New study proposes solution to long-running debate as to how stable the Earth system is

Researchers at the University of Southampton have proposed an answer to the long-running debate as to how stable the Earth system is.

The Earth, with its core-driven magnetic field, oceans of liquid water, dynamic climate and abundant life is arguably the most complex system in the known Universe. Life arose on Earth over three and a half billion years ago and it would appear that despite planetary scale calamities such as the impacts of massive meteorites, runaway climate change and increases in brightness of the Sun, it has continued to grow, reproduce and evolve ever since.

Has life on Earth simply been lucky in withstanding these events or are there any self-stabilising processes operating in the Earth system that would reduce the severity of such perturbations? If such planetary processes exist, to what extent are they the result of the actions of life?

Forty years ago, James Lovelock formulated his Gaia Hypothesis in which life controls aspects of the planet and in doing so maintains conditions that are suitable for widespread life despite shocks and perturbations. This hypothesis was and remains controversial in part because there is no understood mechanism by which such a planetary self-stabilizing system could emerge.

In research published in PLOS Computational Biology, University of Southampton lecturer Dr James Dyke and PhD student Iain Weaver detail a mechanism that shows how when life is both affected by and alters environmental conditions, then what emerges is a control system that stabilises environmental conditions. This control system was first described around the middle of the 20th Century during the development of the cybernetics movement and has until now been largely neglected. Their findings are in principle applicable to a wide range of real world systems – from microbial mats to aquatic ecosystems up to and including the entire biosphere.

Dr Dyke says: “As well as being a fascinating issue in its own right, we quite desperately need to understand what is currently happening to the Earth and in particular the impacts of our own behaviour.

“Pretty much whatever we do, life on Earth will carry on, just as it did for the previous 3.5 billion years or so. It is only by discovering the mechanisms by which our living planet has evolved in the past can we hope to continue to be part of its future.”

New study proposes solution to long-running debate as to how stable the Earth system is

Researchers at the University of Southampton have proposed an answer to the long-running debate as to how stable the Earth system is.

The Earth, with its core-driven magnetic field, oceans of liquid water, dynamic climate and abundant life is arguably the most complex system in the known Universe. Life arose on Earth over three and a half billion years ago and it would appear that despite planetary scale calamities such as the impacts of massive meteorites, runaway climate change and increases in brightness of the Sun, it has continued to grow, reproduce and evolve ever since.

Has life on Earth simply been lucky in withstanding these events or are there any self-stabilising processes operating in the Earth system that would reduce the severity of such perturbations? If such planetary processes exist, to what extent are they the result of the actions of life?

Forty years ago, James Lovelock formulated his Gaia Hypothesis in which life controls aspects of the planet and in doing so maintains conditions that are suitable for widespread life despite shocks and perturbations. This hypothesis was and remains controversial in part because there is no understood mechanism by which such a planetary self-stabilizing system could emerge.

In research published in PLOS Computational Biology, University of Southampton lecturer Dr James Dyke and PhD student Iain Weaver detail a mechanism that shows how when life is both affected by and alters environmental conditions, then what emerges is a control system that stabilises environmental conditions. This control system was first described around the middle of the 20th Century during the development of the cybernetics movement and has until now been largely neglected. Their findings are in principle applicable to a wide range of real world systems – from microbial mats to aquatic ecosystems up to and including the entire biosphere.

Dr Dyke says: “As well as being a fascinating issue in its own right, we quite desperately need to understand what is currently happening to the Earth and in particular the impacts of our own behaviour.

“Pretty much whatever we do, life on Earth will carry on, just as it did for the previous 3.5 billion years or so. It is only by discovering the mechanisms by which our living planet has evolved in the past can we hope to continue to be part of its future.”

USF researchers: Life-producing phosphorus carried to Earth by meteorites

This is Matthew Pasek, University of South Florida. -  USF/Aimee Blodgett
This is Matthew Pasek, University of South Florida. – USF/Aimee Blodgett

Scientists may not know for certain whether life exists in outer space, but new research from a team of scientists led by a University of South Florida astrobiologist now shows that one key element that produced life on Earth was carried here on meteorites.

