The Atlantic Ocean dances with the sun and volcanoes

Imagine a ballroom in which two dancers apparently keep in time to their own individual rhythm. The two partners suddenly find themselves moving to the same rhythm and, after a closer look, it is clear to see which one is leading.

It was an image like this that researchers at Aarhus University were able to see when they compared studies of solar energy release and volcanic activity during the last 450 years, with reconstructions of ocean temperature fluctuations during the same period.

The results actually showed that during the last approximately 250 years – since the period known as the Little Ice Age – a clear correlation can be seen where the external forces, i.e. the Sun’s energy cycle and the impact of volcanic eruptions, are accompanied by a corresponding temperature fluctuation with a time lag of about five years.

In the previous two centuries, i.e. during the Little Ice Age, the link was not as strong, and the temperature of the Atlantic Ocean appears to have followed its own rhythm to a greater extent.

The results were recently published in the scientific journal Nature Communications.

In addition to filling in yet another piece of the puzzle associated with understanding the complex interaction of the natural forces that control the climate, the Danish researchers paved the way for linking the two competing interpretations of the origin of the oscillation phenomenon.

Temperature fluctuations discovered around the turn of the millennium

The climate is defined on the basis of data including mean temperature values recorded over a period of thirty years. Northern Europe thus has a warm and humid climate compared with other regions on the same latitudes. This is due to the North Atlantic Drift (often referred to as the Gulf Stream), an ocean current that transports relatively warm water from the south-west part of the North Atlantic to the sea off the coast of Northern Europe.

Around the turn of the millennium, however, climate researchers became aware that the average temperature of the Atlantic Ocean was not entirely stable, but actually fluctuated at the same rate throughout the North Atlantic. This phenomenon is called the Atlantic Multidecadal Oscillation (AMO), which consists of relatively warm periods lasting thirty to forty years being replaced by cool periods of the same duration.

The researchers were able to read small systematic variations in the water temperature in the North Atlantic in measurements taken by ships during the last 140 years.

Although the temperature fluctuations are small – less than 1°C – there is a general consensus among climate researchers that the AMO phenomenon has had a major impact on the climate in the area around the North Atlantic for thousands of years, but until now there has been doubt about what could cause this slow rhythm in the temperature of the Atlantic Ocean. One model explains the phenomenon as internal variability in the ocean circulation – somewhat like a bathtub sloshing water around in its own rhythm. Another model explains the AMO as being driven by fluctuations in the amount of solar energy received by the Earth, and as being affected by small changes in the energy radiated by the Sun itself and the after-effects of volcanic eruptions. Both these factors are also known as ‘external forces’ that have an impact on the Earth’s radiation balance.

However, there has been considerable scepticism towards the idea that a phenomenon such as an AMO could be driven by external forces at all – a scepticism that the Aarhus researchers now demonstrate as unfounded.

“Our new investigations clearly show that, since the Little Ice Age, there has been a correlation between the known external forces and the temperature fluctuations in the ocean that help control our climate. At the same time, however, the results also show that this can’t be the only driving force behind the AMO, and the explanation must therefore be found in a complex interaction between a number of mechanisms. It should also be pointed out that these fluctuations occur on the basis of evenly increasing ocean temperatures during the last approximately fifty years – an increase connected with global warming,” says Associate Professor Mads Faurschou Knudsen, Department of Geoscience, Aarhus University, who is the main author of the article.

Convincing data from the Earth’s own archives

Researchers have attempted to make computer simulations of the phenomenon ever since the discovery of the AMO, partly to enable a better understanding of the underlying mechanism. However, it is difficult for the computer models to reproduce the actual AMO signal that can be read in the temperature data from the last 140 years.

Associate Professor Knudsen and his colleagues instead combined all available data from the Earth’s own archives, i.e. previous studies of items such as radioactive isotopes and volcanic ash in ice cores. This provides information about solar energy release and volcanic activity during the last 450 years, and the researchers compared the data with reconstructions of the AMO’s temperature rhythm during the same period.

