Technology-dependent emissions of gas extraction in the US

The KIT measurement instrument on board of a minivan directly measures atmospheric emissions on site with a high temporal resolution. -  Photo: F. Geiger/KIT
The KIT measurement instrument on board of a minivan directly measures atmospheric emissions on site with a high temporal resolution. – Photo: F. Geiger/KIT

Not all boreholes are the same. Scientists of the Karlsruhe Institute of Technology (KIT) used mobile measurement equipment to analyze gaseous compounds emitted by the extraction of oil and natural gas in the USA. For the first time, organic pollutants emitted during a fracking process were measured at a high temporal resolution. The highest values measured exceeded typical mean values in urban air by a factor of one thousand, as was reported in ACP journal. (DOI 10.5194/acp-14-10977-2014)

Emission of trace gases by oil and gas fields was studied by the KIT researchers in the USA (Utah and Colorado) together with US institutes. Background concentrations and the waste gas plumes of single extraction plants and fracking facilities were analyzed. The air quality measurements of several weeks duration took place under the “Uintah Basin Winter Ozone Study” coordinated by the National Oceanic and Atmospheric Administration (NOAA).

The KIT measurements focused on health-damaging aromatic hydrocarbons in air, such as carcinogenic benzene. Maximum concentrations were determined in the waste gas plumes of boreholes. Some extraction plants emitted up to about a hundred times more benzene than others. The highest values of some milligrams of benzene per cubic meter air were measured downstream of an open fracking facility, where returning drilling fluid is stored in open tanks and basins. Much better results were reached by oil and gas extraction plants and plants with closed production processes. In Germany, benzene concentration at the workplace is subject to strict limits: The Federal Emission Control Ordinance gives an annual benzene limit of five micrograms per cubic meter for the protection of human health, which is smaller than the values now measured at the open fracking facility in the US by a factor of about one thousand. The researchers published the results measured in the journal Atmospheric Chemistry and Physics ACP.

“Characteristic emissions of trace gases are encountered everywhere. These are symptomatic of gas and gas extraction. But the values measured for different technologies differ considerably,” Felix Geiger of the Institute of Meteorology and Climate Research (IMK) of KIT explains. He is one of the first authors of the study. By means of closed collection tanks and so-called vapor capture systems, for instance, the gases released during operation can be collected and reduced significantly.

“The gas fields in the sparsely populated areas of North America are a good showcase for estimating the range of impacts of different extraction and fracking technologies,” explains Professor Johannes Orphal, Head of IMK. “In the densely populated Germany, framework conditions are much stricter and much more attention is paid to reducing and monitoring emissions.”

Fracking is increasingly discussed as a technology to extract fossil resources from unconventional deposits. Hydraulic breaking of suitable shale stone layers opens up the fossil fuels stored there and makes them accessible for economically efficient use. For this purpose, boreholes are drilled into these rock formations. Then, they are subjected to high pressure using large amounts of water and auxiliary materials, such as sand, cement, and chemicals. The oil or gas can flow to the surface through the opened microstructures in the rock. Typically, the return flow of the aqueous fracking liquid with the dissolved oil and gas constituents to the surface lasts several days until the production phase proper of purer oil or natural gas. This return flow is collected and then reused until it finally has to be disposed of. Air pollution mainly depends on the treatment of this return flow at the extraction plant. In this respect, currently practiced fracking technologies differ considerably. For the first time now, the resulting local atmospheric emissions were studied at a high temporary resolution. Based on the results, emissions can be assigned directly to the different plant sections of an extraction plant. For measurement, the newly developed, compact, and highly sensitive instrument, a so-called proton transfer reaction mass spectrometer (PTR-MS), of KIT was installed on board of a minivan and driven closer to the different extraction points, the distances being a few tens of meters. In this way, the waste gas plumes of individual extraction sources and fracking processes were studied in detail.

Warneke, C., Geiger, F., Edwards, P. M., Dube, W., Pétron, G., Kofler, J., Zahn, A., Brown, S. S., Graus, M., Gilman, J. B., Lerner, B. M., Peischl, J., Ryerson, T. B., de Gouw, J. A., and Roberts, J. M.: Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition, Atmos. Chem. Phys., 14, 10977-10988, doi:10.5194/acp-14-10977-2014, 2014.

