Geologists shed light on formation of Alaska Range

Syracuse University Professor Paul Fitzgerald and a group of students have been studying the Alaska Range. -  Syracuse University
Syracuse University Professor Paul Fitzgerald and a group of students have been studying the Alaska Range. – Syracuse University

Geologists in Syracuse University’s College of Arts and Sciences have recently figured out what has caused the Alaska Range to form the way it has and why the range boasts such an enigmatic topographic signature. The narrow mountain range is home to some of the world’s most dramatic topography, including 20,320-foot Mount McKinley, North America’s highest mountain.

Professor Paul Fitzgerald and a team of students and fellow scientists have been studying the Alaska Range along the Denali fault. They think they know why the fault is located where it is and what accounts for the alternating asymmetrical, mountain-scale topography along the fault.

Their findings were the subject of a recent paper in the journal Tectonics (American Geophysical Union, 2014).

In 2002, the Denali fault, which cuts across south-central Alaska, was the site of a magnitude-7.9 earthquake and was felt as far away as Texas and Louisiana. It was the largest earthquake of its kind in more than 150 years.

“Following the earthquake, researchers flocked to the area to examine the effects,” says Fitzgerald, who serves as professor of Earth Sciences and an associate dean for the College. “They were fascinated by how the frozen ground behaved; the many landslides [the earthquake] caused; how bridges responded; and how the Trans-Alaska oil pipeline survived, as it was engineered to do so.”

Geologists were also surprised by how the earthquake began on a previously unknown thrust-fault; then propagated eastward, along the Denali fault, and finally jumped onto another fault, hundreds of kilometers away.

“From our perspective, the earthquake has motivated analyses of why the highest mountains in the central Alaska Range occur south of the Denali fault and the highest mountains in the eastern Alaska Range occur north of the fault–something that has puzzled us for years,” Fitzgerald adds. “It’s been an enigma staring us in the face.”

He attributes the Alaska Range’s alternating topographic signatures to a myriad of factors: contrasting lithospheric strength between large terranes (i.e., distinctly different rock units); the location of the curved Denali fault; the transfer of strain inland from southern Alaska’s active plate margin; and the shape of the controlling former continental margin against weaker suture-zone rocks.

It’s no secret that Alaska is one of the most geologically active areas on the planet. For instance, scientists know that the North American Plate is currently overriding the Pacific Plate at the latter’s southern coast, while the Yakutat microplate is colliding with North America.

As a result of plate tectonics, Alaska is an amalgamation of terranes that have collided with the North American craton and have accreted to become part of North America.

Cratons are pieces of continents that have been largely stable for hundreds of millions of years.

Terranes often originate as volcanic islands (like those of Hawaii) and, after colliding with one another or a continent, are separated by large discrete faults. When terranes collide and accrete, they form a suture, also known as a collision zone, which is made up of weak, crushed rock. During deformation, suture-zone rocks usually deform first, especially if they are adjacent to a strong rock body.

“Technically, the Denali fault is what we’d call an ‘intercontinental right-lateral strike-slip fault system,'” says Fitzgerald, adding that a strike-slip fault occurs when rocks move horizontally past one another, usually on a vertical fault. “This motion includes a component of slip along the fault and a component of normal motion against the fault that creates mountains. Hence, the shape of the fault determines which of the two components is predominant and where mountains form.”

In Alaska, the shape of the accreted terranes generally controls the location of the Denali fault and the mountains that form along it, especially at the bends in the trace of the fault.

Fitzgerald: “Mount McKinley and the central Alaska Range lie within the concave curve of the Denali fault. There, higher topography and greater exhumation [uplift of rock] occur south of the Denali fault, exactly where you’d expect a mountain range to form, given the regional tectonics. In the eastern Alaska Range, higher topography and greater exhumation are found north of the fault, on its convex side–not an expected pattern at all and very puzzling.”

Using mapped surface geology, geophysical data, and thermochronology (i.e., time-temperature history of the rocks), Fitzgerald and colleagues have determined that much of Alaska’s uplift and deformation began some 25 million years ago, when the Yakutat microplate first started colliding with North America. The bold, glacier-clad peaks comprising the Alaska Range actually derive from within the aforementioned “weak suture-zone rocks” between the terranes.

While mountains are high and give the impression of strength, they are built largely from previously fractured rock units. Rock movement along the Denali fault drives the uplift of the mountains, which form at bends in the fault, where previously fractured suture-zone rocks are pinned against the stronger former North American continental margin.

“The patterns of deformation help us understand regional tectonics and the formation of the Alaska Range, which is fascinating to geologists and non-geologists alike,” says Fitzgerald. “Being able to determine patterns or how to reveal them, while others see chaos, is often the key to finding the answer to complex problems. … To us scientists, the real significance of this work is that it helps us understand the evolution of our planet, how faults and mountain belts form, and why earthquakes happen. It also provides a number of hypotheses about Alaskan tectonics and rock deformation that we can test, using the Alaska Range as our laboratory.”

In addition to Fitzgerald, the paper was co-authored by Sarah Roeske, a research scientist at the University of California, Davis; Jeff Benowitz, a research scientist at the Geophysical Institute at the University of Alaska Fairbanks; Steven Riccio and Stephanie Perry, graduate students in Earth Sciences at Syracuse; and Phillip Armstrong, professor and chair of geological sciences at California State University, Fullerton.

Housed in Syracuse’s College of Arts and Sciences, the Department of Earth Sciences offers graduate and undergraduate degree opportunities in crustal evolution and tectonics, environmental sciences and climate change, hydrogeology, sedimentology and paleolimnology, geochemistry, and paleobiology.

Study shows tectonic plates not rigid, deform horizontally in cooling process

Corné Kreemer, associate professor in the College of Science at the University of Nevada, Reno, conducts research on plate tectonics and geodetics. His latest research shows that oceanic tectonic plates deform due to cooling, causing shortening of the plates and mid-plate seismicity. -  Photo by Mike Wolterbeek, University of Nevada, Reno.
Corné Kreemer, associate professor in the College of Science at the University of Nevada, Reno, conducts research on plate tectonics and geodetics. His latest research shows that oceanic tectonic plates deform due to cooling, causing shortening of the plates and mid-plate seismicity. – Photo by Mike Wolterbeek, University of Nevada, Reno.