“We’ve only got direct measurements of the Atlantic Ocean temperature for the last 140 years, where it was measured by ships. But how do you measure the water temperature further back in time? Studies of growth rings in trees from the entire North Atlantic region come into the picture here, where ‘good’ and ‘bad’ growth conditions are calibrated to the actual measurements, and the growth rings from trees along the coasts further back in time can therefore act as reserve thermometers,” explains Associate Professor Knudsen.

The results provide a new and very important perspective on the AMO phenomenon because they are based on data and not computer models, which are inherently incomplete. The problem is that the models do not completely describe all the physical correlations and feedbacks in the system, partly because these are not fully understood. And when the models are thus unable to reproduce the actual AMO signal, it is hard to know whether they have captured the essence of the AMO phenomenon.

Impact of the sun and volcanoes

An attempt to simply explain how external forces such as the Sun and volcanoes can control the climate could sound like this: a stronger Sun heats up the ocean, while the ash from volcanic eruptions shields the Sun and cools down the ocean. However, it is hardly as simple as that.

“Fluctuations in ocean temperature have a time lag of about five years in relation to the peaks we can read in the external forces. However, the direct effect of major volcanic eruptions is clearly seen as early as the same year in the mean global atmospheric temperature, i.e. a much shorter delay. The effect we studied is more complex, and it takes time for this effect to spread to the ocean currents,” explains Associate Professor Knudsen.

“An interesting new theory among solar researchers and meteorologists is that the Sun can control climate variations via the very large variations in UV radiation, which are partly seen in connection with changes in sunspot activity during the Sun’s eleven-year cycle. UV radiation heats the stratosphere in particular via increased production of ozone, which can have an impact on wind systems and thereby indirectly on the global ocean currents as well,” says Associate Professor Knudsen. However, he emphasises that researchers have not yet completely understood how a development in the stratosphere can affect the ocean currents on Earth.

Towards a better understanding of the climate

“In our previous study of the climate in the North Atlantic region during the last 8,000 years, we were able to show that the temperature of the Atlantic Ocean was presumably not controlled by the Sun’s activity. Here the temperature fluctuated in its own rhythm for long intervals, with warm and cold periods lasting 25 years. The prevailing pattern was that this climate fluctuation in the ocean was approximately 30󈞔% faster than the fluctuation we’d previously observed in solar activity, which lasted about ninety years. What we can now see is that the Atlantic Ocean would like to – or possibly even prefer to – dance alone. However, under certain circumstances, the external forces interrupt the ocean’s own rhythm and take over the lead, which has been the case during the last 250 years,” says Associate Professor Bo Holm Jacobsen, Department of Geoscience, Aarhus University, who is the co-author of the article.

“It’ll be interesting to see how long the Atlantic Ocean allows itself to be led in this dance. The scientific challenge partly lies in understanding the overall conditions under which the AMO phenomenon is sensitive to fluctuations in solar activity and volcanic eruptions,” he continues.

“During the last century, the AMO has had a strong bearing on significant weather phenomena such as hurricane frequency and droughts – with considerable economic and human consequences. A better understanding of this phenomenon is therefore an important step for efforts to deal with and mitigate the impact of climate variations,” Associate Professor Knudsen concludes.

The Atlantic Ocean dances with the sun and volcanoes

Imagine a ballroom in which two dancers apparently keep in time to their own individual rhythm. The two partners suddenly find themselves moving to the same rhythm and, after a closer look, it is clear to see which one is leading.

It was an image like this that researchers at Aarhus University were able to see when they compared studies of solar energy release and volcanic activity during the last 450 years, with reconstructions of ocean temperature fluctuations during the same period.

The results actually showed that during the last approximately 250 years – since the period known as the Little Ice Age – a clear correlation can be seen where the external forces, i.e. the Sun’s energy cycle and the impact of volcanic eruptions, are accompanied by a corresponding temperature fluctuation with a time lag of about five years.

In the previous two centuries, i.e. during the Little Ice Age, the link was not as strong, and the temperature of the Atlantic Ocean appears to have followed its own rhythm to a greater extent.

The results were recently published in the scientific journal Nature Communications.

In addition to filling in yet another piece of the puzzle associated with understanding the complex interaction of the natural forces that control the climate, the Danish researchers paved the way for linking the two competing interpretations of the origin of the oscillation phenomenon.

