Study hints that ancient Earth made its own water — geologically

A new study is helping to answer a longstanding question that has recently moved to the forefront of earth science: Did our planet make its own water through geologic processes, or did water come to us via icy comets from the far reaches of the solar system?

The answer is likely “both,” according to researchers at The Ohio State University– and the same amount of water that currently fills the Pacific Ocean could be buried deep inside the planet right now.

At the American Geophysical Union (AGU) meeting on Wednesday, Dec. 17, they report the discovery of a previously unknown geochemical pathway by which the Earth can sequester water in its interior for billions of years and still release small amounts to the surface via plate tectonics, feeding our oceans from within.

In trying to understand the formation of the early Earth, some researchers have suggested that the planet was dry and inhospitable to life until icy comets pelted the earth and deposited water on the surface.

Wendy Panero, associate professor of earth sciences at Ohio State, and doctoral student Jeff Pigott are pursuing a different hypothesis: that Earth was formed with entire oceans of water in its interior, and has been continuously supplying water to the surface via plate tectonics ever since.

Researchers have long accepted that the mantle contains some water, but how much water is a mystery. And, if some geological mechanism has been supplying water to the surface all this time, wouldn’t the mantle have run out of water by now?

Because there’s no way to directly study deep mantle rocks, Panero and Pigott are probing the question with high-pressure physics experiments and computer calculations.

“When we look into the origins of water on Earth, what we’re really asking is, why are we so different than all the other planets?” Panero said. “In this solar system, Earth is unique because we have liquid water on the surface. We’re also the only planet with active plate tectonics. Maybe this water in the mantle is key to plate tectonics, and that’s part of what makes Earth habitable.”

Central to the study is the idea that rocks that appear dry to the human eye can actually contain water–in the form of hydrogen atoms trapped inside natural voids and crystal defects. Oxygen is plentiful in minerals, so when a mineral contains some hydrogen, certain chemical reactions can free the hydrogen to bond with the oxygen and make water.

Stray atoms of hydrogen could make up only a tiny fraction of mantle rock, the researchers explained. Given that the mantle is more than 80 percent of the planet’s total volume, however, those stray atoms add up to a lot of potential water.

In a lab at Ohio State, the researchers compress different minerals that are common to the mantle and subject them to high pressures and temperatures using a diamond anvil cell–a device that squeezes a tiny sample of material between two diamonds and heats it with a laser–to simulate conditions in the deep Earth. They examine how the minerals’ crystal structures change as they are compressed, and use that information to gauge the minerals’ relative capacities for storing hydrogen. Then, they extend their experimental results using computer calculations to uncover the geochemical processes that would enable these minerals to rise through the mantle to the surface–a necessary condition for water to escape into the oceans.

In a paper now submitted to a peer-reviewed academic journal, they reported their recent tests of the mineral bridgmanite, a high-pressure form of olivine. While bridgmanite is the most abundant mineral in the lower mantle, they found that it contains too little hydrogen to play an important role in Earth’s water supply.

Another research group recently found that ringwoodite, another form of olivine, does contain enough hydrogen to make it a good candidate for deep-earth water storage. So Panero and Pigott focused their study on the depth where ringwoodite is found–a place 325-500 miles below the surface that researchers call the “transition zone”–as the most likely region that can hold a planet’s worth of water. From there, the same convection of mantle rock that produces plate tectonics could carry the water to the surface.

One problem: If all the water in ringwoodite is continually drained to the surface via plate tectonics, how could the planet hold any in reserve?

For the research presented at AGU, Panero and Pigott performed new computer calculations of the geochemistry in the lowest portion of the mantle, some 500 miles deep and more. There, another mineral, garnet, emerged as a likely water-carrier–a go-between that could deliver some of the water from ringwoodite down into the otherwise dry lower mantle.

If this scenario is accurate, the Earth may today hold half as much water in its depths as is currently flowing in oceans on the surface, Panero said–an amount that would approximately equal the volume of the Pacific Ocean. This water is continuously cycled through the transition zone as a result of plate tectonics.

“One way to look at this research is that we’re putting constraints on the amount of water that could be down there,” Pigott added.

Panero called the complex relationship between plate tectonics and surface water “one of the great mysteries in the geosciences.” But this new study supports researchers’ growing suspicion that mantle convection somehow regulates the amount of water in the oceans. It also vastly expands the timeline for Earth’s water cycle.

“If all of the Earth’s water is on the surface, that gives us one interpretation of the water cycle, where we can think of water cycling from oceans into the atmosphere and into the groundwater over millions of years,” she said. “But if mantle circulation is also part of the water cycle, the total cycle time for our planet’s water has to be billions of years.”

North Atlantic signalled Ice Age thaw 1,000 years before it happened, reveals new research

The Atlantic Ocean at mid-depths may have given out early warning signals – 1,000 years in advance – that the last Ice Age was going to end, scientists report today in the journal Paleoceanography.

Scientists had previously known that at the end of the last Ice Age, around 14,700 years ago, major changes occurred to the Atlantic Ocean in a period known as the Bolling-Allerod interval. During this period, as glaciers melted and the Earth warmed, the currents of the Atlantic Ocean at its deepest levels changed direction.