In an article published in the new edition of the Proceedings of the National Academies of Sciences, USF Assistant Professor of Geology Matthew Pasek and researchers from the University of Washington and the Edinburg Centre for Carbon Innovation, revealed new findings that explain how the reactive phosphorus that was an essential component for creating the earliest life forms came to Earth.

The scientists found that during the Hadean and Archean eons – the first of the four principal eons of the Earth’s earliest history – the heavy bombardment of meteorites provided reactive phosphorus that when released in water could be incorporated into prebiotic molecules. The scientists documented the phosphorus in early Archean limestone, showing it was abundant some 3.5 billion years ago.

The scientists concluded that the meteorites delivered phosphorus in minerals that are not seen on the surface of the earth, and these minerals corroded in water to release phosphorus in a form seen only on the early earth.

The discovery answers one of the key questions for scientists trying to unlock the processes that gave rise to early life forms: Why don’t we see new life forms today?

“Meteorite phosphorus may have been a fuel that provided the energy and phosphorus necessary for the onset of life,” said Pasek, who studies the chemical composition of space and how it might have contributed to the origins of life. “If this meteoritic phosphorus is added to simple organic compounds, it can generate phosphorus biomolecules identical to those seen in life today.”

Pasek said the research provides a plausible answer: The conditions under which life arose on the earth billions of years ago are no longer present today.

“The present research shows that this is indeed the case: Phosphorus chemistry on the early earth was substantially different billions of years ago than it is today,” he added.

The research team reached their conclusion after examining earth core samples from Australia, Zimbabwe, West Virginia, Wyoming and in Avon Park, Florida

Previous research had showed that before the emergence of modern DNA-RNA-protein life that is known today, the earliest biological forms evolved from RNA alone. What has stumped scientists, however, was understanding how those early RNA -based life forms synthesized environmental phosphorus, which in its current form is relatively insoluble and unreactive.

Meteorites would have provided reactive phosphorus in the form of the iron-nickel phosphide mineral schreibersite, which in water released soluble and reactive phosphite. Phosphite is the salt scientists believe could have been incorporated into prebiotic molecules.

Of all of the samples analyzed, only the oldest, the Coonterunah carbonate samples from the early Archean of Australia, showed the presence of phosphite, Other natural sources of phosphite include lightning strikes, geothermal fluids and possibly microbial activity under extremely anaerobic condition, but no other terrestrial sources of phosphite have been identified and none could have produced the quantities of phosphite needed to be dissolved in early Earth oceans that gave rise to life, the researchers concluded.

The scientists said meteorite phosphite would have been abundant enough to adjust the chemistry of the oceans, with its chemical signature later becoming trapped in marine carbonate where it was preserved.

It is still possible, the researchers noted, that other natural sources of phosphite could be identified, such as in hydrothermal systems. While that might lead to reducing the total meteoric mass necessary to provide enough phosphite, the researchers said more work would need to be done to determine the exact contribution of separate sources to what they are certain was an essential ingredient to early life.

USF researchers: Life-producing phosphorus carried to Earth by meteorites

This is Matthew Pasek, University of South Florida. -  USF/Aimee Blodgett
This is Matthew Pasek, University of South Florida. – USF/Aimee Blodgett

Scientists may not know for certain whether life exists in outer space, but new research from a team of scientists led by a University of South Florida astrobiologist now shows that one key element that produced life on Earth was carried here on meteorites.

In an article published in the new edition of the Proceedings of the National Academies of Sciences, USF Assistant Professor of Geology Matthew Pasek and researchers from the University of Washington and the Edinburg Centre for Carbon Innovation, revealed new findings that explain how the reactive phosphorus that was an essential component for creating the earliest life forms came to Earth.

The scientists found that during the Hadean and Archean eons – the first of the four principal eons of the Earth’s earliest history – the heavy bombardment of meteorites provided reactive phosphorus that when released in water could be incorporated into prebiotic molecules. The scientists documented the phosphorus in early Archean limestone, showing it was abundant some 3.5 billion years ago.

The scientists concluded that the meteorites delivered phosphorus in minerals that are not seen on the surface of the earth, and these minerals corroded in water to release phosphorus in a form seen only on the early earth.