New research highlights the key role of ozone in climate change

Many of the complex computer models which are used to predict climate change could be missing an important ozone ‘feedback’ factor in their calculations of future global warming, according to new research led by the University of Cambridge and published today (1 December) in the journal Nature Climate Change.

Computer models play a crucial role in informing climate policy. They are used to assess the effect that carbon emissions have had on the Earth’s climate to date, and to predict possible pathways for the future of our climate.

Increasing computing power combined with increasing scientific knowledge has led to major advances in our understanding of the climate system during the past decades. However, the Earth’s inherent complexity, and the still limited computational power available, means that not every variable can be included in current models. Consequently, scientists have to make informed choices in order to build models which are fit for purpose.

“These models are the only tools we have in terms of predicting the future impacts of climate change, so it’s crucial that they are as accurate and as thorough as we can make them,” said the paper’s lead author Peer Nowack, a PhD student in the Centre for Atmospheric Science, part of Cambridge’s Department of Chemistry.

The new research has highlighted a key role that ozone, a major component of the stratosphere, plays in how climate change occurs, and the possible implications for predictions of global warming. Changes in ozone are often either not included, or are included a very simplified manner, in current climate models. This is due to the complexity and the sheer computational power it takes to calculate these changes, an important deficiency in some studies.

In addition to its role in protecting the Earth from the Sun’s harmful ultraviolet rays, ozone is also a greenhouse gas. The ozone layer is part of a vast chemical network, and changes in environmental conditions, such as changes in temperature or the atmospheric circulation, result in changes in ozone abundance. This process is known as an atmospheric chemical feedback.

Using a comprehensive atmosphere-ocean chemistry-climate model, the Cambridge team, working with researchers from the University of East Anglia, the National Centre for Atmospheric Science, the Met Office and the University of Reading, compared ozone at pre-industrial levels with how it evolves in response to a quadrupling of CO2 in the atmosphere, which is a standard climate change experiment.

What they discovered is a reduction in global surface warming of approximately 20% – equating to 1° Celsius – when compared with most models after 75 years. This difference is due to ozone changes in the lower stratosphere in the tropics, which are mainly caused by changes in the atmospheric circulation under climate change.

“This research has shown that ozone feedback can play a major role in global warming and that it should be included consistently in climate models,” said Nowack. “These models are incredibly complex, just as the Earth is, and there are an almost infinite number of different processes which we could include. Many different processes have to be simplified in order to make them run effectively within the model, but what this research shows is that ozone feedback plays a major role in climate change, and therefore should be included in models in order to make them as accurate as we can make them. However, this particular feedback is especially complex since it depends on many other climate processes that models still simulate differently. Therefore, the best option to represent this feedback consistently might be to calculate ozone changes in every model, in spite of the high computational costs of such a procedure.

“Climate change research is all about having the best data possible. Every climate model currently in use shows that warming is occurring and will continue to occur, but the difference is in how and when they predict warming will happen. Having the best models possible will help make the best climate policy.”

###

For more information, or to speak with the researchers, contact:

Sarah Collins, Office of Communications University of Cambridge Tel: +44 (0)1223 765542, Mob: +44 (0)7525 337458 Email: sarah.collins@admin.cam.ac.uk

Notes for editors:

1.The paper, “A large ozone-circulation feedback and its implications for global warming assessments” is published in the journal Nature Climate Change. DOI: 10.1038/nclimate2451

2.The mission of the University of Cambridge is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. To date, 90 affiliates of the University have won the Nobel Prize. http://www.cam.ac.uk

3.UEA’s school of Environmental Sciences is one of the longest established, largest and most fully developed of its kind in Europe. It was ranked 5th in the Guardian League Table 2015.In the last Research Assessment Exercise, 95 per cent of the school’s activity was classified as internationally excellent or world leading. http://www.uea.ac.uk/env

<br clear="both

Asteroid impacts on Earth make structurally bizarre diamonds

Diamond grains from the Canyon Diablo meteorite are shown. The tick marks are spaced one-fifth of a millimeter (200 microns) apart. -  Arizona State University/Laurence Garvie
Diamond grains from the Canyon Diablo meteorite are shown. The tick marks are spaced one-fifth of a millimeter (200 microns) apart. – Arizona State University/Laurence Garvie

Scientists have argued for half a century about the existence of a form of diamond called lonsdaleite, which is associated with impacts by meteorites and asteroids. A group of scientists based mostly at Arizona State University now show that what has been called lonsdaleite is in fact a structurally disordered form of ordinary diamond.