The researchers have analysed the chemistry of 24 ancient coral fossils from the North Atlantic Ocean to learn more about the circulation of its waters during the last Ice Age. They found that the corals recorded a high variability in the currents of the Atlantic Ocean at mid-depths, around 2km below the surface, up to 1,000 years prior to the Bolling-Allerod interval. The team suggests that these changes may have been an early warning signal that the world was poised to switch from its glacial state to the warmer world we know today, and that the changes happened first at mid-depths.

The study was carried out by researchers from Imperial College London in conjunction with academics from the Scottish Marine Institute, the University of Bristol and Caltech Division of Geology and Planetary Sciences.

Dr David Wilson, from the Department of Earth Science and Engineering at Imperial College London, said: “The world’s oceans have always been an important barometer when it comes to changes in our planet. Excitingly, the coral fossils we’ve studied are showing us that the North Atlantic Ocean at mid-depths was undergoing changes up to 1,000 years earlier than we had expected. The tantalising prospect is that this high variability may have been a signal that the last Ice Age was about to end.”

The fossil corals analysed by the team come from a species called Desmophyllum dianthus, which are often around 5cm in diameter and look like budding flowers. They typically only live for 100 years, giving the team a rare insight into what was happening to the ocean’s currents during this relatively brief time. Thousands of years ago they grew on the New England Seamounts, which are a chain of undersea mountains approximately 1000km off the east coast of the US, located at mid-depths 2km beneath the surface. This underwater area is important for understanding the North Atlantic’s currents.

While some of the corals analysed by the team come from historical collections, most have been collected by researchers from previous expeditions in 2003 and 2005 to the New England Seamounts. The researchers used deep sea robotic submergence vehicles called Hercules and Alvin to collect the ancient coral fossils.

These ancient coral fossils accumulated rare earth elements from seawater, including neodymium, which leached from rocks on land into the Atlantic Ocean and circulated in its currents, eventually ending up in the coral skeletons. Neodymium isotopes in different regions of the world have specific signatures, created by radioactive decay over billions of years. The scientists studied the chemistry of the coral fossils to determine where the neodymium isotopes had come from, giving them a glimpse into the circulation of the Atlantic Ocean at the end of the Ice Age.

Since the world’s oceans are connected by currents, the next step will see the team integrating the evidence they gathered from the North Atlantic Ocean into a picture of global changes in the mid-depths of oceans around the world. In particular, the team is interested in exploring how the Southern Ocean around Antarctica changed around the same time by analysing neodymium isotopes in a collection of Southern Ocean corals.

New study measures methane emissions from natural gas production and offers insights into 2 large sources

A team of researchers from the Cockrell School of Engineering at The University of Texas at Austin and environmental testing firm URS reports that a small subset of natural gas wells are responsible for the majority of methane emissions from two major sources — liquid unloadings and pneumatic controller equipment — at natural gas production sites.

With natural gas production in the United States expected to continue to increase during the next few decades, there is a need for a better understanding of methane emissions during natural gas production. The study team believes this research, published Dec. 9 in Environmental Science & Technology, will help to provide a clearer picture of methane emissions from natural gas production sites.

The UT Austin-led field study closely examined two major sources of methane emissions — liquid unloadings and pneumatic controller equipment — at well pad sites across the United States. Researchers found that 19 percent of the pneumatic devices accounted for 95 percent of the emissions from pneumatic devices, and 20 percent of the wells with unloading emissions that vent to the atmosphere accounted for 65 percent to 83 percent of those emissions.

“To put this in perspective, over the past several decades, 10 percent of the cars on the road have been responsible for the majority of automotive exhaust pollution,” said David Allen, chemical engineering professor at the Cockrell School and principal investigator for the study. “Similarly, a small group of sources within these two categories are responsible for the vast majority of pneumatic and unloading emissions at natural gas production sites.”

Additionally, for pneumatic devices, the study confirmed regional differences in methane emissions first reported by the study team in 2013. The researchers found that methane emissions from pneumatic devices were highest in the Gulf Coast and lowest in the Rocky Mountains.

The study is the second phase of the team’s 2013 study, which included some of the first measurements for methane emissions taken directly at hydraulically fractured well sites. Both phases of the study involved a partnership between the Environmental Defense Fund, participating energy companies, an independent Scientific Advisory Panel and the UT Austin study team.

The unprecedented access to natural gas production facilities and equipment allowed researchers to acquire direct measurements of methane emissions.

Study and Findings on Pneumatic Devices

Pneumatic devices, which use gas pressure to control the opening and closing of valves, emit gas as they operate. These emissions are estimated to be among the larger sources of methane emissions from the natural gas supply chain. The Environmental Protection Agency reports that 477,606 pneumatic (gas actuated) devices are in use at natural gas production sites throughout the U.S.

“Our team’s previous work established that pneumatics are a major contributor to emissions,” Allen said. “Our goal here was to measure a more diverse population of wells to characterize the features of high-emitting pneumatic controllers.”

The research team measured emissions from 377 gas actuated (pneumatic) controllers at natural gas production sites and a small number of oil production sites throughout the U.S.