The discovery answers one of the key questions for scientists trying to unlock the processes that gave rise to early life forms: Why don’t we see new life forms today?

“Meteorite phosphorus may have been a fuel that provided the energy and phosphorus necessary for the onset of life,” said Pasek, who studies the chemical composition of space and how it might have contributed to the origins of life. “If this meteoritic phosphorus is added to simple organic compounds, it can generate phosphorus biomolecules identical to those seen in life today.”

Pasek said the research provides a plausible answer: The conditions under which life arose on the earth billions of years ago are no longer present today.

“The present research shows that this is indeed the case: Phosphorus chemistry on the early earth was substantially different billions of years ago than it is today,” he added.

The research team reached their conclusion after examining earth core samples from Australia, Zimbabwe, West Virginia, Wyoming and in Avon Park, Florida

Previous research had showed that before the emergence of modern DNA-RNA-protein life that is known today, the earliest biological forms evolved from RNA alone. What has stumped scientists, however, was understanding how those early RNA -based life forms synthesized environmental phosphorus, which in its current form is relatively insoluble and unreactive.

Meteorites would have provided reactive phosphorus in the form of the iron-nickel phosphide mineral schreibersite, which in water released soluble and reactive phosphite. Phosphite is the salt scientists believe could have been incorporated into prebiotic molecules.

Of all of the samples analyzed, only the oldest, the Coonterunah carbonate samples from the early Archean of Australia, showed the presence of phosphite, Other natural sources of phosphite include lightning strikes, geothermal fluids and possibly microbial activity under extremely anaerobic condition, but no other terrestrial sources of phosphite have been identified and none could have produced the quantities of phosphite needed to be dissolved in early Earth oceans that gave rise to life, the researchers concluded.

The scientists said meteorite phosphite would have been abundant enough to adjust the chemistry of the oceans, with its chemical signature later becoming trapped in marine carbonate where it was preserved.

It is still possible, the researchers noted, that other natural sources of phosphite could be identified, such as in hydrothermal systems. While that might lead to reducing the total meteoric mass necessary to provide enough phosphite, the researchers said more work would need to be done to determine the exact contribution of separate sources to what they are certain was an essential ingredient to early life.

Ancient trapped water explains Earth’s first ice age

The North Pole area, Pilbara, Western Australia, where the samples came from. -  University of Manchester
The North Pole area, Pilbara, Western Australia, where the samples came from. – University of Manchester

Tiny bubbles of water found in quartz grains in Australia may hold the key to understanding what caused the Earth’s first ice age, say scientists.

The Anglo-French study, published in the journal Nature, analysed the amount of ancient atmospheric argon gas (Ar) isotopes dissolved in the bubbles and found levels were very different to those in the air we breathe today.

The researchers say their findings help explain why Earth didn’t suffer its first ice age until 2.5 billion years ago, despite the Sun’s rays being weaker during the early years of our planet’s formation.

“The water samples come from the Pilbara region in north-west Australia and were originally heated during an eruption of pillow basalt lavas, probably in a lake or lagoon environment,” said author Dr Ray Burgess, from the University of Manchester’s School of Earth, Atmospheric and Environmental Sciences.

“Evidence from the geological record indicates that the first major glaciations on Earth occurred about 2.5 billion years ago, and yet the energy of the Sun was 20 per cent weaker prior to, and during, this period, so all water on Earth should already have been frozen.

“This is something that has baffled scientists for years but our findings provide a possible explanation.”

The study, done in collaboration with the CRPG-CNRS, University of Lorraine and the Institut de Physique du Globe de Paris, revealed that the ratio of two argon isotopes – 40Ar, formed by the decay of potassium (40K) with a half-life of 1.25 billion years, and 36Ar – was much lower than present-day levels. This finding can only be explained by the gradual release of 40Ar from rocks and magma into the atmosphere throughout Earth’s history.

The team used the argon isotope ratio to estimate how the continents have grown over geological time and found that the volume of continental crust 3.5 billion years ago was already well-established being roughly half what it is today.

Dr Burgess said: “High levels of the greenhouse gas carbon dioxide in the early atmosphere – in the order of several percent – which would have helped retain the Sun’s heat, has been suggested as the reason why the Earth did not freeze over sooner, but just how this level was reduced has been unexplained, until now.

