Mercyhurst, Vanderbilt research targets supervolcanoes

The National Science Foundation has awarded Mercyhurst and Vanderbilt universities a $354,000 grant to engage students in researching one of Earth’s rarest yet deadliest acts — the eruption of a supervolcano.

The Research Experience for Undergraduates (REU) three-year project will take 10-12 students per year into northwest Arizona to study an extinct supervolcano. Students will select their own research pursuit, follow up with lab work at either Mercyhurst or Vanderbilt and, ultimately, present their findings at a national conference.

“The emphasis of this project is to engage students in scientific research, which is consistent with Mercyhurst’s commitment to hands-on learning,” said principal investigator Nick Lang, Ph.D., an assistant professor of geology at Mercyhurst. His project colleague at Vanderbilt is Lily Claiborne, Ph.D.

Lang said the research initiative targets students from diverse backgrounds. “We are looking for talented students, with a particular emphasis on returning veterans, first-generation college students and minorities who will do original research and contribute to the large body of work on supervolcanoes,” he said.

Comprehending what led to supereruptions in the past is essential to understanding and predicting similar events. A supereruption, Lang said, is a volcanic explosion that erupts a volume of material greater than 1,000 km3. This can be about a thousand times larger than normal volcanic eruptions. The deadly 1980 Mount St. Helens explosion, for instance, ejected only 1 cubic km3 of volcanic material, Lang said.

The 10-12 students chosen to participate in each of the three years will hone their geology field skills by investigating the Silver Creek caldera, which produced the Peach Spring Tuff (PST) supereruption nearly 19 million years ago. The PST is exposed over 32,000 km² of western Arizona, southeastern California and southern Nevada.

Students studying the region’s geologic record will guide their research around questions like: What does a supervolcano look like before it erupts? How and why do large magmatic systems change over time? How does supereruptive magmatism (ex., PST) compare with typical-scale magmatism (ex., Mt.St. Helens)?

Lang said he is eager to get started on the research, which will begin in late December or early January in Arizona followed by another field session in the summer. Students will also complete their lab work during the summer, attending either Mercyhurst or Vanderbilt.

“This is an exciting opportunity for us because these grants (National Science Foundation) are difficult to obtain,” Lang said. “The success rate for a project to be funded is 20 to 25 percent.”

Mercyhurst, Vanderbilt research targets supervolcanoes

The National Science Foundation has awarded Mercyhurst and Vanderbilt universities a $354,000 grant to engage students in researching one of Earth’s rarest yet deadliest acts — the eruption of a supervolcano.

The Research Experience for Undergraduates (REU) three-year project will take 10-12 students per year into northwest Arizona to study an extinct supervolcano. Students will select their own research pursuit, follow up with lab work at either Mercyhurst or Vanderbilt and, ultimately, present their findings at a national conference.

“The emphasis of this project is to engage students in scientific research, which is consistent with Mercyhurst’s commitment to hands-on learning,” said principal investigator Nick Lang, Ph.D., an assistant professor of geology at Mercyhurst. His project colleague at Vanderbilt is Lily Claiborne, Ph.D.

Lang said the research initiative targets students from diverse backgrounds. “We are looking for talented students, with a particular emphasis on returning veterans, first-generation college students and minorities who will do original research and contribute to the large body of work on supervolcanoes,” he said.

Comprehending what led to supereruptions in the past is essential to understanding and predicting similar events. A supereruption, Lang said, is a volcanic explosion that erupts a volume of material greater than 1,000 km3. This can be about a thousand times larger than normal volcanic eruptions. The deadly 1980 Mount St. Helens explosion, for instance, ejected only 1 cubic km3 of volcanic material, Lang said.

The 10-12 students chosen to participate in each of the three years will hone their geology field skills by investigating the Silver Creek caldera, which produced the Peach Spring Tuff (PST) supereruption nearly 19 million years ago. The PST is exposed over 32,000 km² of western Arizona, southeastern California and southern Nevada.

Students studying the region’s geologic record will guide their research around questions like: What does a supervolcano look like before it erupts? How and why do large magmatic systems change over time? How does supereruptive magmatism (ex., PST) compare with typical-scale magmatism (ex., Mt.St. Helens)?