The researchers sampled all identifiable pneumatic controller devices at each well site, a more comprehensive approach than the random sampling previously conducted. The average methane emissions per pneumatic controller reported in this study are 17 percent higher than the average emissions per pneumatic controller in the 2012 EPA greenhouse gas national emission inventory (released in 2014), but the average from the study is dominated by a small subpopulation of the controllers. Specifically, 19 percent of controllers, with measured emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95 percent of emissions.

The high-emitting pneumatic devices are a combination of devices that are not operating as designed, are used in applications that cause them to release gas frequently or are designed to emit continuously at a high rate.

The researchers also observed regional differences in methane emission levels, with the lowest emissions per device measured in the Rocky Mountains and the highest emissions in the Gulf Coast, similar to the earlier 2013 study. At least some of the regional differences in emission rates can be attributed to the difference in controller type (continuous vent vs. intermittent vent) among regions.

Study and Findings on Liquid Unloadings

After observing variable emissions for liquid unloadings for a limited group of well types in the 2013 study, the research team made more extensive measurements and confirmed that a majority of emissions come from a small fraction of wells that vent frequently. Although it is not surprising to see some correlation between frequency of unloadings and higher annual emissions, the study’s findings indicate that wells with a high frequency of unloadings have annual emissions that are 10 or more times as great as wells that unload less frequently.

The team’s field study, which measured emissions from unloadings from wells at 107 natural gas production wells throughout the U.S., represents the most extensive measurement of emissions associated with liquid unloadings in scientific literature thus far.

A liquid unloading is one method used to clear wells of accumulated liquids to increase production. Because older wells typically produce less gas as they near the end of their life cycle, liquid unloadings happen more often in those wells than in newer wells. The team found a statistical correlation between the age of wells and the frequency of liquid unloadings. The researchers found that the key identifier for high-emitting wells is how many times the well unloads in a given year.

Because liquid unloadings can employ a variety of liquid lifting mechanisms, the study results also reflect differences in liquid unloadings emissions between wells that use two different mechanisms (wells with plunger lifts and wells without plunger lifts). Emissions for unloading events for wells without plunger lifts averaged 21,000 scf (standard cubic feet) to 35,000 scf. For wells with plunger lifts that vent to the atmosphere, emissions averaged 1,000 scf to 10,000 scf of methane per event. Although the emissions per event were higher for wells without plunger lifts, these wells had, on average, fewer events than wells with plunger lifts. Wells without plunger lifts averaged fewer than 10 unloading events per year, and wells with plunger lifts averaged more than 200 events per year.Overall, wells with plunger lifts were estimated to account for 70 percent of emissions from unloadings nationally.

Additionally, researchers found that the Rocky Mountain region, with its large number of wells with a high frequency of unloadings that vent to the atmosphere, accounts for about half of overall emissions from liquid unloadings.

The study team hopes its measurements of liquid unloadings and pneumatic devices will provide a clearer picture of methane emissions from natural gas well sites and about the relationship between well characteristics and emissions.

The study was a cooperative effort involving experts from the Environmental Defense Fund, Anadarko Petroleum Corporation, BG Group PLC, Chevron, ConocoPhillips, Encana Oil & Gas (USA) Inc., Pioneer Natural Resources Company, SWEPI LP (Shell), Statoil, Southwestern Energy and XTO Energy, a subsidiary of ExxonMobil.

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest of its researchers. Lead researcher David Allen serves as chair of the Environmental Protection Agency’s Science Advisory Board and in this role is a paid Special Governmental Employee. He is also a journal editor for the American Chemical Society and has served as a consultant for multiple companies, including Eastern Research Group, ExxonMobil and the Research Triangle Institute. He has worked on other research projects funded by a variety of governmental, nonprofit and private sector sources including the National Science Foundation, the Environmental Protection Agency, the Texas Commission on Environmental Quality, the American Petroleum Institute and an air monitoring and surveillance project that was ordered by the U.S. District Court for the Southern District of Texas. Adam Pacsi and Daniel Zavala-Araiza, who were graduate students at The University of Texas at the time this work was done, have accepted positions at Chevron Energy Technology Company and the Environmental Defense Fund, respectively.

Financial support for this work was provided by the Environmental Defense Fund (EDF), Anadarko Petroleum Corporation, BG Group PLC, Chevron, ConocoPhillips, Encana Oil & Gas (USA) Inc., Pioneer Natural Resources Company, SWEPI LP (Shell), Statoil, Southwestern Energy and XTO Energy, a subsidiary of ExxonMobil.

Major funding for the EDF’s 30-month methane research series, including their portion of the University of Texas study, is provided for by the following individuals and foundations: Fiona and Stan Druckenmiller, the Heising-Simons Foundation, Bill and Susan Oberndorf, Betsy and Sam Reeves, the Robertson Foundation, TomKat Charitable Trust and the Walton Family Foundation.