The scientists’ report is published in Nature Communications, Nov. 20, by Péter Németh, a former ASU visiting researcher (now with the Research Centre of Natural Sciences of the Hungarian Academy of Sciences), together with ASU’s Laurence Garvie, Toshihiro Aoki and Peter Buseck, plus Natalia Dubrovinskaia and Leonid Dubrovinsky from the University of Bayreuth in Germany. Buseck and Garvie are with ASU’s School of Earth and Space Exploration, while Aoki is with ASU’s LeRoy Eyring Center for Solid State Science.

“So-called lonsdaleite is actually the long-familiar cubic form of diamond, but it’s full of defects,” says Péter Németh. These can occur, he explains, due to shock metamorphism, plastic deformation or unequilibrated crystal growth.

The lonsdaleite story began almost 50 years ago. Scientists reported that a large meteorite, called Canyon Diablo after the crater it formed on impact in northern Arizona, contained a new form of diamond with a hexagonal structure. They described it as an impact-related mineral and called it lonsdaleite, after Dame Kathleen Lonsdale, a famous crystallographer.

Since then, “lonsdaleite” has been widely used by scientists as an indicator of ancient asteroidal impacts on Earth, including those linked to mass extinctions. In addition, it has been thought to have mechanical properties superior to ordinary diamond, giving it high potential industrial significance. All this focused much interest on the mineral, although pure crystals of it, even tiny ones, have never been found or synthesized. That posed a long-standing puzzle.

The ASU scientists approached the question by re-examining Canyon Diablo diamonds and investigating laboratory samples prepared under conditions in which lonsdaleite has been reported.

Using the advanced electron microscopes in ASU’s Center for Solid State Science, the team discovered, both in the Canyon Diablo and the synthetic samples, new types of diamond twins and nanometer-scale structural complexity. These give rise to features attributed to lonsdaleite.

“Most crystals have regular repeating structures, much like the bricks in a well-built wall,” says Peter Buseck. However, interruptions can occur in the regularity, and these are called defects. “Defects are intermixed with the normal diamond structure, just as if the wall had an occasional half-brick or longer brick or row of bricks that’s slightly displaced to one side or another.”

The outcome of the new work is that so-called lonsdaleite is the same as the regular cubic form of diamond, but it has been subjected to shock or pressure that caused defects within the crystal structure.

One consequence of the new work is that many scientific studies based on the presumption that lonsdaleite is a separate type of diamond need to be re-examined. The study implies that both shock and static compression can produce an intensely defective diamond structure.

The new discovery also suggests that the observed structural complexity of the Canyon Diablo diamond results in interesting mechanical properties. It could be a candidate for a product with exceptional hardness.

The School of Earth and Space Exploration is an academic unit of ASU’s College of Liberal Arts and Sciences.

Microfossils reveal warm oceans had less oxygen, geologists say

Assistant Professor of Earth Sciences Zunli Lu was among the researchers to release these findings. -  Syracuse University
Assistant Professor of Earth Sciences Zunli Lu was among the researchers to release these findings. – Syracuse University

Researchers in Syracuse University’s College of Arts and Sciences are pairing chemical analyses with micropaleontology—the study of tiny fossilized organisms—to better understand how global marine life was affected by a rapid warming event more than 55 million years ago.

Their findings are the subject of an article in the journal Paleoceanography (John Wiley & Sons, 2014).

“Global warming impacts marine life in complex ways, of which the loss of dissolved oxygen [a condition known as hypoxia] is a growing concern” says Zunli Lu, assistant professor of Earth sciences and a member of Syracuse’s Water Science and Engineering Initiative. “Moreover, it’s difficult to predict future deoxygenation that is induced by carbon emissions, without a good understanding of our geologic past.”

Lu says this type of deoxygenation leads to larger and thicker oxygen minimum zones (OMZs) in the world’s oceans. An OMZ is the layer of water in an ocean where oxygen saturation is at its lowest.

Much of Lu’s work revolves around the Paleocene-Eocene Thermal Maximum (PETM), a well-studied analogue for modern climate warming. Documenting the expansion of OMZs during the PETM is difficult because of the lack of a sensitive, widely applicable indicator of dissolved oxygen.