Temperature fluctuations discovered around the turn of the millennium

The climate is defined on the basis of data including mean temperature values recorded over a period of thirty years. Northern Europe thus has a warm and humid climate compared with other regions on the same latitudes. This is due to the North Atlantic Drift (often referred to as the Gulf Stream), an ocean current that transports relatively warm water from the south-west part of the North Atlantic to the sea off the coast of Northern Europe.

Around the turn of the millennium, however, climate researchers became aware that the average temperature of the Atlantic Ocean was not entirely stable, but actually fluctuated at the same rate throughout the North Atlantic. This phenomenon is called the Atlantic Multidecadal Oscillation (AMO), which consists of relatively warm periods lasting thirty to forty years being replaced by cool periods of the same duration.

The researchers were able to read small systematic variations in the water temperature in the North Atlantic in measurements taken by ships during the last 140 years.

Although the temperature fluctuations are small – less than 1°C – there is a general consensus among climate researchers that the AMO phenomenon has had a major impact on the climate in the area around the North Atlantic for thousands of years, but until now there has been doubt about what could cause this slow rhythm in the temperature of the Atlantic Ocean. One model explains the phenomenon as internal variability in the ocean circulation – somewhat like a bathtub sloshing water around in its own rhythm. Another model explains the AMO as being driven by fluctuations in the amount of solar energy received by the Earth, and as being affected by small changes in the energy radiated by the Sun itself and the after-effects of volcanic eruptions. Both these factors are also known as ‘external forces’ that have an impact on the Earth’s radiation balance.

However, there has been considerable scepticism towards the idea that a phenomenon such as an AMO could be driven by external forces at all – a scepticism that the Aarhus researchers now demonstrate as unfounded.

“Our new investigations clearly show that, since the Little Ice Age, there has been a correlation between the known external forces and the temperature fluctuations in the ocean that help control our climate. At the same time, however, the results also show that this can’t be the only driving force behind the AMO, and the explanation must therefore be found in a complex interaction between a number of mechanisms. It should also be pointed out that these fluctuations occur on the basis of evenly increasing ocean temperatures during the last approximately fifty years – an increase connected with global warming,” says Associate Professor Mads Faurschou Knudsen, Department of Geoscience, Aarhus University, who is the main author of the article.

Convincing data from the Earth’s own archives

Researchers have attempted to make computer simulations of the phenomenon ever since the discovery of the AMO, partly to enable a better understanding of the underlying mechanism. However, it is difficult for the computer models to reproduce the actual AMO signal that can be read in the temperature data from the last 140 years.

Associate Professor Knudsen and his colleagues instead combined all available data from the Earth’s own archives, i.e. previous studies of items such as radioactive isotopes and volcanic ash in ice cores. This provides information about solar energy release and volcanic activity during the last 450 years, and the researchers compared the data with reconstructions of the AMO’s temperature rhythm during the same period.

“We’ve only got direct measurements of the Atlantic Ocean temperature for the last 140 years, where it was measured by ships. But how do you measure the water temperature further back in time? Studies of growth rings in trees from the entire North Atlantic region come into the picture here, where ‘good’ and ‘bad’ growth conditions are calibrated to the actual measurements, and the growth rings from trees along the coasts further back in time can therefore act as reserve thermometers,” explains Associate Professor Knudsen.

The results provide a new and very important perspective on the AMO phenomenon because they are based on data and not computer models, which are inherently incomplete. The problem is that the models do not completely describe all the physical correlations and feedbacks in the system, partly because these are not fully understood. And when the models are thus unable to reproduce the actual AMO signal, it is hard to know whether they have captured the essence of the AMO phenomenon.

Impact of the sun and volcanoes

An attempt to simply explain how external forces such as the Sun and volcanoes can control the climate could sound like this: a stronger Sun heats up the ocean, while the ash from volcanic eruptions shields the Sun and cools down the ocean. However, it is hardly as simple as that.