“The continents are a key player in the Earth’s carbon cycle because carbon dioxide in the atmosphere dissolves in water to form acid rain. The carbon dioxide removed from the atmosphere by this process is stabilised in carbonate rocks such as limestone and if a substantial volume of continental crust was established, as revealed by our study, then the acid weathering of this early crust would efficiently reduce the carbon dioxide levels in the atmosphere to lower global temperatures and lead to the first major ice age.

He added: “The signs of the Earth’s evolution in the distant past are extremely tenuous, only fragments of highly weathered and altered rocks exists from this time, and for the most part, the evidence is indirect. To find an actual sample of ancient atmospheric argon is remarkable and represents a breakthrough in understanding environmental conditions on Earth before life existed.”

Ancient trapped water explains Earth’s first ice age

The North Pole area, Pilbara, Western Australia, where the samples came from. -  University of Manchester
The North Pole area, Pilbara, Western Australia, where the samples came from. – University of Manchester

Tiny bubbles of water found in quartz grains in Australia may hold the key to understanding what caused the Earth’s first ice age, say scientists.

The Anglo-French study, published in the journal Nature, analysed the amount of ancient atmospheric argon gas (Ar) isotopes dissolved in the bubbles and found levels were very different to those in the air we breathe today.

The researchers say their findings help explain why Earth didn’t suffer its first ice age until 2.5 billion years ago, despite the Sun’s rays being weaker during the early years of our planet’s formation.

“The water samples come from the Pilbara region in north-west Australia and were originally heated during an eruption of pillow basalt lavas, probably in a lake or lagoon environment,” said author Dr Ray Burgess, from the University of Manchester’s School of Earth, Atmospheric and Environmental Sciences.

“Evidence from the geological record indicates that the first major glaciations on Earth occurred about 2.5 billion years ago, and yet the energy of the Sun was 20 per cent weaker prior to, and during, this period, so all water on Earth should already have been frozen.

“This is something that has baffled scientists for years but our findings provide a possible explanation.”

The study, done in collaboration with the CRPG-CNRS, University of Lorraine and the Institut de Physique du Globe de Paris, revealed that the ratio of two argon isotopes – 40Ar, formed by the decay of potassium (40K) with a half-life of 1.25 billion years, and 36Ar – was much lower than present-day levels. This finding can only be explained by the gradual release of 40Ar from rocks and magma into the atmosphere throughout Earth’s history.

The team used the argon isotope ratio to estimate how the continents have grown over geological time and found that the volume of continental crust 3.5 billion years ago was already well-established being roughly half what it is today.

Dr Burgess said: “High levels of the greenhouse gas carbon dioxide in the early atmosphere – in the order of several percent – which would have helped retain the Sun’s heat, has been suggested as the reason why the Earth did not freeze over sooner, but just how this level was reduced has been unexplained, until now.

“The continents are a key player in the Earth’s carbon cycle because carbon dioxide in the atmosphere dissolves in water to form acid rain. The carbon dioxide removed from the atmosphere by this process is stabilised in carbonate rocks such as limestone and if a substantial volume of continental crust was established, as revealed by our study, then the acid weathering of this early crust would efficiently reduce the carbon dioxide levels in the atmosphere to lower global temperatures and lead to the first major ice age.

He added: “The signs of the Earth’s evolution in the distant past are extremely tenuous, only fragments of highly weathered and altered rocks exists from this time, and for the most part, the evidence is indirect. To find an actual sample of ancient atmospheric argon is remarkable and represents a breakthrough in understanding environmental conditions on Earth before life existed.”

Earth’s iron core is surprisingly weak, Stanford researchers say

The massive ball of iron sitting at the center of Earth is not quite as “rock-solid” as has been thought, say two Stanford mineral physicists. By conducting experiments that simulate the immense pressures deep in the planet’s interior, the researchers determined that iron in Earth’s inner core is only about 40 percent as strong as previous studies estimated.

This is the first time scientists have been able to experimentally measure the effect of such intense pressure – as high as 3 million times the pressure Earth’s atmosphere exerts at sea level – in a laboratory. A paper presenting the results of their study is available online in Nature Geoscience.