Lang said he is eager to get started on the research, which will begin in late December or early January in Arizona followed by another field session in the summer. Students will also complete their lab work during the summer, attending either Mercyhurst or Vanderbilt.

“This is an exciting opportunity for us because these grants (National Science Foundation) are difficult to obtain,” Lang said. “The success rate for a project to be funded is 20 to 25 percent.”

Subduction channel processes: New progress in plate tectonic theory

Two processes occur at the slab-mantle interface in continental subduction channel, with (a) physical mixing to produce the tectonic mélange of metamorphic rocks, and (b) chemical reaction of the overlying subcontinental lithospheric mantle (SCLM) wedge with aqueous fluid and hydrous melt from subducting continental crust. -  ©Science China Press
Two processes occur at the slab-mantle interface in continental subduction channel, with (a) physical mixing to produce the tectonic mélange of metamorphic rocks, and (b) chemical reaction of the overlying subcontinental lithospheric mantle (SCLM) wedge with aqueous fluid and hydrous melt from subducting continental crust. – ©Science China Press

The plate tectonic theory has been primarily developed in three stages. (1) From continental drift and seafloor spreading to oceanic subduction, laying a physical foundation of the plate tectonic theory. This was achieved by the recognitions that continents would be assembled to build a supercontinent Pangea with subsequent breakup to yield the present configuration, lithospheric plates buoyantly move on the asthenospheric mantle, and oceanic crust is subducted along trenches into the mantle. (2) From oceanic subduction to continental subduction and collision orogeny, with the first round of revolution to the plate tectonic theory due to the recognition of continental deep subduction to mantle depths. While deeply subducted oceanic crust was processed in the mantle and the returned to the surface by mafic magmatism, deeply subducted continental crust underwent ultrahigh pressure metamorphism at mantle depths and then exhumed to the surface as coherent mélanges. This provides a geodynamic framework of tectonic processes for continental accretion and assemblage through arc-continent and continent-continent collision orogenies. (3) From continental collision and marginal orogeny to intracontinental reworking, emphasizing the inheritance of orogenic materials in postcollisional stages. While continental collision results in continental accretion through marginal orogeny, intercontinental orogens are converted to intracontinental orogens. The deeply subducted continental crust is processed in subduction channel underlying the mantle wedge, with partial return to the surface. These have thrown new lights on developing the plate tectonic theory to encompass the continental tectonics, and thus directed further study toward solution to such questions as how thinning of the orogenic lithosphere and upwelling of the asthenospheric mantle affect postcollisional reworking of the intracontinental materials.

Finding of ultrahigh pressure index minerals such as coesite and diamond in metamorphic rocks of continental supercrustal protolith demonstrate that these rock were subducted to mantle depths for ultrahigh pressure metamorphism and then returned back to the surface. The recognition of continental deep subduction by Earth scientists has not only developed the plate tectonic theory, but also expanded the chemical geodynamics focusing on the recycling of crustal material. The study of ultrahigh pressure metamorphic rocks has made prominent progress in many aspects, achieving the recognitions that the processes of continental seduction and exhumation have caused not only various types of structural deformation and mineralogical reaction but also different extents of metamorphic dehydration and partial melting (Fig. 1). By means of studying various rocks in continental collision orogens, Earth scientists have set the geodynamic link between the subduction and exhumation of continental crust and the building of collision orogens. Furthermore, it is established that bulk melting of the deeply subducted continental crust gives rise to granitic rocks whereas partial melting of the subducting supracrustal rocks produces felsic melt that reacts with the overlying mantle wedge peridotite to generate fertile and enriched mantle sources for mafic magmatism after their storage in different periods.

A research team at School of Earth and Space Sciences in University of Science and Technology of China has taken the rocks of continental collision orogens as the object, and performed a great deal of investigations from field observations and laboratory analyses. This leads to a tectonic analysis of geological processes in continental subduction factory, which is published in Chinese Science Bulletin 2013 (26) in the title “Continental subduction channel processes: Plate interface interaction during continental collision”. Leader of this team is Professor ZHENG Yongfei, Academician of the Chinese Academy of Sciences at Key Laboratory of Crust-Mantle Materials and Environments. Major participants are Prof. ZHAO Zifu and Dr. CHEN Yixiang. Earth scientists of China have made a series of prominent progresses in the forefront and hotspot field of subduction channel, and their studies have exemplified successful applications of new techniques, new methods and new ideas to development of the plate tectonic theory.