“Fluctuations in ocean temperature have a time lag of about five years in relation to the peaks we can read in the external forces. However, the direct effect of major volcanic eruptions is clearly seen as early as the same year in the mean global atmospheric temperature, i.e. a much shorter delay. The effect we studied is more complex, and it takes time for this effect to spread to the ocean currents,” explains Associate Professor Knudsen.

“An interesting new theory among solar researchers and meteorologists is that the Sun can control climate variations via the very large variations in UV radiation, which are partly seen in connection with changes in sunspot activity during the Sun’s eleven-year cycle. UV radiation heats the stratosphere in particular via increased production of ozone, which can have an impact on wind systems and thereby indirectly on the global ocean currents as well,” says Associate Professor Knudsen. However, he emphasises that researchers have not yet completely understood how a development in the stratosphere can affect the ocean currents on Earth.

Towards a better understanding of the climate

“In our previous study of the climate in the North Atlantic region during the last 8,000 years, we were able to show that the temperature of the Atlantic Ocean was presumably not controlled by the Sun’s activity. Here the temperature fluctuated in its own rhythm for long intervals, with warm and cold periods lasting 25 years. The prevailing pattern was that this climate fluctuation in the ocean was approximately 30󈞔% faster than the fluctuation we’d previously observed in solar activity, which lasted about ninety years. What we can now see is that the Atlantic Ocean would like to – or possibly even prefer to – dance alone. However, under certain circumstances, the external forces interrupt the ocean’s own rhythm and take over the lead, which has been the case during the last 250 years,” says Associate Professor Bo Holm Jacobsen, Department of Geoscience, Aarhus University, who is the co-author of the article.

“It’ll be interesting to see how long the Atlantic Ocean allows itself to be led in this dance. The scientific challenge partly lies in understanding the overall conditions under which the AMO phenomenon is sensitive to fluctuations in solar activity and volcanic eruptions,” he continues.

“During the last century, the AMO has had a strong bearing on significant weather phenomena such as hurricane frequency and droughts – with considerable economic and human consequences. A better understanding of this phenomenon is therefore an important step for efforts to deal with and mitigate the impact of climate variations,” Associate Professor Knudsen concludes.

New study may answer questions about enigmatic Little Ice Age

University of Colorado Boulder Professor Gifford Miller is shown here collecting dead plant samples from beneath a Baffin Island ice cap. A new study led by Miller indicates the Little Ice Age began roughly A.D. 1275 and was triggered repeated, explosive volcanism that cooled the atmosphere. -  University of Colorado
University of Colorado Boulder Professor Gifford Miller is shown here collecting dead plant samples from beneath a Baffin Island ice cap. A new study led by Miller indicates the Little Ice Age began roughly A.D. 1275 and was triggered repeated, explosive volcanism that cooled the atmosphere. – University of Colorado

A new University of Colorado Boulder-led study appears to answer contentious questions about the onset and cause of Earth’s Little Ice Age, a period of cooling temperatures that began after the Middle Ages and lasted into the late 19th century.

According to the new study, the Little Ice Age began abruptly between A.D. 1275 and 1300, triggered by repeated, explosive volcanism and sustained by a self- perpetuating sea ice-ocean feedback system in the North Atlantic Ocean, according to CU-Boulder Professor Gifford Miller, who led the study. The primary evidence comes from radiocarbon dates from dead vegetation emerging from rapidly melting icecaps on Baffin Island in the Canadian Arctic, combined with ice and sediment core data from the poles and Iceland and from sea ice climate model simulations, said Miller.

While scientific estimates regarding the onset of the Little Ice Age range from the 13th century to the 16th century, there is little consensus, said Miller. There is evidence the Little Ice Age affected places as far away as South America and China, although it was particularly evident in northern Europe. Advancing glaciers in mountain valleys destroyed towns, and famous paintings from the period depict people ice skating on the Thames River in London and canals in the Netherlands, waterways that were ice-free in winter before and after the Little Ice Age.

“The dominant way scientists have defined the Little Ice Age is by the expansion of big valley glaciers in the Alps and in Norway,” said Miller. “But the time it took for European glaciers to advance far enough to demolish villages would have been long after the onset of the cold period,” said Miller, a fellow at CU’s Institute of Arctic and Alpine Research.