The puzzle pieces of tectonic plates that make up the outer layer of the earth are not rigid and don’t fit together as nicely as we were taught in high school.

A study published in the journal Geology by Corné Kreemer, an associate professor at the University of Nevada, Reno, and his colleague Richard Gordon of Rice University, quantifies deformation of the Pacific plate and challenges the central approximation of the plate tectonic paradigm that plates are rigid.

Using large-scale numerical modeling as well as GPS velocities from the largest GPS data-processing center in the world – the Nevada Geodetic Laboratory at the University of Nevada, Reno – Kreemer and Gordon have showed that cooling of the lithosphere, the outermost layer of Earth, makes some sections of the Pacific plate contract horizontally at faster rates than other sections. This causes the plate to deform.

Gordon’s idea is that the plate cooling, which makes the ocean deeper, also affects horizontal movement and that there is shortening and deformation of the plates due to the cooling. In partnering with Kreemer, the two put their ideas and expertise together to show that the deformation could explain why some parts of the plate tectonic puzzle didn’t fall neatly into place in recent plate motion models, which is based on spreading rates along mid-oceanic ridges. Kreemer and Gordon also showed that there is a positive correlation between where the plate is predicted to deform and where intraplate earthquakes occur. Their work was supported by the National Science Foundation.

Results of the study suggest that plate-scale horizontal thermal contraction is significant, and that it may be partly released seismically. . The pair of researchers are, as the saying goes, rewriting the textbooks.

“This is plate tectonics 2.0, it revolutionizes the concepts of plate rigidity,” Kreemer, who teaches in the University’s College of Science, said. “We have shown that the Pacific plate deforms, that it is pliable. We are refining the plate tectonic theory and have come up with an explanation for mid-plate seismicity.”

The oceanic plates are shortening due to cooling, which causes relative motion inside the plate, Kreemer said. The oceanic crust of the Pacific plate off shore California is moving 2 mm to the south every year relative to the Pacific/Antarctic plate boundary.

“It may not sound like much, but it is significant considering that we can measure crustal motion with GPS within a fraction of a millimeter per year,” he said. “Unfortunately, all existing GPS stations on Pacific islands are in the old part of the plate that is not expected nor shown to deform. New measurements will be needed within the young parts of the plate to confirm this study’s predictions, either on very remote islands or through sensors on the ocean floor.”

This work is complementary to Kreemer’s ongoing effort to quantify the deformation in all of the Earth’s plate boundary zones with GPS velocities – data that are for a large part processed in the Nevada Geodetic Laboratory. The main goal of the global modeling is to convert the strain rates to earthquake forecast maps.

“Because we don’t have GPS data in the right places of the Pacific plate, our prediction of how that plate deforms can supplement the strain rates I’ve estimated in parts of the world where we can quantify them with GPS data,” Kreemer said. “Ultimately, we hope to have a good estimate of strain rates everywhere so that the models not only forecast earthquakes for places like Reno and San Francisco, but also for places where you may expect them the least.”

Offshore islands amplify, rather than dissipate, a tsunami’s power

This model shows the impact of coastal islands on a tsunami's height. -  Courtesy of Jose Borrero/eCoast/USC
This model shows the impact of coastal islands on a tsunami’s height. – Courtesy of Jose Borrero/eCoast/USC

A long-held belief that offshore islands protect the mainland from tsunamis turns out to be the exact opposite of the truth, according to a new study.

Common wisdom — from Southern California to the South Pacific — for coastal residents and scientists alike has long been that offshore islands would create a buffer that blocked the power of a tsunami. In fact, computer modeling of tsunamis striking a wide variety of different offshore island geometries yielded no situation in which the mainland behind them fared better.

Instead, islands focused the energy of the tsunami, increasing flooding on the mainland by up to 70 percent.

“This is where many fishing villages are located, behind offshore islands, in the belief that they will be protected from wind waves. Even Southern California residents believe that the Channel Islands and Catalina will protect them,” said Costas Synolakis of the USC Viterbi School of Engineering, a member of the multinational team that conducted the research.

The research was inspired by a field survey of the impact of the 2010 tsunami on the Mentawai Islands off of Sumatra. The survey data showed that villages located in the shadow of small offshore islets suffered some of the strongest tsunami impacts, worse than villages located along open coasts.

Subsequent computer modeling by Jose Borrero, adjunct assistant research professor at the USC Viterbi Tsunami Research Center, showed that the offshore islands had actually contributed to — not diminished — the tsunami’s impact.

Synolakis then teamed up with researchers Emile Contal and Nicolas Vayatis of Ecoles Normales de Cachan in Paris; and Themistoklis S. Stefanakis and Frederic Dias, who both have joint appointments at Ecoles Normales de Cachan and University College Dublin to determine whether that was a one-of-a-kind situation, or the norm.

Their study, of which Dias was the corresponding author, was published in Proceedings of the Royal Society A on Nov. 5.

The team designed a computer model that took into consideration various island slopes, beach slopes, water depths, distance between the island and the beach, and wavelength of the incoming tsunami.

“Even a casual analysis of these factors would have required hundreds of thousands of computations, each of which could take up to half a day,” Synolakis said. “So instead, we used machine learning.”

Machine learning is a mathematical process that makes it easier to identify the maximum values of interdependent processes with multiple parameters by allowing the computer to “learn” from previous results.

The computer starts to understand how various tweaks to the parameters affect the overall outcome and finds the best answer quicker. As such, results that traditionally could have taken hundreds of thousands of models to uncover were found with 200 models.

“This work is applicable to some of our tsunami study sites in New Zealand,” said Borrero, who is producing tsunami hazard maps for regions of the New Zealand coast. “The northeast coast of New Zealand has many small islands offshore, similar to those in Indonesia, and our modeling suggests that this results in areas of enhanced tsunami heights.”

“Substantial public education efforts are needed to help better explain to coastal residents tsunami hazards, and whenever they need to be extra cautious and responsive with evacuations during actual emergencies,” Synolakis said.