First harvest of research based on the final GOCE gravity model

This image, based on the final GOCE gravity model, charts current velocities in the Gulf Stream in meters per second. -  TUM IAPG
This image, based on the final GOCE gravity model, charts current velocities in the Gulf Stream in meters per second. – TUM IAPG

Just four months after the final data package from the GOCE satellite mission was delivered, researchers are laying out a rich harvest of scientific results, with the promise of more to come. A mission of the European Space Agency (ESA), the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) provided the most accurate measurements yet of Earth’s gravitational field. The GOCE Gravity Consortium, coordinated by the Technische Universität München (TUM), produced all of the mission’s data products including the fifth and final GOCE gravity model. On this basis, studies in geophysics, geology, ocean circulation, climate change, and civil engineering are sharpening the picture of our dynamic planet – as can be seen in the program of the 5th International GOCE User Workshop, taking place Nov. 25-28 in Paris.

The GOCE satellite made 27,000 orbits between its launch in March 2009 and re-entry in November 2013, measuring tiny variations in the gravitational field that correspond to uneven distributions of mass in Earth’s oceans, continents, and deep interior. Some 800 million observations went into the computation of the final model, which is composed of more than 75,000 parameters representing the global gravitational field with a spatial resolution of around 70 kilometers. The precision of the model improved over time, as each release incorporated more data. Centimeter accuracy has now been achieved for variations of the geoid – a gravity-derived figure of Earth’s surface that serves as a global reference for sea level and heights – in a model based solely on GOCE data.

The fifth and last data release benefited from two special phases of observation. After its first three years of operation, the satellite’s orbit was lowered from 255 to 225 kilometers, increasing the sensitivity of gravity measurements to reveal even more detailed structures of the gravity field. And through most of the satellite’s final plunge through the atmosphere, some instruments continued to report measurements that have sparked intense interest far beyond the “gravity community” – for example, among researchers concerned with aerospace engineering, atmospheric sciences, and space debris.

Moving on: new science, future missions


Through the lens of Earth’s gravitational field, scientists can image our planet in a way that is complementary to approaches that rely on light, magnetism, or seismic waves. They can determine the speed of ocean currents from space, monitor rising sea level and melting ice sheets, uncover hidden features of continental geology, even peer into the convection machine that drives plate tectonics. Topics like these dominate the more than 100 talks scheduled for the 5th GOCE User Workshop, with technical talks on measurements and models playing a smaller role. “I see this as a sign of success, that the emphasis has shifted decisively to the user community,” says Prof. Roland Pail, director of the Institute for Astronomical and Physical Geodesy at TUM.

This shift can be seen as well among the topics covered by TUM researchers, such as estimates of the elastic thickness of the continents from GOCE gravity models, mass trends in Antarctica from global gravity fields, and a scientific roadmap toward worldwide unification of height systems. For his part Pail – who was responsible for delivery of the data products – chose to speak about consolidating science requirements for a next-generation gravity field mission.


TUM has organized a public symposium on “Seeing Earth in the ‘light’ of gravity” for the 2015 Annual Meeting of the American Association for the Advancement of Science in San Jose, California. This session, featuring speakers from Australia, Canada, Denmark, France, Germany and Italy, takes place on Feb. 14, 2015. (See http://meetings.aaas.org/.)

This research was supported in part by the European Space Agency.

Publication:


“EGM_TIM_RL05: An Independent Geoid with Centimeter Accuracy Purely Based on the GOCE Mission,” Jan Martin Brockmann, Norbert Zehentner, Eduard Höck, Roland Pail, Ina Loth, Torsten Mayer-Gürr, and Wolf-Dieter Shuh. Geophysical Research Letters 2014, doi:10.1002/2014GL061904.

Massive geographic change may have triggered explosion of animal life

A new analysis from The University of Texas at Austin's Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. -  Ian Dalziel
A new analysis from The University of Texas at Austin’s Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. – Ian Dalziel

A new analysis of geologic history may help solve the riddle of the “Cambrian explosion,” the rapid diversification of animal life in the fossil record 530 million years ago that has puzzled scientists since the time of Charles Darwin.

A paper by Ian Dalziel of The University of Texas at Austin’s Jackson School of Geosciences, published in the November issue of Geology, a journal of the Geological Society of America, suggests a major tectonic event may have triggered the rise in sea level and other environmental changes that accompanied the apparent burst of life.

The Cambrian explosion is one of the most significant events in Earth’s 4.5-billion-year history. The surge of evolution led to the sudden appearance of almost all modern animal groups. Fossils from the Cambrian explosion document the rapid evolution of life on Earth, but its cause has been a mystery.

The sudden burst of new life is also called “Darwin’s dilemma” because it appears to contradict Charles Darwin’s hypothesis of gradual evolution by natural selection.

“At the boundary between the Precambrian and Cambrian periods, something big happened tectonically that triggered the spreading of shallow ocean water across the continents, which is clearly tied in time and space to the sudden explosion of multicellular, hard-shelled life on the planet,” said Dalziel, a research professor at the Institute for Geophysics and a professor in the Department of Geological Sciences.

Beyond the sea level rise itself, the ancient geologic and geographic changes probably led to a buildup of oxygen in the atmosphere and a change in ocean chemistry, allowing more complex life-forms to evolve, he said.