“The strength of iron under these extreme pressures is startlingly weak,” said Arianna Gleason, a postdoctoral researcher in the department of Geological and Environmental Sciences, and lead author of the paper. Wendy Mao, an assistant professor in the department, is the co-author.

“This strength measurement can help us understand how the core deforms over long time scales, which influences how we think about Earth’s evolution and planetary evolution in general,” Gleason said.

Until now, almost all of what is known about Earth’s inner core came from studies tracking seismic waves as they travel from the surface of the planet through the interior. Those studies have shown that the travel time through the inner core isn’t the same in every direction, indicating that the inner core itself is not uniform. Over time and subjected to great pressure, the core has developed a sort of fabric as grains of iron elongate and align lengthwise in parallel formations.

The ease and speed with which iron grains in the inner core can deform and align would have influenced the evolution of the early Earth and development of the geomagnetic field. The field is generated by the circulation of liquid iron in the outer core around the solid inner core and shields Earth from the full intensity of solar radiation. Without the geomagnetic field, life – at least as we know it – would not be possible on Earth.

“The development of the inner core would certainly have some effect on the geomagnetic field, but just what effect and the magnitude of the effect, we can’t say,” said Mao. “That is very speculative.”

Gleason and Mao conducted their experiments using a diamond anvil cell – a device that can exert immense pressure on tiny samples clenched between two diamonds. They subjected minute amounts of pure iron to pressures between 200 and 300 gigapascals (equivalent to the pressure of 2 million to 3 million Earth atmospheres). Previous experimental studies were conducted in the range of only 10 gigapascals.

“We really pushed the limit here in terms of experimental conditions,” Gleason said. “Pioneering advancements in pressure-generation techniques and improvements in detector sensitivity, for example, used at large X-ray synchrotron facilities, such as Argonne National Lab, have allowed us to make these new measurements.”

In addition to intense pressures, the inner core also has extreme temperatures. The boundary between the inner and outer core has temperatures comparable to the surface of the sun. Simultaneously simulating both the pressure and temperature at the inner core isn’t yet possible in the laboratory, though Gleason and Mao are working on that for future studies. (For this study, Gleason mathematically extrapolated from their pressure data to factor in the effect of temperature.)

Gleason and Mao expect their findings will help other researchers set more realistic variables for conducting their own experiments.

“People modeling the inner core haven’t had many experimental constraints, because it’s so difficult to make measurements under those conditions,” Mao said. “There really weren’t constraints on how strong the core was, so this is really a fundamental new constraint.”

Earth’s iron core is surprisingly weak, Stanford researchers say

The massive ball of iron sitting at the center of Earth is not quite as “rock-solid” as has been thought, say two Stanford mineral physicists. By conducting experiments that simulate the immense pressures deep in the planet’s interior, the researchers determined that iron in Earth’s inner core is only about 40 percent as strong as previous studies estimated.

This is the first time scientists have been able to experimentally measure the effect of such intense pressure – as high as 3 million times the pressure Earth’s atmosphere exerts at sea level – in a laboratory. A paper presenting the results of their study is available online in Nature Geoscience.

“The strength of iron under these extreme pressures is startlingly weak,” said Arianna Gleason, a postdoctoral researcher in the department of Geological and Environmental Sciences, and lead author of the paper. Wendy Mao, an assistant professor in the department, is the co-author.

“This strength measurement can help us understand how the core deforms over long time scales, which influences how we think about Earth’s evolution and planetary evolution in general,” Gleason said.

Until now, almost all of what is known about Earth’s inner core came from studies tracking seismic waves as they travel from the surface of the planet through the interior. Those studies have shown that the travel time through the inner core isn’t the same in every direction, indicating that the inner core itself is not uniform. Over time and subjected to great pressure, the core has developed a sort of fabric as grains of iron elongate and align lengthwise in parallel formations.

The ease and speed with which iron grains in the inner core can deform and align would have influenced the evolution of the early Earth and development of the geomagnetic field. The field is generated by the circulation of liquid iron in the outer core around the solid inner core and shields Earth from the full intensity of solar radiation. Without the geomagnetic field, life – at least as we know it – would not be possible on Earth.