###

The research was funded by EDSP of ENS-Cachan; the Cultural Service of the French Embassy in Dublin; the ERC; SFI; University College Dublin; and the EU FP7 program ASTARTE. The study can be found online at http://rspa.royalsocietypublishing.org/content/470/2172/20140575.

Geologists dig into science around the globe, on land and at sea

University of Cincinnati geologists will be well represented among geoscientists from around the world at The Geological Society of America’s Annual Meeting and Exposition. The meeting takes place Oct. 19-22, in Vancouver, Canada, and will feature geoscientists representing more than 40 different disciplines. The meeting will feature highlights of UC’s geological research that is taking place globally, from Chile to Costa Rica, Belize, Bulgaria, Scotland, Trinidad and a new project under development in the Canary Islands.

UC faculty and graduate students are lead or supporting authors on more than two dozen Earth Sciences-related research papers and/or PowerPoint and poster exhibitions at the GSA meeting.

The presentations also cover UC’s longtime and extensive exploration and findings in the Cincinnati Arch of the Ohio Valley, world-renowned for its treasure trove of paleontology – plant and animal fossils that were preserved when a shallow sea covered the region 450 million years ago during the Paleozoic Era.

Furthermore, in an effort to diversify the field of researchers in the Earth Sciences, a UC assistant professor of science education and geology, Christopher Atchison, was awarded funding from the National Science Foundation and the Society of Exploration Geophysics to lead a research field trip in Vancouver for students with disabilities. Graduate and undergraduate student participants will conduct the research on Oct. 18 and then join events at the GSA meeting. They’ll be guided by geoscience researchers representing the United Kingdom, New Zealand, Canada and the U.S. Those guides include Atchison and Julie Hendricks, a UC special education major from Batavia, Ohio, who will be using her expertise in American Sign Language (ASL) to assist student researchers representing Deaf and Hard of Hearing communities.

The meeting will also formally introduce Arnold Miller, UC professor of geology, as the new president-elect of the national Paleontological Society Thomas Lowell, professor of geology, is a recently elected Fellow of the Geological Society of America – a recognition for producing a substantial body of research. Lowell joins colleagues Warren Huff, professor of geology, and Lewis Owen, professor and head of the Department of Geology, as GSA Fellows.

Here are highlights of the UC research to be presented at the GSA meeting Oct. 19-22:

Staying Put or Moving On? Researchers Develop Model to Identify Migrating Patterns of Different Species

Are plant and animal species what you might call lifelong residents – they never budge from the same place? That’s a relatively common belief in ecology and paleoecology – that classes of organisms tend to stay put over millions of years and either evolve or go extinct as the environment changes. UC researchers developed a series of numerical models simulating shifting habitats in fossil regions to compare whether species changed environments when factoring geological and other changes in the fossil record. They found that geologically driven changes in the quality of the fossil record did not distort the real ecological signal, and that most species maintained their particular habitat preferences through time. They did not evolve to adapt to changing environments, but rather, they migrated, following their preferred environments. That is to say, they did not stay in place geographically but by moving, they were able to track their favored habitats. Field research for the project was conducted in New York state as well as the paleontological-rich region of Cincinnati; Dayton, Ohio, Lexington, Ky.; and Indiana. Funding for the project was supported by The Paleontological Society; The Geological Society of America; The American Museum of Natural History and the UC Geology Department’s Kenneth E. Caster Memorial Fund.

Presenter: Andrew Zaffos, UC geology doctoral student

Co-authors: Arnold Miller, Carlton Brett

Pioneering Study Provides a Better Understanding of What Southern Ohio and Central Kentucky Looked Like Hundreds of Millions of Years Ago

The end of the Ordovician period resulted in one of the largest mass extinction events in the Earth’s history. T.J. Malgieri, a UC master’s student in geology, led this study examining the limestone and shales of the Upper Ordovician Period – the geologic Grant Lake Formation covering southern Ohio and central Kentucky – to recreate how the shoreline looked some 445 million years ago. In this pioneering study of mud cracks and deposits in the rocks, the researchers discovered that the shoreline existed to the south and that the water became deeper toward the north. By determining these ecological parameters, the ramp study provides a better understanding of environments during a time of significant ecological change. Malgieri says the approach can be applied to other basins throughout the world to create depth indicators in paeloenvironments.

Presenter: T.J. Malgieri, UC geology master’s student

Co-authors: Carlton Brett, Cameron Schalbach, Christopher Aucoin, UC; James Thomka (UC, University of Akron); Benjamin Dattilo, Indiana University Purdue University Ft. Wayne

UC Researchers Take a Unique Approach to Monitoring Groundwater Supplies Near Ohio Fracking Sites

A collaborative research project out of UC is examining effects of fracking on groundwater in the Utica Shale region of eastern Ohio. First launched in Carroll County in 2012, the team of researchers is examining methane levels and origins of methane in private wells and springs before, during and after the onset of fracking. The team travels to the region to take water samples four times a year.

Presenter: Claire Botner, a UC geology master’s student

Co-author: Amy Townsend-Small, UC assistant professor of geology

Sawing Through Seagrass to Reveal Clues to the Past

Kelsy Feser, a UC doctoral student in geology, is working at several sites around St. Croix in the Virgin Islands to see if human developments impact marine life. The research focuses on shells of snails and clams that have piled up on the sea floor for thousands of years. Digging through layers of thick seagrass beds on the ocean floor, Feser can examine deeper shells that were abundant thousands of years ago and compare them to shallower layers that include living clams and snails. Early analysis indicates a greater population of potentially pollution-tolerant mussels in an area near a landfill on the island, compared with shells from much earlier time periods. Feser is doing this sea grass analysis around additional sites including tourist resorts, an oil refinery, a power plant and a marina. Funding for the research is provided by the Paleontological Society, the GSA, the American Museum of Natural History and the UC Geology Department.