The paper is the first to integrate geological evidence from five present-day continents — North America, South America, Africa, Australia and Antarctica — in addressing paleogeography at that critical time.

Dalziel proposes that present-day North America was still attached to the southern continents until sometime into the Cambrian period. Current reconstructions of the globe’s geography during the early Cambrian show the ancient continent of Laurentia — the ancestral core of North America — as already having separated from the supercontinent Gondwanaland.

In contrast, Dalziel suggests the development of a deep oceanic gateway between the Pacific and Iapetus (ancestral Atlantic) oceans isolated Laurentia in the early Cambrian, a geographic makeover that immediately preceded the global sea level rise and apparent explosion of life.

“The reason people didn’t make this connection before was because they hadn’t looked at all the rock records on the different present-day continents,” he said.

The rock record in Antarctica, for example, comes from the very remote Ellsworth Mountains.

“People have wondered for a long time what rifted off there, and I think it was probably North America, opening up this deep seaway,” Dalziel said. “It appears ancient North America was initially attached to Antarctica and part of South America, not to Europe and Africa, as has been widely believed.”

Although the new analysis adds to evidence suggesting a massive tectonic shift caused the seas to rise more than half a billion years ago, Dalziel said more research is needed to determine whether this new chain of paleogeographic events can truly explain the sudden rise of multicellular life in the fossil record.

“I’m not claiming this is the ultimate explanation of the Cambrian explosion,” Dalziel said. “But it may help to explain what was happening at that time.”

###

To read the paper go to http://geology.gsapubs.org/content/early/2014/09/25/G35886.1.abstract

Lack of oxygen delayed the rise of animals on Earth

Christopher Reinhard and Noah Planavsky conduct research for the study in China. -  Yale University
Christopher Reinhard and Noah Planavsky conduct research for the study in China. – Yale University

Geologists are letting the air out of a nagging mystery about the development of animal life on Earth.

Scientists have long speculated as to why animal species didn’t flourish sooner, once sufficient oxygen covered the Earth’s surface. Animals began to prosper at the end of the Proterozoic period, about 800 million years ago — but what about the billion-year stretch before that, when most researchers think there also was plenty of oxygen?

Well, it seems the air wasn’t so great then, after all.

In a study published Oct. 30 in Science, Yale researcher Noah Planavsky and his colleagues found that oxygen levels during the “boring billion” period were only 0.1% of what they are today. In other words, Earth’s atmosphere couldn’t have supported a diversity of creatures, no matter what genetic advancements were poised to occur.

“There is no question that genetic and ecological innovation must ultimately be behind the rise of animals, but it is equally unavoidable that animals need a certain level of oxygen,” said Planavsky, co-lead author of the research along with Christopher Reinhard of the Georgia Institute of Technology. “We’re providing the first evidence that oxygen levels were low enough during this period to potentially prevent the rise of animals.”

The scientists found their evidence by analyzing chromium (Cr) isotopes in ancient sediments from China, Australia, Canada, and the United States. Chromium is found in the Earth’s continental crust, and chromium oxidation is directly linked to the presence of free oxygen in the atmosphere.

Specifically, the team studied samples deposited in shallow, iron-rich ocean areas, near the shore. They compared their data with other samples taken from younger locales known to have higher levels of oxygen.

Oxygen’s role in controlling the first appearance of animals has long vexed scientists. “We were missing the right approach until now,” Planavsky said. “Chromium gave us the proxy.” Previous estimates put the oxygen level at 40% of today’s conditions during pre-animal times, leaving open the possibility that oxygen was already plentiful enough to support animal life.

In the new study, the researchers acknowledged that oxygen levels were “highly dynamic” in the early atmosphere, with the potential for occasional spikes. However, they said, “It seems clear that there is a first-order difference in the nature of Earth surface Cr cycling” before and after the rise of animals.

“If we are right, our results will really change how people view the origins of animals and other complex life, and their relationships to the co-evolving environment,” said co-author Tim Lyons of the University of California-Riverside. “This could be a game changer.”

“There’s a lot of interest right now in a broader discussion surrounding the role that environmental stability played in the evolution of complex life, and we think our results are a significant contribution to that,” Reinhard said.

New study finds oceans arrived early to Earth

In this illustration of the early solar system, the dashed white line represents the snow line -- the transition from the hotter inner solar system, where water ice is not stable (brown) to the outer Solar system, where water ice is stable (blue). Two possible ways that the inner solar system received water are: water molecules sticking to dust grains inside the 'snow line' (as shown in the inset) and carbonaceous chondrite material flung into the inner solar system by the effect of gravity from protoJupiter. With either scenario, water must accrete to the inner planets within the first ca. 10 million years of solar system formation. -  Illustration by Jack Cook, Woods Hole Oceanographic Institution
In this illustration of the early solar system, the dashed white line represents the snow line — the transition from the hotter inner solar system, where water ice is not stable (brown) to the outer Solar system, where water ice is stable (blue). Two possible ways that the inner solar system received water are: water molecules sticking to dust grains inside the ‘snow line’ (as shown in the inset) and carbonaceous chondrite material flung into the inner solar system by the effect of gravity from protoJupiter. With either scenario, water must accrete to the inner planets within the first ca. 10 million years of solar system formation. – Illustration by Jack Cook, Woods Hole Oceanographic Institution

Earth is known as the Blue Planet because of its oceans, which cover more than 70 percent of the planet’s surface and are home to the world’s greatest diversity of life. While water is essential for life on the planet, the answers to two key questions have eluded us: where did Earth’s water come from and when?