To address the problem, Lu and his colleagues have begun working with iodate, a type of iodine that exists only in oxygenated waters. By analyzing the iodine-to-calcium ratios in microfossils, they are able to estimate the oxygen levels of ambient seawater, where microorganisms once lived.

Fossil skeletons of a group of protists known as foraminiferas have long been used for paleo-environmental reconstructions. Developing an oxygenation proxy for foraminifera is important to Lu because it could enable him study the extent of OMZs “in 3-D,” since these popcorn-like organisms have been abundant in ancient and modern oceans.

“By comparing our fossil data with oxygen levels simulated in climate models, we think OMZs were much more prevalent 55 million years ago than they are today,” he says, adding that OMZs likely expanded during the PETM. “Deoxygenation, along with warming and acidification, had a dramatic effect on marine life during the PETM, prompting mass extinction on the seafloor.”

Lu thinks analytical facilities that combine climate modeling with micropaleontology will help scientists anticipate trends in ocean deoxygenation. Already, it’s been reported that modern-day OMZs, such as ones in the Eastern Pacific Ocean, are beginning to expand. “They’re natural laboratories for research,” he says, regarding the interactions between oceanic oxygen levels and climate changes.”

###

The article’s lead author is Xiaoli Zhou, a Ph.D. student of Lu’s in Syracuse’s Earth sciences department. Other coauthors are Ellen Thomas, a senior research scientist in geology and geophysics at Yale University; Ros Rickaby, professor of biogeochemistry at the University of Oxford (U.K.); and Arne Winguth, assistant professor of oceanography at The University of Texas at Arlington.

Housed in Syracuse’s College of Arts and Sciences, the Department of Earth Sciences offers graduate and undergraduate degree opportunities in environmental geology, wetland hydrogeology, crustal evolution, sedimentology, isotope geochemistry, paleobiology, paleolimnology, and global environmental change.

Star Trekish, rafting scientists make bold discovery on Fraser River

SFU geographer Jeremy Venditti (orange jacket; black hat) is among several scientists aboard a Fraser River Rafting Expeditions measuring boat passing through a Fraser River canyon. -  SFU PAMR
SFU geographer Jeremy Venditti (orange jacket; black hat) is among several scientists aboard a Fraser River Rafting Expeditions measuring boat passing through a Fraser River canyon. – SFU PAMR

A Simon Fraser University-led team behind a new discovery has “?had the vision to go, like Star Trek, where no one has gone before: to a steep and violent bedrock canyon, with surprising results.”

That comment comes from a reviewer about a truly groundbreaking study just published in the journal Nature.
Scientists studying river flow in bedrock canyons for the first time have discovered that previous conceptions of flow and incision in bedrock-rivers are wrong.

SFU geography professor Jeremy Venditti led the team of SFU, University of Ottawa and University of British Columbia researchers on a scientific expedition on the Fraser River.

“For the first time, we used oceanographic instruments, commonly used to measure three-dimensional river flow velocity in low land rivers, to examine flow through steep bedrock canyons,” says Venditti. “The 3-D instruments capture downstream, cross-stream and vertical flow velocity.”

To carry out their Star Trek-like expedition, the researchers put their lives into the experienced hands of Fraser River Rafting Expeditions, which took them into 42 bedrock canyons. Equipped with acoustic Doppler current profilers to measure velocity fields, they rafted 486 kilometres of the Fraser River from Quesnel to Chilliwack. Their raft navigated turbulent waters normally only accessed by thrill-seeking river rafters.

“Current models of bedrock-rivers assume flow velocity is uniform, without changes in the downstream direction. Our results show this is not the case,” says Colin Rennie, an Ottawa U civil engineering professor.

“We observed a complicated flow field in which high velocity flow plunges down the bottom of the canyon forming a velocity inversion and then rises along the canyon walls. This has important implications for canyon erosion because the plunging flow patterns result in greater flow force applied to the bed.”

The scientists conclude that river flow in bedrock canyons is far more complex than first thought and the way scientists have linked climate, bedrock incision and the uplift of mountains needs to be rethought. They say the complexity of river flow plays an important role in deciding bedrock canyon morphology and river width.

“The links between the uplift of mountain ranges, bedrock incision by rivers and climate is one of the most important open questions in science,” notes Venditti. “The incision that occurs in bedrock canyons is driven by climate because the climate system controls precipitation and the amount of water carried in rivers. River flow drives the erosional mechanisms that cut valleys and allow the uplift of majestic mountain peaks.”