The recognition of continental deep subduction and ultrahigh pressure metamorphism has provided not only a turning point in developing the plate tectonic theory, but also an excellent opportunity to study the time and mechanism of reworking continental lithosphere. It is intriguing to ask the following questions: (1) how are crustal slices detached at different depths and exhumed during continental subduction? (2) how do physical mixing and chemical reaction proceed between the deeply subducted crust and the overlying mantle wedge? (3) how are energy exchange and matter transfer realized at the plate interface of subduction zone? Prof. Zheng said, to study subduction channel processes, to determine the physical mixing and chemical reaction between the deeply subducted crust and the overlying mantle wedge under ultrahigh pressure conditions, and to understand the interaction at the plate interface of continental subduction zone and its associated fluid action and element transport, are a key to unravel such mysteries of Earth.

Subduction channel processes: New progress in plate tectonic theory

Two processes occur at the slab-mantle interface in continental subduction channel, with (a) physical mixing to produce the tectonic mélange of metamorphic rocks, and (b) chemical reaction of the overlying subcontinental lithospheric mantle (SCLM) wedge with aqueous fluid and hydrous melt from subducting continental crust. -  ©Science China Press
Two processes occur at the slab-mantle interface in continental subduction channel, with (a) physical mixing to produce the tectonic mélange of metamorphic rocks, and (b) chemical reaction of the overlying subcontinental lithospheric mantle (SCLM) wedge with aqueous fluid and hydrous melt from subducting continental crust. – ©Science China Press

The plate tectonic theory has been primarily developed in three stages. (1) From continental drift and seafloor spreading to oceanic subduction, laying a physical foundation of the plate tectonic theory. This was achieved by the recognitions that continents would be assembled to build a supercontinent Pangea with subsequent breakup to yield the present configuration, lithospheric plates buoyantly move on the asthenospheric mantle, and oceanic crust is subducted along trenches into the mantle. (2) From oceanic subduction to continental subduction and collision orogeny, with the first round of revolution to the plate tectonic theory due to the recognition of continental deep subduction to mantle depths. While deeply subducted oceanic crust was processed in the mantle and the returned to the surface by mafic magmatism, deeply subducted continental crust underwent ultrahigh pressure metamorphism at mantle depths and then exhumed to the surface as coherent mélanges. This provides a geodynamic framework of tectonic processes for continental accretion and assemblage through arc-continent and continent-continent collision orogenies. (3) From continental collision and marginal orogeny to intracontinental reworking, emphasizing the inheritance of orogenic materials in postcollisional stages. While continental collision results in continental accretion through marginal orogeny, intercontinental orogens are converted to intracontinental orogens. The deeply subducted continental crust is processed in subduction channel underlying the mantle wedge, with partial return to the surface. These have thrown new lights on developing the plate tectonic theory to encompass the continental tectonics, and thus directed further study toward solution to such questions as how thinning of the orogenic lithosphere and upwelling of the asthenospheric mantle affect postcollisional reworking of the intracontinental materials.

Finding of ultrahigh pressure index minerals such as coesite and diamond in metamorphic rocks of continental supercrustal protolith demonstrate that these rock were subducted to mantle depths for ultrahigh pressure metamorphism and then returned back to the surface. The recognition of continental deep subduction by Earth scientists has not only developed the plate tectonic theory, but also expanded the chemical geodynamics focusing on the recycling of crustal material. The study of ultrahigh pressure metamorphic rocks has made prominent progress in many aspects, achieving the recognitions that the processes of continental seduction and exhumation have caused not only various types of structural deformation and mineralogical reaction but also different extents of metamorphic dehydration and partial melting (Fig. 1). By means of studying various rocks in continental collision orogens, Earth scientists have set the geodynamic link between the subduction and exhumation of continental crust and the building of collision orogens. Furthermore, it is established that bulk melting of the deeply subducted continental crust gives rise to granitic rocks whereas partial melting of the subducting supracrustal rocks produces felsic melt that reacts with the overlying mantle wedge peridotite to generate fertile and enriched mantle sources for mafic magmatism after their storage in different periods.