Presenter: Kelsy Feser, UC geology doctoral student

Co-authors: Arnold Miller

Turning to the Present to Understand the Past

In order to properly interpret changes in climate, vegetation, or animal populations over time, it is necessary to establish a comparative baseline. Stella Mosher, a UC geology master’s student, is studying stable carbon, nitrogen, sulfur and strontium isotopes in modern vegetation from the Canary Islands in order to quantify modern climatic and environmental patterns. Her findings will provide a crucial foundation for future UC research on regional paleoclimatic and paleoenvironmental shifts.

Presenter: Stella Mosher, graduate student in geology

Co-authors: Brooke Crowley, assistant professor of geology; Yurena Yanes, research assistant professor of geology

A Study on the Impact of Sea Spray

Sulfur is an element of interest in both geology and archaeology, because it can reveal information about the diets of ancient cultures. This study takes a novel approach to studying how sea spray can affect the sulfur isotope values in plants on a small island, focusing on the island of Trinidad. Researchers collected leaves from different plant species to get their sulfur isotope value, exploring whether wind direction played a role in how plants were influenced by the marine water from sea spray. Vegetation was collected from the edges of the island to the deeply forested areas. The study found that sulfur isotope values deeper inland and on the calmer west coast were dramatically lower in indicating marine water than vegetation along the edges and the east coast. The findings can help indicate the foraging activities of humans and animals. Funding for the study was supported by the Geological Society of America, the UC Graduate Student Association and the UC Department of Geology.

Presenter: Janine Sparks, UC geology doctoral student

Co-authors: Brooke Crowley, UC assistant professor, geology/anthropology; William Gilhooly III, assistant professor, Earth Sciences, Indiana University-Purdue University Indianapolis

Proxy Wars – The Paleobiology Data Debate

For the past several decades, paleobiologists have built large databases containing information on fossil plants and animals of all geological ages to investigate the timing and extent of major changes in biodiversity – changes such as mass extinctions that have taken place throughout the history of life. Biodiversity researcher Arnold Miller says that in building these databases, it can be a challenge to accurately identify species in the geological record, so it has been common for researchers to instead study biodiversity trends using data compiled at broader levels of biological classification, including the genus level, under the assumption that these patterns are effective proxies for what would be observed among species if the data were available. Miller has been involved in construction of The Paleobiology Database, an extensive public online resource that contains global genus- and species-level data, now permitting a direct, novel look at the similarities and differences between patterns at these two levels. Miller’s discussion aims to set the record straight as to when researchers can effectively use a genus as a proxy for a species and also when it’s inappropriate. This research is funded by the NASA Astrobiology Program.

Presenter: Arnold Miller, UC professor of geology

A Novel New Method for Examining the Distribution of Pores in Rocks

Oil and gas companies take an interest in the porosity of sedimentary rocks because those open spaces can be filled with fuel resources. Companies involved with hydraulic fracturing (“fracking”) are also interested in porosity because it could be a source for storing wastewater as a result of fracking. In this unique study, UC researchers made pore-size measurements similar to those used in crystal size distribution (CSD) theory to determine distribution of pores as a function of their sizes, using thin sections of rock. In addition to providing accurate porosity distribution at a given depth, their approach can be extended to evaluate variation of pore spaces as a function of depth in a drill core, percent of pores in each size range, and pore types and pore geometry. The Texas Bureau of Economic Geology provided the rock samples used in the study. Funding for the study was supported by the Turkish Petroleum Corporation.

Presenter: Ugurlu Ibrahim, master’s student in geology

Co-author: Attila Kilinc, professor of geology

Researchers Turn to 3-D Technology to Examine the Formation of Cliffband Landscapes

A blend of photos and technology takes a new twist on studying cliff landscapes and how they were formed. The method called Structure-From-Motion Photogrammetry – computational photo image processing techniques – is used to study the formation of cliff landscapes in Colorado and Utah and to understand how the layered rock formations in the cliffs are affected by erosion.

Presenter: Dylan Ward, UC assistant professor of geology

Testing the Links Between Climate and Sedimentation in the Atacama Desert, Northern Chile

The Atacama Desert is used as an analog for understanding the surface of Mars. In some localities, there has been no activity for millions of years. UC researchers have been working along the flank of the Andes Mountains in northern Chile, and this particular examination focuses on the large deposits of sediment that are transported down the plateau and gather at the base. The researchers are finding that their samples are not reflecting the million-year-old relics previously found on such expeditions, but may indicate more youthful activity possibly resulting from climatic events. The research is supported by a $273,634 grant from the National Science Foundation to explore glacio-geomorphic constraints on the climate history of subtropical northern Chile.

Presenter: Jason Cesta, UC geology master’s student

Co-author: Dylan Ward, UC assistant professor of geology

Uncovering the Explosive Mysteries Surrounding the Manganese of Northeast Bulgaria

UC’s geology collections hold minerals from field expeditions around the world, including manganese from the Obrochishte mines of northeastern Bulgaria. Found in the region’s sedimentary rock, manganese can be added to metals such as steel to improve strength. It’s widely believed that these manganese formations were the result of ocean water composition at the time the sediments were deposited in the ocean. In this presentation, UC researchers present new information on why they believe the manganese formations resulted from volcanic eruptions, perhaps during the Rupelian stage of the geologic time scale, when bentonite clay minerals were formed. The presentation evolved from an advance class project last spring under the direction of Warren Huff, a UC professor of geology.

Presenter: Jason Cesta, UC geology master’s student

Co-authors: Warren Huff, UC professor of geology; Christopher Aucoin; Michael Harrell; Thomas Malgieri; Barry Maynard; Cameron Schwalbach; Ibrahim Ugurlu; Antony Winrod

Two UC researchers will chair sessions at the GSA meeting: Doctoral student Gary Motz will chair the session, “Topics in Paleoecology: Modern Analogues and Ancient Systems,” on Oct. 19. Matt Vrazo, also a doctoral student in geology, is chairing “Paleontology: Trace Fossils, Taphonomy and Exceptional Preservation” on Oct. 21, and will present, “Taphonomic and Ecological Controls on Eurypterid Lagerstäten: A Model for Preservation in the Mid-Paleozoic.”

###

UC’s nationally ranked Department of Geology conducts field research around the world in areas spanning paleontology, quaternary geology, geomorphology, sedimentology, stratigraphy, tectonics, environmental geology and biogeochemistry.