While some hypothesize that water came late to Earth, well after the planet had formed, findings from a new study led by scientists at the Woods Hole Oceanographic Institution (WHOI) significantly move back the clock for the first evidence of water on Earth and in the inner solar system.

“The answer to one of the basic questions is that our oceans were always here. We didn’t get them from a late process, as was previously thought,” said Adam Sarafian, the lead author of the paper published Oct. 31, 2014, in the journal Science and a MIT/WHOI Joint Program student in the Geology and Geophysics Department.

One school of thought was that planets originally formed dry, due to the high-energy, high-impact process of planet formation, and that the water came later from sources such as comets or “wet” asteroids, which are largely composed of ices and gases.

“With giant asteroids and meteors colliding, there’s a lot of destruction,” said Horst Marschall, a geologist at WHOI and coauthor of the paper. “Some people have argued that any water molecules that were present as the planets were forming would have evaporated or been blown off into space, and that surface water as it exists on our planet today, must have come much, much later—hundreds of millions of years later.”

The study’s authors turned to another potential source of Earth’s water— carbonaceous chondrites. The most primitive known meteorites, carbonaceous chondrites, were formed in the same swirl of dust, grit, ice and gasses that gave rise to the sun some 4.6 billion years ago, well before the planets were formed.

“These primitive meteorites resemble the bulk solar system composition,” said WHOI geologist and coauthor Sune Nielsen. “They have quite a lot of water in them, and have been thought of before as candidates for the origin of Earth’s water.

In order to determine the source of water in planetary bodies, scientists measure the ratio between the two stable isotopes of hydrogen: deuterium and hydrogen. Different regions of the solar system are characterized by highly variable ratios of these isotopes. The study’s authors knew the ratio for carbonaceous chondrites and reasoned that if they could compare that to an object that was known to crystallize while Earth was actively accreting then they could gauge when water appeared on Earth.

To test this hypothesis, the research team, which also includes Francis McCubbin from the Institute of Meteoritics at the University of New Mexico and Brian Monteleone of WHOI, utilized meteorite samples provided by NASA from the asteroid 4-Vesta. The asteroid 4-Vesta, which formed in the same region of the solar system as Earth, has a surface of basaltic rock—frozen lava. These basaltic meteorites from 4-Vesta are known as eucrites and carry a unique signature of one of the oldest hydrogen reservoirs in the solar system. Their age—approximately 14 million years after the solar system formed—makes them ideal for determining the source of water in the inner solar system at a time when Earth was in its main building phase. The researchers analyzed five different samples at the Northeast National Ion Microprobe Facility—a state-of-the-art national facility housed at WHOI that utilizes secondary ion mass spectrometers. This is the first time hydrogen isotopes have been measured in eucrite meteorites.

The measurements show that 4-Vesta contains the same hydrogen isotopic composition as carbonaceous chondrites, which is also that of Earth. That, combined with nitrogen isotope data, points to carbonaceous chondrites as the most likely common source of water.

“The study shows that Earth’s water most likely accreted at the same time as the rock. The planet formed as a wet planet with water on the surface,” Marschall said.

While the findings don’t preclude a late addition of water on Earth, it shows that it wasn’t necessary since the right amount and composition of water was present at a very early stage.

“An implication of that is that life on our planet could have started to begin very early,” added Nielsen. “Knowing that water came early to the inner solar system also means that the other inner planets could have been wet early and evolved life before they became the harsh environments they are today.

Rare 2.5-billion-year-old rocks reveal hot spot of sulfur-breathing bacteria

Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. -  Alan J. Kaufman
Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. – Alan J. Kaufman

Wriggle your toes in a marsh’s mucky bottom sediment and you’ll probably inhale a rotten egg smell, the distinctive odor of hydrogen sulfide gas. That’s the biochemical signature of sulfur-using bacteria, one of Earth’s most ancient and widespread life forms.

Among scientists who study the early history of our 4.5 billion-year-old planet, there is a vigorous debate about the evolution of sulfur-dependent bacteria. These simple organisms arose at a time when oxygen levels in the atmosphere were less than one-thousandth of what they are now. Living in ocean waters, they respired (or breathed in) sulfate, a form of sulfur, instead of oxygen. But how did that sulfate reach the ocean, and when did it become abundant enough for living things to use it?

New research by University of Maryland geology doctoral student Iadviga Zhelezinskaia offers a surprising answer. Zhelezinskaia is the first researcher to analyze the biochemical signals of sulfur compounds found in 2.5 billion-year-old carbonate rocks from Brazil. The rocks were formed on the ocean floor in a geologic time known as the Neoarchaean Eon. They surfaced when prospectors drilling for gold in Brazil punched a hole into bedrock and pulled out a 590-foot-long core of ancient rocks.