Venditti adds that river flow velocity in bedrock canyons also influences the delivery of sediment from mountain-rivers to lowland rivers.

“Sediment delivery controls water levels and stability of lowland rivers, which has important implications for lowland river management, flooding impacts to infrastructure, availability of fish habitat and more.

“Lowland river floodplains and deltas are the most densely populated places on earth, so understanding what is happening in mountain rivers is important because our continued development of these areas is significantly affected by what is happening upstream.”

Fracking’s environmental impacts scrutinized

Greenhouse gas emissions from the production and use of shale gas would be comparable to conventional natural gas, but the controversial energy source actually faired better than renewables on some environmental impacts, according to new research.

The UK holds enough shale gas to supply its entire gas demand for 470 years, promising to solve the country’s energy crisis and end its reliance on fossil-fuel imports from unstable markets. But for many, including climate scientists and environmental groups, shale gas exploitation is viewed as environmentally dangerous and would result in the UK reneging on its greenhouse gas reduction obligations under the Climate Change Act.

University of Manchester scientists have now conducted one of the most thorough examinations of the likely environmental impacts of shale gas exploitation in the UK in a bid to inform the debate. Their research has just been published in the leading academic journal Applied Energy and study lead author, Professor Adisa Azapagic, will outline the findings at the Labour Party Conference in Manchester, England, today (Monday, 22 September).

“While exploration is currently ongoing in the UK, commercial extraction of shale gas has not yet begun, yet its potential has stirred controversy over its environmental impacts, its safety and the difficulty of justifying its use to a nation conscious of climate change,” said Professor Azapagic.

“There are many unknowns in the debate surrounding shale gas, so we have attempted to address some of these unknowns by estimating its life cycle environmental impacts from ‘cradle to grave’. We looked at 11 different impacts from the extraction of shale gas using hydraulic fracturing – known as ‘fracking’- as well as from its processing and use to generate electricity.”

The researchers compared shale gas to other fossil-fuel alternatives, such as conventional natural gas and coal, as well as low-carbon options, including nuclear, offshore wind and solar power (solar photovoltaics).

The results of the research suggest that the average emissions of greenhouse gases from shale gas over its entire life cycle are about 460 grams of carbon dioxide-equivalent per kilowatt-hour of electricity generated. This, the authors say, is comparable to the emissions from conventional natural gas. For most of the other life-cycle environmental impacts considered by the team, shale gas was also comparable to conventional natural gas.

But the study also found that shale gas was better than offshore wind and solar for four out of 11 impacts: depletion of natural resources, toxicity to humans, as well as the impact on freshwater and marine organisms. Additionally, shale gas was better than solar (but not wind) for ozone layer depletion and eutrophication (the effect of nutrients such as phosphates, on natural ecosystems).

On the other hand, shale gas was worse than coal for three impacts: ozone layer depletion, summer smog and terrestrial eco-toxicity.

Professor Azapagic said: “Some of the impacts of solar power are actually relatively high, so it is not a complete surprise that shale gas is better in a few cases. This is mainly because manufacturing solar panels is very energy and resource-intensive, while their electrical output is quite low in a country like the UK, as we don’t have as much sunshine. However, our research shows that the environmental impacts of shale gas can vary widely, depending on the assumptions for various parameters, including the composition and volume of the fracking fluid used, disposal routes for the drilling waste and the amount of shale gas that can be recovered from a well.

“Assuming the worst case conditions, several of the environmental impacts from shale gas could be worse than from any other options considered in the research, including coal. But, under the best-case conditions, shale gas may be preferable to imported liquefied natural gas.”

The authors say their results highlight the need for tight regulation of shale gas exploration – weak regulation, they claim, may result in shale gas having higher impacts than coal power, resulting in a failure to meet climate change and sustainability imperatives and undermining the deployment of low-carbon technologies.

Professor Azapagic added: “Whether shale gas is an environmentally sound option depends on the perceived importance of different environmental impacts and the regulatory structure under which shale gas operates.

“From the government policy perspective – focusing mainly on economic growth and energy security – it appears likely that shale gas represents a good option for the UK energy sector, assuming that it can be extracted at reasonable cost.