The Geological Society of America, founded in 1888, is a scientific society with more than 26,500 members from academia, government, and industry in more than 100 countries. Through its meetings, publications, and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind.

Scientists warn time to stop drilling in the dark

In areas where shale-drilling/hydraulic fracturing is heavy, a dense web of roads, pipelines and well pads turn continuous forests and grasslands into fragmented islands. -  Simon Fraser University PAMR
In areas where shale-drilling/hydraulic fracturing is heavy, a dense web of roads, pipelines and well pads turn continuous forests and grasslands into fragmented islands. – Simon Fraser University PAMR

The co-authors of a new study, including two Simon Fraser University research associates, cite new reasons why scientists, industry representatives and policymakers must collaborate closely on minimizing damage to the natural world from shale gas development. Viorel Popescu and Maureen Ryan, David H. Smith Conservation Research Fellows in SFU’s Biological Sciences department, are among eight international co-authors of the newly published research in Frontiers in Ecology and the Environment.

Shale gas development is the extraction of natural gas from shale formations via deep injection of high-pressure aqueous chemicals to create fractures (i.e., hydraulic fracturing), which releases trapped gas. With shale gas production projected to increase exponentially internationally during the next 30 years, the scientists say their key findings are cause for significant concern and decisive mitigation measures.

“Our findings are highly relevant to British Columbians given the impetus for developing shale resources in northeastern B.C. and the massive LNG facilities and pipeline infrastructure under development throughout the province,” notes Popescu. The SFU Earth2Ocean Group member is also a research associate in the Centre for Environmental Research at the University of Bucharest in Romania.

Key study findings:

  • One of the greatest threats to animal and plant-life is the cumulative impact of rapid, widespread shale development, with each individual well contributing collectively to air, water, noise and light pollution.

    “Think about the landscape and its habitats as a canvas,” explains Popescu. “At first, the few well pads, roads and pipelines from shale development seem like tiny holes and cuts, and the canvas still holds. But if you look at a heavily developed landscape down the road, you see more holes and cuts than natural habitats. Forests or grasslands that were once continuous are now islands fragmented by a dense web of roads, pipelines and well pads. At what point does the canvas fall apart? And what are the ecological implications for wide-ranging, sensitive species such as caribou or grizzly bears?”

  • Determining the environmental impact of chemical contamination from spills, well-casing failure and other accidents associated with shale gas production must become a top priority.

    Shale-drilling operations for oil and natural gas have increased by more than 700 per cent in the United States since 2007 and Western Canada is undergoing a similar shale gas production boom. But the industry’s effects on nature and wildlife are not well understood. Accurate data on the release of fracturing chemicals into the environment needs to be gathered before understanding can improve.

  • The lack of accessible and reliable information on spills, wastewater disposal and fracturing fluids is greatly impeding improved understanding. This study identifies that only five of 24 American states with active shale gas reservoirs maintain public records of spills and accidents.

The authors reviewed chemical disclosure statements for 150 wells in three top-gas producing American states and found that, on average, two out of three wells were fractured with at least one undisclosed chemical. Some of the wells in the chemical disclosure registry were fractured with fluid containing 20 or more undisclosed chemicals.

The authors call this an arbitrary and inconsistent standard of chemical disclosure. This is particularly worrisome given the chemical makeup of fracturing fluid and wastewater, which can include carcinogens and radioactive substances, is often unknown.

“Past lessons from large scale resource extraction and energy development -large dams, intensive forestry, or biofuel plantations – have shown us that development that outpaces our understanding of ecological impacts can have dire unintended consequences,” notes Ryan. She is a research fellow in the University of Washington’s School of Environmental and Forest Sciences.

“It’s our responsibility to look forward. For example, here in Canada, moving natural gas from northeastern B.C. to the 16 proposed LNG plants would require hundreds of kilometers of new pipeline and road infrastructure, and large port terminals on top of the effects of drilling. We must not just consider the impact of these projects individually, but also try to evaluate the ecological impacts holistically.”

‘Fracking’ in the dark: Biological fallout of shale-gas production still largely unknown

Eight conservation biologists from various organizations and institutions, including Princeton University, found that shale-gas extraction in the United States has vastly outpaced scientists' understanding of the industry's environmental impact. With shale-gas production projected to surge during the next 30 years, determining and minimizing the industry's effects on nature and wildlife must become a top priority for scientists, industry and policymakers, the researchers said. The photo above shows extensive natural-gas operations at Jonah Field in Wyoming. -  Photo courtesy of EcoFlight.
Eight conservation biologists from various organizations and institutions, including Princeton University, found that shale-gas extraction in the United States has vastly outpaced scientists’ understanding of the industry’s environmental impact. With shale-gas production projected to surge during the next 30 years, determining and minimizing the industry’s effects on nature and wildlife must become a top priority for scientists, industry and policymakers, the researchers said. The photo above shows extensive natural-gas operations at Jonah Field in Wyoming. – Photo courtesy of EcoFlight.

In the United States, natural-gas production from shale rock has increased by more than 700 percent since 2007. Yet scientists still do not fully understand the industry’s effects on nature and wildlife, according to a report in the journal Frontiers in Ecology and the Environment.

As gas extraction continues to vastly outpace scientific examination, a team of eight conservation biologists from various organizations and institutions, including Princeton University, concluded that determining the environmental impact of gas-drilling sites – such as chemical contamination from spills, well-casing failures and other accidents – must be a top research priority.

With shale-gas production projected to surge during the next 30 years, the authors call on scientists, industry representatives and policymakers to cooperate on determining – and minimizing – the damage inflicted on the natural world by gas operations such as hydraulic fracturing, or “fracking.” A major environmental concern, hydraulic fracturing releases natural gas from shale by breaking the rock up with a high-pressure blend of water, sand and other chemicals, which can include carcinogens and radioactive substances.

“We can’t let shale development outpace our understanding of its environmental impacts,” said co-author Morgan Tingley, a postdoctoral research associate in the Program in Science, Technology and Environmental Policy in Princeton’s Woodrow Wilson School of Public and International Affairs.