In research published Nov. 7, 2014 in the journal Science, Zhelezinskaia and three co-authors–physicist John Cliff of the University of Western Australia and geologists Alan Kaufman and James Farquhar of UMD–show that bacteria dependent on sulfate were plentiful in some parts of the Neoarchaean ocean, even though sea water typically contained about 1,000 times less sulfate than it does today.

“The samples Iadviga measured carry a very strong signal that sulfur compounds were consumed and altered by living organisms, which was surprising,” says Farquhar. “She also used basic geochemical models to give an idea of how much sulfate was in the oceans, and finds the sulfate concentrations are very low, much lower than previously thought.”

Geologists study sulfur because it is abundant and combines readily with other elements, forming compounds stable enough to be preserved in the geologic record. Sulfur has four naturally occurring stable isotopes–atomic signatures left in the rock record that scientists can use to identify the elements’ different forms. Researchers measuring sulfur isotope ratios in a rock sample can learn whether the sulfur came from the atmosphere, weathering rocks or biological processes. From that information about the sulfur sources, they can deduce important information about the state of the atmosphere, oceans, continents and biosphere when those rocks formed.

Farquhar and other researchers have used sulfur isotope ratios in Neoarchaean rocks to show that soon after this period, Earth’s atmosphere changed. Oxygen levels soared from just a few parts per million to almost their current level, which is around 21 percent of all the gases in the atmosphere. The Brazilian rocks Zhelezinskaia sampled show only trace amounts of oxygen, a sign they were formed before this atmospheric change.

With very little oxygen, the Neoarchaean Earth was a forbidding place for most modern life forms. The continents were probably much drier and dominated by volcanoes that released sulfur dioxide, carbon dioxide, methane and other greenhouse gases. Temperatures probably ranged between 0 and 100 degrees Celsius (32 to 212 degrees Fahrenheit), warm enough for liquid oceans to form and microbes to grow in them.

Rocks 2.5 billion years old or older are extremely rare, so geologists’ understanding of the Neoarchaean are based on a handful of samples from a few small areas, such as Western Australia, South Africa and Brazil. Geologists theorize that Western Australia and South Africa were once part of an ancient supercontinent called Vaalbara. The Brazilian rock samples are comparable in age, but they may not be from the same supercontinent, Zhelezinskaia says.

Most of the Neoarchaean rocks studied are from Western Australia and South Africa and are black shale, which forms when fine dust settles on the sea floor. The Brazilian prospector’s core contains plenty of black shale and a band of carbonate rock, formed below the surface of shallow seas, in a setting that probably resembled today’s Bahama Islands. Black shale usually contains sulfur-bearing pyrite, but carbonate rock typically does not, so geologists have not focused on sulfur signals in Neoarchaean carbonate rocks until now.

Zhelezinskaia “chose to look at a type of rock that others generally avoided, and what she saw was spectacularly different,” said Kaufman. “It really opened our eyes to the implications of this study.”

The Brazilian carbonate rocks’ isotopic ratios showed they formed in ancient seabed containing sulfate from atmospheric sources, not continental rock. And the isotopic ratios also showed that Neoarchaean bacteria were plentiful in the sediment, respiring sulfate and emitted hydrogen sulfide–the same process that goes on today as bacteria recycle decaying organic matter into minerals and gases.

How could the sulfur-dependent bacteria have thrived during a geologic time when sulfur levels were so low? “It seems that they were in shallow water, where evaporation may have been high enough to concentrate the sulfate, and that would make it abundant enough to support the bacteria,” says Zhelezinskaia.

Zhelezinskaia is now analyzing carbonate rocks of the same age from Western Australia and South Africa, to see if the pattern holds true for rocks formed in other shallow water environments. If it does, the results may change scientists’ understanding of one of Earth’s earliest biological processes.

“There is an ongoing debate about when sulfate-reducing bacteria arose and how that fits into the evolution of life on our planet,” says Farquhar. “These rocks are telling us the bacteria were there 2.5 billion years ago, and they were doing something significant enough that we can see them today.”

###

This research was supported by the Fulbright Program (Grantee ID 15110620), the NASA Astrobiology Institute (Grant No. NNA09DA81A) and the National Science Foundation Frontiers in Earth-System Dynamics program (Grant No. 432129). The content of this article does not necessarily reflect the views of these organizations.

“Large sulfur isotope fractionations associated with Neoarchaean microbial sulfate reductions,” Iadviga Zhelezinskaia, Alan J. Kaufman, James Farquhar and John Cliff, was published Nov. 7, 2014 in Science. Download the abstract after 2 p.m. U.S. Eastern time, Nov. 6, 2014: http://www.sciencemag.org/lookup/doi/10.1126/science.1256211

James Farquhar home page

http://www.geol.umd.edu/directory.php?id=13

Alan J. Kaufman home page

http://www.geol.umd.edu/directory.php?id=15

Iadviga Zhelezinskaia home page

http://www.geol.umd.edu/directory.php?id=66

Media Relations Contact: Abby Robinson, 301-405-5845, abbyr@umd.edu

Writer: Heather Dewar

Life in Earth’s primordial sea was starved for sulfate

This is a research vessel on Lake Matano, Indonesia -- a modern lake with chemistry similar to Earth's early oceans. -  Sean Crowe, University of British Columbia.
This is a research vessel on Lake Matano, Indonesia — a modern lake with chemistry similar to Earth’s early oceans. – Sean Crowe, University of British Columbia.