“The development of the inner core would certainly have some effect on the geomagnetic field, but just what effect and the magnitude of the effect, we can’t say,” said Mao. “That is very speculative.”

Gleason and Mao conducted their experiments using a diamond anvil cell – a device that can exert immense pressure on tiny samples clenched between two diamonds. They subjected minute amounts of pure iron to pressures between 200 and 300 gigapascals (equivalent to the pressure of 2 million to 3 million Earth atmospheres). Previous experimental studies were conducted in the range of only 10 gigapascals.

“We really pushed the limit here in terms of experimental conditions,” Gleason said. “Pioneering advancements in pressure-generation techniques and improvements in detector sensitivity, for example, used at large X-ray synchrotron facilities, such as Argonne National Lab, have allowed us to make these new measurements.”

In addition to intense pressures, the inner core also has extreme temperatures. The boundary between the inner and outer core has temperatures comparable to the surface of the sun. Simultaneously simulating both the pressure and temperature at the inner core isn’t yet possible in the laboratory, though Gleason and Mao are working on that for future studies. (For this study, Gleason mathematically extrapolated from their pressure data to factor in the effect of temperature.)

Gleason and Mao expect their findings will help other researchers set more realistic variables for conducting their own experiments.

“People modeling the inner core haven’t had many experimental constraints, because it’s so difficult to make measurements under those conditions,” Mao said. “There really weren’t constraints on how strong the core was, so this is really a fundamental new constraint.”

The secret of life may be as simple as what happens between the sheets — mica sheets

This is a diagram of biomolecules between sheets of mica in a primitive ocean. The green lines depict mica sheets and the gray structures depict various ancient biological molecules and fatty vesicles. In the 'between the sheets' mica hypothesis, water may have moved in and out of the spaces between stacks of sheets, thereby forcing the sheets to move up and down. This kind of energy may have ultimately pushed biological molecules and/or fatty acids together to form cells. -  Helen Greenwood Hansma, University of California, Santa Barbara
This is a diagram of biomolecules between sheets of mica in a primitive ocean. The green lines depict mica sheets and the gray structures depict various ancient biological molecules and fatty vesicles. In the ‘between the sheets’ mica hypothesis, water may have moved in and out of the spaces between stacks of sheets, thereby forcing the sheets to move up and down. This kind of energy may have ultimately pushed biological molecules and/or fatty acids together to form cells. – Helen Greenwood Hansma, University of California, Santa Barbara

That age-old question, “where did life on Earth start?” now has a new answer. If the life between the mica sheets hypothesis is correct, life would have originated between sheets of mica that were layered like the pages in a book.

The so-called “life between the sheets” mica hypothesis was developed by Helen Hansma of the University of California, Santa Barbara, with funding from the National Science Foundation (NSF). This hypothesis was originally introduced by Hansma at the 2007 annual meeting of the American Society for Cell Biology, and is now fully described by Hansma in the September 7, 2010 issue of Journal of Theoretical Biology.

According to the “life between the sheets” mica hypothesis, structured compartments that commonly form between layers of mica–a common mineral that cleaves into smooth sheets–may have sheltered molecules that were the progenitors to cells. Provided with the right physical and chemical environment in the structured compartments to survive and evolve, the molecules eventually reorganized into cells, while still sheltered between mica sheets.

Mica chunks embedded in rocks could have provided the right physical and chemical environment for pre-life molecules and developing cells because:

Mica compartments could have held, protected and sheltered molecules, and thereby promoted their survival. Also, mica could have provided enough isolation for molecules to evolve without being disturbed and still allow molecules to migrate towards one another and eventually bond together to form large organic molecules. And mica compartments may have provided something akin to a template for the production of a life form composed of compartments, which are now known as cells.

Mica sheets are held together by potassium. If high levels of potassium were donated by mica sheets to developing cells, the high levels of potassium found in mica sheets could account for the high levels of potassium currently found in human cells.

Mica chunks embedded in rocks that were sitting in an early ocean would have received an endless supply of energy from waves, the sun, and the occasional sloshing of water into the spaces between the mica sheets. This energy could have pushed the mica sheets into up-and-down motions that could have pushed together molecules sitting between mica sheets, thereby enabling them to bond together.