A research team at School of Earth and Space Sciences in University of Science and Technology of China has taken the rocks of continental collision orogens as the object, and performed a great deal of investigations from field observations and laboratory analyses. This leads to a tectonic analysis of geological processes in continental subduction factory, which is published in Chinese Science Bulletin 2013 (26) in the title “Continental subduction channel processes: Plate interface interaction during continental collision”. Leader of this team is Professor ZHENG Yongfei, Academician of the Chinese Academy of Sciences at Key Laboratory of Crust-Mantle Materials and Environments. Major participants are Prof. ZHAO Zifu and Dr. CHEN Yixiang. Earth scientists of China have made a series of prominent progresses in the forefront and hotspot field of subduction channel, and their studies have exemplified successful applications of new techniques, new methods and new ideas to development of the plate tectonic theory.

The recognition of continental deep subduction and ultrahigh pressure metamorphism has provided not only a turning point in developing the plate tectonic theory, but also an excellent opportunity to study the time and mechanism of reworking continental lithosphere. It is intriguing to ask the following questions: (1) how are crustal slices detached at different depths and exhumed during continental subduction? (2) how do physical mixing and chemical reaction proceed between the deeply subducted crust and the overlying mantle wedge? (3) how are energy exchange and matter transfer realized at the plate interface of subduction zone? Prof. Zheng said, to study subduction channel processes, to determine the physical mixing and chemical reaction between the deeply subducted crust and the overlying mantle wedge under ultrahigh pressure conditions, and to understand the interaction at the plate interface of continental subduction zone and its associated fluid action and element transport, are a key to unravel such mysteries of Earth.

Could Siberian volcanism have caused the Earth’s largest extinction event?

Around 250 million years ago, at the end of the Permian geologic period, there was a mass extinction so severe that it remains the most traumatic known species die-off in Earth’s history. Although the cause of this event is a mystery, it has been speculated that the eruption of a large swath of volcanic rock in Russia called the Siberian Traps was a trigger for the extinction. New research from Carnegie’s Linda Elkins-Tanton and her co-authors offers insight into how this volcanism could have contributed to drastic deterioration in the global environment of the period. Their work is published January 9 in Earth and Planetary Science Letters.

The end-Permian mass extinction saw the sudden loss of more than 90 percent of marine species and more than 70 percent of terrestrial species. The fossil record suggests that ecological diversity did not fully recover until several million years after the main pulse of the extinction. This suggests that environmental conditions remained inhospitable for an extended period of time.

Volcanic activity in the Siberian Traps has been proposed as one of the mechanisms that may have triggered the mass extinction. Gases released as a result of Siberian magmatism could have caused environmental damage. For example, perhaps sulfur particles in the atmosphere reflected the sun’s heat back into space, cooling the planet; or maybe chlorine and other chemically similar nonmetal elements called halogens significantly damaged the ozone layer in the stratosphere.

The team designed experiments to examine these possibilities.

Led by Benjamin Black of the Massachusetts Institute of Technology, the group included Elkins-Tanton, formerly of MIT and now director of Carnegie’s Department of Terrestrial Magnetism, Michael C. Rowe of Washington State University, and Ingrid Ukstins Peate of the University of Iowa.

The geology of the Siberian Traps is comprised of flood basalts, which form when giant lava eruptions coat large swaths of land or ocean floor with basaltic lava. This lava hardens into rock formations. The team investigated concentrations of sulfur, chlorine and fluorine (another halogen) that were dissolved in tiny samples of ancient magma found within basalt samples from the Siberian Traps. These small frozen droplets, which preserve a record of volcanic gases from the time of the eruption 250 million years ago, are called melt inclusions.

Sulfur, chlorine, and fluorine gasses could have been released into the atmosphere from eruptions spewing out of large fissures, which is common in basalt flood formation. Plumes escaping from these cracks could have reached the stratosphere. If sulfur, chlorine, and fluorine made it to the upper atmosphere, these gasses could have cause a wide array of adverse climate events, including temperature change and acid rain.

Based on their findings, the team estimated that between 6,300 and 7,800 gigatonnes of sulfur, between 3,400 and 8,700 gigatonnes of chlorine, and between 7,100 and 13,700 gigatonnes of fluorine were released from magma in the Siberian Traps during the end of the Permian period.

They say more research on atmospheric chemistry and climate modeling is urgently needed to determine whether these gasses could have been responsible for the mass extinction.