The Earth’s ancient oceans held much lower concentrations of sulfate–a key biological nutrient–than previously recognized, according to research published this week in Science.

The findings paint a new portrait of our planet’s early biosphere and primitive marine life. Organisms require sulfur as a nutrient, and it plays a central role in regulating atmospheric chemistry and global climate.

“Our findings are a fraction of previous estimates, and thousands of time lower than current seawater levels,” says Sean Crowe, a lead author of the study and an assistant professor in the Departments of Microbiology and Immunology, and Earth, Ocean and Atmospheric Sciences at the University of British Columbia.

“At these trace amounts, sulfate would have been poorly mixed and short-lived in the oceans–and this sulfate scarcity would have shaped the nature, activity and evolution of early life on Earth.”

UBC, University of Southern Denmark, CalTech, University of Minnesota Duluth, and University of Maryland researchers used new techniques and models to calibrate fingerprints of bacterial sulfur metabolisms in Lake Matano, Indonesia — a modern lake with chemistry similar to Earth’s early oceans.

Measuring these fingerprints in rocks older than 2.5 billion years, they discovered sulfate 80 times lower than previously thought.

The more sensitive fingerprinting provides a powerful tool to search for sulfur metabolisms deep in Earth’s history or on other planets like Mars.

Findings

Previous research has suggested that Archean sulfate levels were as low as 200 micromolar– concentrations at which sulfur would still have been abundantly available to early marine life.

The new results indicate levels were likely less than 2.5 micromolar, thousands of times lower than today.

What the researchers did

Researchers used state-of-the-art mass spectrometric approaches developed at California Institute of Technology to demonstrate that microorganisms fractionate sulfur isotopes at concentrations orders of magnitude lower than previously recognized.

They found that microbial sulfur metabolisms impart large fingerprints even when sulfate is scarce.

The team used the techniques on samples from Lake Matano, Indonesia–a sulfate-poor modern analogue for the Earth’s Archean oceans.

“New measurements in these unique modern environments allow us to use numerical models to reconstruct ancient ocean chemistry with unprecedented resolution” says Sergei Katsev an Associate Professor at the Large Lakes Observatory, University of Minnesota Duluth.

Using models informed by sulfate isotope fractionation in Lake Matano, they established a new calibration for sulfate isotope fractionation that is extensible to the Earth’s oceans throughout history. The researchers then reconstructed Archean seawater sulfate concentrations using these models and an exhaustive compilation of sulfur isotope data from Archean sedimentary rocks.

###

Crowe initiated the research while a post-doctoral fellow with Donald Canfield at the University of Southern Denmark.

Scientists find ancient mountains that fed early life

This image shows the ancient mountain site, Brazil. -  Carlos Ganade de Araujo
This image shows the ancient mountain site, Brazil. – Carlos Ganade de Araujo

Scientists have found evidence for a huge mountain range that sustained an explosion of life on Earth 600 million years ago.

The mountain range was similar in scale to the Himalayas and spanned at least 2,500 kilometres of modern west Africa and northeast Brazil, which at that time were part of the supercontinent Gondwana.

“Just like the Himalayas, this range was eroded intensely because it was so huge. As the sediments washed into the oceans they provided the perfect nutrients for life to flourish,” said Professor Daniela Rubatto of the Research School of Earth Sciences at The Australian National University (ANU).

“Scientists have speculated that such a large mountain range must have been feeding the oceans because of the way life thrived and ocean chemistry changed at this time, and finally we have found it.”

The discovery is earliest evidence of Himalayan-scale mountains on Earth.

“Although the mountains have long since washed away, rocks from their roots told the story of the ancient mountain range’s grandeur,” said co-researcher Professor Joerg Hermann.

“The range was formed by two continents colliding. During this collision, rocks from the crust were pushed around 100 kilometres deep into the mantle, where the high temperatures and pressures formed new minerals.”

As the mountains eroded, the roots came back up to the surface, to be collected in Togo, Mali and northeast Brazil, by Brazilian co-researcher Carlos Ganade de Araujo, from the University of Sao Paolo.

Dr Ganade de Araujo recognised the samples were unique and brought the rocks to ANU where, using world-leading equipment, the research team accurately identified that the rocks were of similar age, and had been formed at similar, great depths.

The research team involved specialists from a range of different areas of Earth Science sharing their knowledge, said Professor Rubatto.

“With everyone cooperating to study tiny crystals, we have managed to discover a huge mountain range,” she said.




Video
Click on this image to view the .mp4 video
Scientists from Australian National University reveal how they found a mountain range that fed an explosion of life 600 million years ago. The range stretched 2,500 km across Gondwana from modern west Africa to Northeast Brazil. Tiny mineral crystals formed in the roots of these huge mountains were the key to reconstructing their age and size. – ANU Media