Because mica surfaces are hospitable to living cells and to all the major classes of large biological molecules, including proteins, nucleic acids, carbohydrates and fats, the “between the sheets” mica hypothesis is consistent with other well-known hypotheses that propose that life originated as RNA, fatty vesicles or primitive metabolisms. Hansma says a “mica world” might have sheltered all the ancient metabolic and fat-vesicle and RNA “worlds.”

Hansma also says that mica would provide a better substrate for developing cells than other minerals that have been considered for that role. Why? Because most other minerals would probably have tended to intermittently become either too wet or too dry to support life. By contrast, the spaces between mica sheets would probably have undergone more limited wet/dry cycles that would support life without reaching killing extremes. In addition, many clays that have been considered as potential surfaces for life’s origins respond to exposure to water by swelling. By contrast, mica resists swelling and would therefore provide a relatively stable environment for developing cells and biological molecules, even when it did get wet.

Hansma sums up her hypothesis by observing that “mica would provide enough structure and shelter for molecules to evolve but also accommodate the dynamic, ever-changing nature of life.”

What’s more, Hansma says that “mica is old.” Some micas are estimated to be over 4 billion years old. And micas such as biotite have been found in regions containing evidence of the earliest life-forms, which are believed to have existed about 3.8 million years ago.

Hansma’s passion for mica evolved gradually–starting when she began conducting pioneering, NSF-funded research in former husband Paul K. Hansma’s AFM lab to develop techniques for imaging DNA and other biological molecules in the atomic force microscope (AFM)–a high-resolution imaging technique that allows researchers to observe and manipulate molecular and atomic level features.

Says Helen Hansma, “Mica sheets are atomically flat, so we can see DNA molecules on the mica surface without having to cover the DNA with something that makes it look bigger and easier to see. Sometimes we can even see DNA molecules swimming on the surface of mica, under water, in the AFM. Mica sheets are so thin (one nanometer) that there are a million of them in a millimeter-thick piece of mica.”

Hansma’s “life between the sheets” hypothesis first struck her a few years ago, after she and family members had collected some mica from a Connecticut mine. When she put water on a piece of the mica under her dissecting microscope, she noticed a greenish organic ‘crud’ at some step edges in the mica. “It occurred to me that this might be a good place for the origins of life–sheltered within these stacks of sheets that can move up and down in response to flowing water, which could have provided the mechanical energy for making and breaking chemical bonds,” says Hansma.

Hansma says that recent advancements in imaging techniques, including the AFM, made possible her recent research, leading to her “between mica sheets” hypothesis. She adds that direct support for her hypothesis might be obtained from additional studies involving mica sheets in an AFM, being subjected its push-and-pull forces while sitting in liquids resembling an early ocean.



var image = ‘http://www.geologytimes.com/flash/128424346.jpg';
if (swfobject.hasFlashPlayerVersion(“9.0.0″)) {
// has Flash 9; use JW Player 4
var s1 = new SWFObject(“http://www.geologytimes.com/flash/player.swf”,”ply”,”320″,”240″,”9″,”#FFFFFF”);
s1.addParam(“allowfullscreen”,”true”);
s1.addParam(“allowscriptaccess”,”always”);
// Note: “file” location is relative to the player’s location (i.e. in “jw4/”); “image” location is relative to this page’s location
s1.addParam(“flashvars”,”file=http://www.geologytimes.com/flash/128424346.flv&image=” + image + “&stretching=none”);
s1.write(“player”);
} else {
// has Flash < 9; use JW Player 3
var s1 = new SWFObject("http://www.geologytimes.com/flash/flvplayer.swf","single","320","240","7");
s1.addParam("allowfullscreen","true");
s1.addVariable("file","http://www.geologytimes.com/flash/128424346.flv");
s1.addVariable("image",image);
s1.addVariable("width","320");
s1.addVariable("height","240");
s1.write("player");
}

Helen Hansma of the University at Santa Barbara discusses why the origin of life is an important topic and her new hypothesis that life started between mica sheets that were embedded in rocks that were sitting in an early ocean. – University of California, Santa Barbara/National Science Foundation