“However, a wider view must also consider other aspects of widespread use of shale gas, including the impact on climate change, as well as many other environmental considerations addressed in our study. Ultimately, the environmental impacts from shale gas will depend on which options it is displacing and how tight the regulation is.”

Study co-author Dr Laurence Stamford, from Manchester’s School of Chemical Engineering and Analytical Science, said: “Appropriate regulation should introduce stringent controls on the emissions from shale gas extraction and disposal of drilling waste. It should also discourage extraction from sites where there is little shale gas in order to avoid the high emissions associated with a low-output well.

He continued: “If shale gas is extracted under tight regulations and is reasonably cheap, there is no obvious reason, as yet, why it should not make some contribution to our energy mix. However, regulation should also ensure that investment in sustainable technologies is not reduced at the expense of shale gas.”

Scientists warn time to stop drilling in the dark

In areas where shale-drilling/hydraulic fracturing is heavy, a dense web of roads, pipelines and well pads turn continuous forests and grasslands into fragmented islands. -  Simon Fraser University PAMR
In areas where shale-drilling/hydraulic fracturing is heavy, a dense web of roads, pipelines and well pads turn continuous forests and grasslands into fragmented islands. – Simon Fraser University PAMR

The co-authors of a new study, including two Simon Fraser University research associates, cite new reasons why scientists, industry representatives and policymakers must collaborate closely on minimizing damage to the natural world from shale gas development. Viorel Popescu and Maureen Ryan, David H. Smith Conservation Research Fellows in SFU’s Biological Sciences department, are among eight international co-authors of the newly published research in Frontiers in Ecology and the Environment.

Shale gas development is the extraction of natural gas from shale formations via deep injection of high-pressure aqueous chemicals to create fractures (i.e., hydraulic fracturing), which releases trapped gas. With shale gas production projected to increase exponentially internationally during the next 30 years, the scientists say their key findings are cause for significant concern and decisive mitigation measures.

“Our findings are highly relevant to British Columbians given the impetus for developing shale resources in northeastern B.C. and the massive LNG facilities and pipeline infrastructure under development throughout the province,” notes Popescu. The SFU Earth2Ocean Group member is also a research associate in the Centre for Environmental Research at the University of Bucharest in Romania.

Key study findings:

  • One of the greatest threats to animal and plant-life is the cumulative impact of rapid, widespread shale development, with each individual well contributing collectively to air, water, noise and light pollution.

    “Think about the landscape and its habitats as a canvas,” explains Popescu. “At first, the few well pads, roads and pipelines from shale development seem like tiny holes and cuts, and the canvas still holds. But if you look at a heavily developed landscape down the road, you see more holes and cuts than natural habitats. Forests or grasslands that were once continuous are now islands fragmented by a dense web of roads, pipelines and well pads. At what point does the canvas fall apart? And what are the ecological implications for wide-ranging, sensitive species such as caribou or grizzly bears?”

  • Determining the environmental impact of chemical contamination from spills, well-casing failure and other accidents associated with shale gas production must become a top priority.

    Shale-drilling operations for oil and natural gas have increased by more than 700 per cent in the United States since 2007 and Western Canada is undergoing a similar shale gas production boom. But the industry’s effects on nature and wildlife are not well understood. Accurate data on the release of fracturing chemicals into the environment needs to be gathered before understanding can improve.

  • The lack of accessible and reliable information on spills, wastewater disposal and fracturing fluids is greatly impeding improved understanding. This study identifies that only five of 24 American states with active shale gas reservoirs maintain public records of spills and accidents.

The authors reviewed chemical disclosure statements for 150 wells in three top-gas producing American states and found that, on average, two out of three wells were fractured with at least one undisclosed chemical. Some of the wells in the chemical disclosure registry were fractured with fluid containing 20 or more undisclosed chemicals.

The authors call this an arbitrary and inconsistent standard of chemical disclosure. This is particularly worrisome given the chemical makeup of fracturing fluid and wastewater, which can include carcinogens and radioactive substances, is often unknown.

“Past lessons from large scale resource extraction and energy development -large dams, intensive forestry, or biofuel plantations – have shown us that development that outpaces our understanding of ecological impacts can have dire unintended consequences,” notes Ryan. She is a research fellow in the University of Washington’s School of Environmental and Forest Sciences.