“The past has taught us that environmental impacts of large-scale development and resource extraction, whether coal plants, large dams or biofuel monocultures, are more than the sum of their parts,” Tingley said.

The researchers found that there are significant “knowledge gaps” when it comes to direct and quantifiable evidence of how the natural world responds to shale-gas operations. A major impediment to research has been the lack of accessible and reliable information on spills, wastewater disposal and the composition of fracturing fluids. Of the 24 American states with active shale-gas reservoirs, only five – Pennsylvania, Colorado, New Mexico, Wyoming and Texas – maintain public records of spills and accidents, the researchers report.

“The Pennsylvania Department of Environmental Protection’s website is one of the best sources of publicly available information on shale-gas spills and accidents in the nation. Even so, gas companies failed to report more than one-third of spills in the last year,” said first author Sara Souther, a postdoctoral research associate at the University of Wisconsin-Madison.

“How many more unreported spills occurred, but were not detected during well inspections?” Souther asked. “We need accurate data on the release of fracturing chemicals into the environment before we can understand impacts to plants and animals.”

One of the greatest threats to animal and plant life identified in the study is the impact of rapid and widespread shale development, which has disproportionately affected rural and natural areas. A single gas well results in the clearance of 3.7 to 7.6 acres (1.5 to 3.1 hectares) of vegetation, and each well contributes to a collective mass of air, water, noise and light pollution that has or can interfere with wild animal health, habitats and reproduction, the researchers report.

“If you look down on a heavily ‘fracked’ landscape, you see a web of well pads, access roads and pipelines that create islands out of what was, in some cases, contiguous habitat,” Souther said. “What are the combined effects of numerous wells and their supporting infrastructure on wide-ranging or sensitive species, like the pronghorn antelope or the hellbender salamander?”

The chemical makeup of fracturing fluid and wastewater is often unknown. The authors reviewed chemical-disclosure statements for 150 wells in three of the top gas-producing states and found that an average of two out of every three wells were fractured with at least one undisclosed chemical. The exact effect of fracturing fluid on natural water systems as well as drinking water supplies remains unclear even though improper wastewater disposal and pollution-prevention measures are among the top state-recorded violations at drilling sites, the researchers found.

“Some of the wells in the chemical disclosure registry were fractured with fluid containing 20 or more undisclosed chemicals,” said senior author Kimberly Terrell, a researcher at the Smithsonian Conservation Biology Institute. “This is an arbitrary and inconsistent standard of chemical disclosure.”

New study of largely unstudied mesophotic coral reef geology

This is Platy coral representative of the US Virgin Islands mesophotic habitats. -  Photo by David Weinstein
This is Platy coral representative of the US Virgin Islands mesophotic habitats. – Photo by David Weinstein

A new study on biological erosion of mesophotic tropical coral reefs, which are low energy reef environments between 30-150 meters deep, provides new insights into processes that affect the overall structure of these important ecosystems. The purpose of the study was to better understand how bioerosion rates and distribution of bioeroding organisms, such as fish, mollusks and sponges, differ between mesophotic reefs and their shallow-water counterparts and the implications of those variations on the sustainability of the reef structure.

Due to major advancements in deeper underwater diving technology, a large renewal of interest in mesophotic reefs has pulsed through the scientific community because of their high biodiversity, vast extent, and potential refuge for shallower water reef species at risk from the impacts of climate change.

“Studying how mesophotic reefs function and thrive is especially critical now, when considering results from the new IPCC report reviewed by over 1700 expects said that coral reefs are the most vulnerable marine ecosystems on Earth to the adverse effects of climate change,” said David Weinstein, Rosenstiel School Ph.D. student and lead author of the study. “Developing effective environmental management strategies for these important reef systems requires a basic fundamental understanding of the underlining architecture that supports and creates diverse biological ecosystems.”

Weinstein and his research team used previously identified mesophotic reefs at 30-50 meters deep located in the U.S. Virgin Islands composed of a surprising number of coral growing on top different types of reef structures (patches, linear banks, basins) to better understand the role sedimentary processes have in creating and maintaining so many different structures that are critical for maximizing the biodiversity and health of the ecosystem. Researchers analyzed coral rubble and coral skeleton discs collected after one and two years of exposure to determine the sources and rates of bioerosion at these reefs.

Results of the study found that the architecturally unique structures in the study area experience significantly different bioerosion rates.

“This has very important implications when trying to predict how these reefs will grow over time and where preservation efforts might be most effective,” said Weinstein.

Although erosion of the coral skeleton disks at the very deepest sites was more uniform, the researchers suggest that this is likely because the substrates used in the study were all of uniform composition, unlike the diverse composition of the sites. These results imply that bioerosional processes at these depths still exaggerate differences in reef structure depending on the amount of living and dead coral at each reef, the amount of time that material is exposed on the surface, and different localized current flows experienced.

The study also confirmed important concepts in coral geology research that lacked proof from studies venturing deeper than 35 meters. Coral reef bioerosion in the U.S. Virgin Islands and potentially in most of the Caribbean does generally decreases with depth. This result stems from the finding that parrotfish are now the most significant bioeroding group from shallow reefs down to a mesophotic reef transition zone identified by Weinstein at 30-35 meters in depth. The study also was able to conclude bioeroding sponges are the primary organisms responsible for long-term structural modification of mesophotic reefs beyond the transitional zone.

“Coral reefs are essentially a thin benthos veneer draped upon a biologically produced inorganic three-dimensional foundation that creates habitats for many marine organisms,” said Weinstein. “Since mesophotic reefs grow so much slower than shallower reefs, identifying the sources and rate of erosion on mesophotic reefs is even more important to understand the long-term structural sustainability of these tropical reefs systems.”

However, Weinstein suggests that other processes, such as coral growth rates and cementation, must also be more fully studied before scientists have a complete understanding of mesophotic coral reefs.

The paper, currently available online and scheduled for print in a special coral reef edition of the journal Geomorphology later this summeris one of the first to address mesophotic reef sedimentology.