Most scientists think the Little Ice Age was caused either by decreased summer solar radiation, erupting volcanoes that cooled the planet by ejecting shiny aerosol particles that reflected sunlight back into space, or a combination of both, said Miller.

The new study suggests that the onset of the Little Ice Age was caused by an unusual, 50-year-long episode of four massive tropical volcanic eruptions. Climate models used in the new study showed that the persistence of cold summers following the eruptions is best explained by a sea ice-ocean feedback system originating in the North Atlantic Ocean.

“This is the first time anyone has clearly identified the specific onset of the cold times marking the start of the Little Ice Age,” said Miller. “We also have provided an understandable climate feedback system that explains how this cold period could be sustained for a long period of time. If the climate system is hit again and again by cold conditions over a relatively short period — in this case, from volcanic eruptions — there appears to be a cumulative cooling effect.”

A paper on the subject is being published Jan. 31 in Geophysical Research Letters, a publication of the American Geophysical Union. The paper was authored by scientists and students from CU-Boulder, the National Center for Atmospheric Research in Boulder, the University of Iceland, the University of California, Irvine, and the University of Edinburgh in Scotland. The study was funded in part by the National Science Foundation and the Icelandic Science Foundation.

As part of the study, Miller and his colleagues radiocarbon-dated roughly 150 samples of dead plant material with roots intact collected from beneath receding ice margins of ice caps on Baffin Island. There was a large cluster of “kill dates” between A.D. 1275 and 1300, indicating the plants had been frozen and engulfed by ice during a relatively sudden event.

Both low-lying and higher altitude plants all died at roughly the same time, indicating the onset of the Little Ice Age on Baffin Island — the fifth largest island in the world — was abrupt. The team saw a second spike in plant kill dates at about A.D. 1450, indicating the quick onset of a second major cooling event.

To broaden the study, the team analyzed sediment cores from a glacial lake linked to the 367-square-mile Langjökull ice cap in the central highlands of Iceland that reaches nearly a mile high. The annual layers in the cores — which can be reliably dated by using tephra deposits from known historic volcanic eruptions on Iceland going back more than 1,000 years — suddenly became thicker in the late 13th century and again in the 15th century due to increased erosion caused by the expansion of the ice cap as the climate cooled, he said.

“That showed us the signal we got from Baffin Island was not just a local signal, it was a North Atlantic signal,” said Miller. “This gave us a great deal more confidence that there was a major perturbation to the Northern Hemisphere climate near the end of the 13th century.” Average summer temperatures in the Northern Hemisphere did not return to those of the Middle Ages until the 20th century, and the temperatures of the Middle Ages are now exceeded in many areas, he said.

The team used the NCAR-based Community Climate System Model to test the effects of volcanic cooling on Arctic sea ice extent and mass. The model, which simulated various sea ice conditions from about A.D. 1150-1700, showed several large, closely spaced eruptions could have cooled the Northern Hemisphere enough to trigger Arctic sea ice growth.

The models showed sustained cooling from volcanoes would have sent some of the expanding Arctic sea ice down along the eastern coast of Greenland until it eventually melted in the North Atlantic. Since sea ice contains almost no salt, when it melted the surface water became less dense, preventing it from mixing with deeper North Atlantic water. This weakened heat transport back to the Arctic and creating a self-sustaining feedback system on the sea ice long after the effects of the volcanic aerosols subsided, he said.

“Our simulations showed that the volcanic eruptions may have had a profound cooling effect,” says NCAR scientist Bette Otto-Bliesner, a co-author of the study. “The eruptions could have triggered a chain reaction, affecting sea ice and ocean currents in a way that lowered temperatures for centuries.”

The researchers set the solar radiation at a constant level in the climate models, and Miller said the Little Ice Age likely would have occurred without decreased summer solar radiation at the time. “Estimates of the sun’s variability over time are getting smaller, it’s now thought by some scientists to have varied little more in the last millennia than during a standard 11-year solar cycle,” he said.

One of the primary questions pertaining to the Little Ice Age is how unusual the warming of Earth is today, he said. A previous study led by Miller in 2008 on Baffin Island indicated temperatures today are the warmest in at least 2,000 years.