-87 are linked.

“Strontium-87 is produced by radioactive decay of another element, rubidium, which is common in igneous rocks in continental crust,” Melott said. “So, when a lot of this type of rock erodes, a lot more Sr-87 is dumped into the ocean, and its fraction rises compared with another strontium isotope, Sr-86.”

An uplifting of the continents, Melott explains, is the most likely explanation for this type of massive erosion event.

“Continental uplift increases erosion in several ways,” he said. “First, it pushes the continental basement rocks containing rubidium up to where they are exposed to erosive forces. Uplift also creates highlands and mountains where glaciers and freeze-thaw cycles erode rock. The steep slopes cause faster water flow in streams and sheet-wash from rains, which strips off the soil and exposes bedrock. Uplift also elevates the deeper-seated igneous rocks where the Sr-87 is sequestered, permitting it to be exposed, eroded, and put into the ocean.”

The massive continental uplift suggested by the strontium data would also reduce sea depth along the continental shelf where most sea animals live. That loss of habitat due to shallow water, Melott and collaborators say, could be the reason for the periodic mass extinctions and periodic decline in diversity found in the marine fossil record.

“What we’re seeing could be evidence of a ‘pulse of the earth’ phenomenon,” Melott said. “There are some theoretical works which suggest that convection of mantle plumes, rather like a lava lamp, should be coordinated in periodic waves.” The result of this convection deep inside the earth could be a rhythmic throbbing-almost like a cartoon thumb smacked with a hammer-that pushes the continents up and down.

Melott’s data suggest that such pulses likely affected the North American continent. The same phenomenon may have affected other continents as well, but more research would be needed to show that, he says.

Researchers discover new force driving Earth’s tectonic plates

A view of the bends of the fracture zones on the Southwest Indian Ridge caused by the slowdown of Africa in response to the Reunion plume head. The image shows the gravity field. -  Scripps Institution of Oceanography,UC San Diego
A view of the bends of the fracture zones on the Southwest Indian Ridge caused by the slowdown of Africa in response to the Reunion plume head. The image shows the gravity field. – Scripps Institution of Oceanography,UC San Diego

Bringing fresh insight into long-standing debates about how powerful geological forces shape the planet, from earthquake ruptures to mountain formations, scientists at Scripps Institution of Oceanography at UC San Diego have identified a new mechanism driving Earth’s massive tectonic plates.

Scientists who study tectonic motions have known for decades that the ongoing “pull” and “push” movements of the plates are responsible for sculpting continental features around the planet. Volcanoes, for example, are generally located at areas where plates are moving apart or coming together. Scripps scientists Steve Cande and Dave Stegman have now discovered a new force that drives plate tectonics: Plumes of hot magma pushing up from Earth’s deep interior. Their research is published in the July 7 issue of the journal Nature.

Using analytical methods to track plate motions through Earth’s history, Cande and Stegman’s research provides evidence that such mantle plume “hot spots,” which can last for tens of millions of years and are active today at locations such as Hawaii, Iceland and the Galapagos, may work as an additional tectonic driver, along with push-pull forces.

Their new results describe a clear connection between the arrival of a powerful mantle plume head around 70 million years ago and the rapid motion of the Indian plate that was pushed as a consequence of overlying the plume’s location. The arrival of the plume also created immense formations of volcanic rock now called the “Deccan flood basalts” in western India, which erupted just prior to the mass extinction of dinosaurs. The Indian continent has since drifted north and collided with Asia, but the original location of the plume’s arrival has remained volcanically active to this day, most recently having formed Réunion island near Madagascar.

The team also recognized that this “plume-push” force acted on other tectonic plates, and pushed on Africa as well but in the opposite direction.

“Prior to the plume’s arrival, the African plate was slowly drifting but then stops altogether, at the same time the Indian speeds up,” explains Stegman, an assistant professor of geophysics in Scripps’ Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics. “It became clear the motion of the Indian and African plates were synchronized and the Réunion hotspot was the common link.”

After the force of the plume had waned, the African plate’s motion gradually returned to its previous speed while India slowed down.

“There is a dramatic slow down in the northwards motion of the Indian plate around 50 million years ago that has long been attributed to the initial collision of India with the Eurasian plate,” said Cande, a professor of marine geophysics in the Geosciences Research Division at Scripps. “An implication of our study is that the slow down might just reflect the waning of the mantle plume-the actual collision might have occurred a little later.”