Hot mantle drives elevation, volcanism along mid-ocean ridges

Scientists have found that temperature deep in Earth's mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth's crust. -  Dalton Lab / Brown University
Scientists have found that temperature deep in Earth’s mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth’s crust. – Dalton Lab / Brown University

Scientists have shown that temperature differences deep within Earth’s mantle control the elevation and volcanic activity along mid-ocean ridges, the colossal mountain ranges that line the ocean floor. The findings, published April 4 in the journal Science, shed new light on how temperature in the depths of the mantle influences the contours of the Earth’s crust.

Mid-ocean ridges form at the boundaries between tectonic plates, circling the globe like seams on a baseball. As the plates move apart, magma from deep within the Earth rises up to fill the void, creating fresh crust as it cools. The crust formed at these seams is thicker in some places than others, resulting in ridges with widely varying elevations. In some places, the peaks are submerged miles below the ocean surface. In other places – Iceland, for example – the ridge tops are exposed above the water’s surface.

“These variations in ridge depth require an explanation,” said Colleen Dalton, assistant professor of geological sciences at Brown and lead author of the new research. “Something is keeping them either sitting high or sitting low.”

That something, the study found, is the temperature of rocks deep below Earth’s surface.

By analyzing the speeds of seismic waves generated by earthquakes, the researchers show that mantle temperature along the ridges at depths extending below 400 kilometers varies by as much as 250 degrees Celsius. High points on the ridges tend to be associated with higher mantle temperatures, while low points are associated with a cooler mantle. The study also showed that volcanic hot spots along the ridge – volcanoes near Iceland as well as the islands of Ascension, Tristan da Cunha, and elsewhere – all sit above warm spots in Earth’s mantle.

“It is clear from our results that what’s being erupted at the ridges is controlled by temperature deep in the mantle,” Dalton said. “It resolves a long-standing controversy and has not been shown definitively before.”

A CAT scan of the Earth


The mid-ocean ridges provide geologists with a window to the interior of the Earth. The ridges form when mantle material melts, rises into the cracks between tectonic plates, and solidifies again. The characteristics of the ridges provide clues about the properties of the mantle below.

For example, a higher ridge elevation suggests a thicker crust, which in turn suggests that a larger volume of magma was erupted at the surface. This excess molten rock can be caused by very hot temperatures in the mantle. The problem is that hot mantle is not the only way to produce excess magma. The chemical composition of the rocks in Earth’s mantle also controls how much melt is produced. For certain rock compositions, it is possible to generate large volumes of molten rock under cooler conditions. For many decades it has not been clear whether mid-ocean ridge elevations are caused by variations in the temperature of the mantle or variations in the rock composition of the mantle.

To distinguish between these two possibilities, Dalton and her colleagues introduced two additional data sets. One was the chemistry of basalts, the rock that forms from solidification of magma at the mid-ocean ridge. The chemical composition of basalts differs depending upon the temperature and composition of the mantle material from which they’re derived. The authors analyzed the chemistry of nearly 17,000 basalts formed along mid-ocean ridges around the globe.

The other data set was seismic wave tomography. During earthquakes, seismic waves are sent pulsing through the rocks in the crust and mantle. By measuring the velocity of those waves, scientists can gather data about the characteristics of the rocks through which they traveled. “It’s like performing a CAT scan of the inside of the Earth,” Dalton said.

Seismic wave speeds are especially sensitive to the temperature of rocks. In general, waves propagate more quickly in cooler rocks and more slowly in hotter rocks.

Dalton and her colleagues combined the seismic data from hundreds of earthquakes with data on elevation and rock chemistry from the ridges. Correlations among the three data sets revealed that temperature deep in the mantle varied between around 1,300 and 1,550 degrees Celsius underneath about 61,000 kilometers of ridge terrain. “It turned out,” said Dalton, “that seismic tomography was the smoking gun. The only plausible explanation for the seismic wave speeds is a very large temperature range.”

The study showed that as ridge elevation falls, so does mantle temperature. The coolest point beneath the ridges was found near the lowest point, an area of very deep and rugged seafloor known as the Australian-Antarctic discordance in the Indian Ocean. The hottest spot was near Iceland, which is also the ridges’ highest elevation point.

Iceland is also where scientists have long debated whether a mantle plume – a vertical jet of hot rock originating from deep in the Earth – intersects the mid-ocean ridge. This study provides strong support for a mantle plume located beneath Iceland. In fact, this study showed that all regions with above-average temperature are located near volcanic hot spots, which points to mantle plumes as the culprit for the excess volume of magma in these areas.

Understanding a churning planet


Despite being made of solid rock, Earth’s mantle doesn’t sit still. It undergoes convection, a slow churning of material from the depths of the Earth toward the surface and back again.

“Convection is why we have plate tectonics and earthquakes,” Dalton said. “It’s also responsible for almost all volcanism at the surface. So understanding mantle convection is crucial to understanding many fundamental questions about the Earth.”

Two factors influence how that convection works: variations in the composition of the mantle and variations in its temperature. This work, says Dalton, points to temperature as a primary factor in how convection is expressed on the surface.

“We get consistent and coherent temperature measurements from the mantle from three independent datasets,” Dalton said. “All of them suggest that what we see at the surface is due to temperature, and that composition is only a secondary factor. What is surprising is that the data require the temperature variations to exist not only near the surface but also many hundreds of kilometers deep inside the Earth.”

The findings from this study will also be useful in future research using seismic waves, Dalton says. Because the temperature readings as indicated by seismology were backed up by the other datasets, they can be used to calibrate seismic readings for places where geochemical samples aren’t available. This makes it possible to estimate temperature deep in Earth’s mantle all over the globe.

That will help geologists gain a new insights into how processes deep within the Earth mold the ground beneath our feet.

First-ever 3D image created of the structure beneath Sierra Negra volcano

This is a photo of the Sierra Negra volcano on Isabela Island in the Galápagos Archipelago. -  Cynthia Ebinger, University of Rochester
This is a photo of the Sierra Negra volcano on Isabela Island in the Galápagos Archipelago. – Cynthia Ebinger, University of Rochester

The Galápagos Islands are home to some of the most active volcanoes in the world, with more than 50 eruptions in the last 200 years. Yet until recently, scientists knew far more about the history of finches, tortoises, and iguanas than of the volcanoes on which these unusual fauna had evolved.

Now research out of the University of Rochester is providing a better picture of the subterranean plumbing system that feeds the Galápagos volcanoes, as well as a major difference with another Pacific Island chain-the Hawaiian Islands. The findings have been published in the Journal of Geophysical Research: Solid Earth.

“With a better understanding of what’s beneath the volcanoes, we’ll now be able to more accurately measure underground activity,” said Cynthia Ebinger, a professor of earth and environmental sciences. “That should help us better anticipate earthquakes and eruptions, and mitigate the hazards associated with them.”

Ebinger’s team, which included Mario Ruiz from the Instituto Geofisico Escuela Politecnica Nacional in Quito, Ecuador, buried 15 seismometers around Sierra Negra, the largest and most active volcano in the Galápagos. The equipment was used to measure the velocity and direction of different sound waves generated by earthquakes as they traveled under Sierra Negra. Since the behavior of the waves varies according to the temperature and types of material they’re passing through, the data collected allowed the researchers to construct a 3D image of the plumbing system beneath the volcano, using a technique similar to a CAT-scan.

Five kilometers down is the beginning of a large magma chamber lying partially within old oceanic crust that had been buried by more than 8 km of eruptive rock layers. And the oceanic crust has what appears to be a thick underplating of rock formed when magma that was working its way toward the surface became trapped under the crust and cooled-very much like the processes that occur under the Hawaiian Islands.

The researchers found that the Galápagos had something else in common with the Hawaiian Islands. Their data suggest the presence of a large chamber filled with crystal-mush magma-cooled magma that includes crystallized minerals.

The Galápagos Islands formed from a hotspot of magma located in an oceanic plate-called Nazca-about 600 miles of Ecuador, in a process very similar to how the Hawaiian Islands were created. Magma rising from the hotspot eventually hardened into an island. Then, as the Nazca plate inched its way westward, new islands formed in the same manner, resulting in the present-day Galápagos Archipelago.

While there are several similarities between the two island chains, Ebinger uncovered a major difference. The older volcanos in the Hawaiian Islands are dormant, because they’ve moved away from the hotspot that provided the source of magma. In the Galápagos, the volcanoes are connected to the same plumbing system. By studying satellite views of the volcanoes, Ebinger and colleagues noticed that, as the magma would sink in one, it would rise in a different volcano-indicating that that some of the youngest volcanoes had magma connections, even if those connections were temporary.

“Not only do we have a better understanding of the physical properties of Sierra Negra,” said Ebinger, “we have increased out knowledge of island volcano systems, in general.”

The Galápagos Islands are home to some of the most active volcanoes in the world, with more than 50 eruptions in the last 200 years. Yet until recently, scientists knew far more about the history of finches, tortoises, and iguanas than of the volcanoes on which these unusual fauna had evolved.

Now research out of the University of Rochester is providing a better picture of the subterranean plumbing system that feeds the Galápagos volcanoes, as well as a major difference with another Pacific Island chain-the Hawaiian Islands.

Rainforests in Far East shaped by humans for the last 11,000 years

New research from Queen’s University Belfast shows that the tropical forests of South East Asia have been shaped by humans for the last 11,000 years.

The rain forests of Borneo, Sumatra, Java, Thailand and Vietnam were previously thought to have been largely unaffected by humans, but the latest research from Queen’s Palaeoecologist Dr Chris Hunt suggests otherwise.

A major analysis of vegetation histories across the three islands and the SE Asian mainland has revealed a pattern of repeated disturbance of vegetation since the end of the last ice age approximately 11,000 years ago.

The research, which was funded by the Arts and Humanities Research Council and the British Academy, is being published in the Journal of Archaeological Science. It is the culmination of almost 15 years of field work by Dr Hunt, involving the collection of pollen samples across the region, and a major review of existing palaeoecology research, which was completed in partnership with Dr Ryan Rabett from Cambridge University.

Evidence of human activity in rainforests is extremely difficult to find and traditional archaeological methods of locating and excavating sites are extremely difficult in the dense forests. Pollen samples, however, are now unlocking some of the region’s historical secrets.

Dr Hunt, who is Director of Research on Environmental Change at Queen’s School of Geography, Archaeology and Palaeoecology, said: “It has long been believed that the rainforests of the Far East were virgin wildernesses, where human impact has been minimal. Our findings, however, indicate a history of disturbances to vegetation. While it could be tempting to blame these disturbances on climate change, that is not the case as they do not coincide with any known periods of climate change. Rather, these vegetation changes have been brought about by the actions of people.

“There is evidence that humans in the Kelabit Highlands of Borneo burned fires to clear the land for planting food-bearing plants. Pollen samples from around 6,500 years ago contain abundant charcoal, indicating the occurrence of fire. However, while naturally occurring or accidental fires would usually be followed by specific weeds and trees that flourish in charred ground, we found evidence that this particular fire was followed by the growth of fruit trees. This indicates that the people who inhabited the land intentionally cleared it of forest vegetation and planted sources of food in its place.

“One of the major indicators of human action in the rainforest is the sheer prevalence of fast-growing ‘weed’ trees such as Macaranga, Celtis and Trema. Modern ecological studies show that they quickly follow burning and disturbance of forests in the region.

“Nearer to the Borneo coastline, the New Guinea Sago Palm first appeared over 10,000 years ago. This would have involved a voyage of more than 2,200km from its native New Guinea, and its arrival on the island is consistent with other known maritime voyages in the region at that time – evidence that people imported the Sago seeds and planted them.”

The findings have huge importance for ecological studies or rainforests as the historical role of people in managing the forest vegetation has rarely been considered. It could also have an impact on rainforest peoples fighting the advance of logging companies.

Dr Hunt continued: “Laws in several countries in South East Asia do not recognise the rights of indigenous forest dwellers on the grounds that they are nomads who leave no permanent mark on the landscape. Given that we can now demonstrate their active management of the forests for more than 11,000 years, these people have a new argument in their case against eviction.”