“It’s our responsibility to look forward. For example, here in Canada, moving natural gas from northeastern B.C. to the 16 proposed LNG plants would require hundreds of kilometers of new pipeline and road infrastructure, and large port terminals on top of the effects of drilling. We must not just consider the impact of these projects individually, but also try to evaluate the ecological impacts holistically.”

‘Fracking’ in the dark: Biological fallout of shale-gas production still largely unknown

Eight conservation biologists from various organizations and institutions, including Princeton University, found that shale-gas extraction in the United States has vastly outpaced scientists' understanding of the industry's environmental impact. With shale-gas production projected to surge during the next 30 years, determining and minimizing the industry's effects on nature and wildlife must become a top priority for scientists, industry and policymakers, the researchers said. The photo above shows extensive natural-gas operations at Jonah Field in Wyoming. -  Photo courtesy of EcoFlight.
Eight conservation biologists from various organizations and institutions, including Princeton University, found that shale-gas extraction in the United States has vastly outpaced scientists’ understanding of the industry’s environmental impact. With shale-gas production projected to surge during the next 30 years, determining and minimizing the industry’s effects on nature and wildlife must become a top priority for scientists, industry and policymakers, the researchers said. The photo above shows extensive natural-gas operations at Jonah Field in Wyoming. – Photo courtesy of EcoFlight.

In the United States, natural-gas production from shale rock has increased by more than 700 percent since 2007. Yet scientists still do not fully understand the industry’s effects on nature and wildlife, according to a report in the journal Frontiers in Ecology and the Environment.

As gas extraction continues to vastly outpace scientific examination, a team of eight conservation biologists from various organizations and institutions, including Princeton University, concluded that determining the environmental impact of gas-drilling sites – such as chemical contamination from spills, well-casing failures and other accidents – must be a top research priority.

With shale-gas production projected to surge during the next 30 years, the authors call on scientists, industry representatives and policymakers to cooperate on determining – and minimizing – the damage inflicted on the natural world by gas operations such as hydraulic fracturing, or “fracking.” A major environmental concern, hydraulic fracturing releases natural gas from shale by breaking the rock up with a high-pressure blend of water, sand and other chemicals, which can include carcinogens and radioactive substances.

“We can’t let shale development outpace our understanding of its environmental impacts,” said co-author Morgan Tingley, a postdoctoral research associate in the Program in Science, Technology and Environmental Policy in Princeton’s Woodrow Wilson School of Public and International Affairs.

“The past has taught us that environmental impacts of large-scale development and resource extraction, whether coal plants, large dams or biofuel monocultures, are more than the sum of their parts,” Tingley said.

The researchers found that there are significant “knowledge gaps” when it comes to direct and quantifiable evidence of how the natural world responds to shale-gas operations. A major impediment to research has been the lack of accessible and reliable information on spills, wastewater disposal and the composition of fracturing fluids. Of the 24 American states with active shale-gas reservoirs, only five – Pennsylvania, Colorado, New Mexico, Wyoming and Texas – maintain public records of spills and accidents, the researchers report.

“The Pennsylvania Department of Environmental Protection’s website is one of the best sources of publicly available information on shale-gas spills and accidents in the nation. Even so, gas companies failed to report more than one-third of spills in the last year,” said first author Sara Souther, a postdoctoral research associate at the University of Wisconsin-Madison.

“How many more unreported spills occurred, but were not detected during well inspections?” Souther asked. “We need accurate data on the release of fracturing chemicals into the environment before we can understand impacts to plants and animals.”

One of the greatest threats to animal and plant life identified in the study is the impact of rapid and widespread shale development, which has disproportionately affected rural and natural areas. A single gas well results in the clearance of 3.7 to 7.6 acres (1.5 to 3.1 hectares) of vegetation, and each well contributes to a collective mass of air, water, noise and light pollution that has or can interfere with wild animal health, habitats and reproduction, the researchers report.

“If you look down on a heavily ‘fracked’ landscape, you see a web of well pads, access roads and pipelines that create islands out of what was, in some cases, contiguous habitat,” Souther said. “What are the combined effects of numerous wells and their supporting infrastructure on wide-ranging or sensitive species, like the pronghorn antelope or the hellbender salamander?”

The chemical makeup of fracturing fluid and wastewater is often unknown. The authors reviewed chemical-disclosure statements for 150 wells in three of the top gas-producing states and found that an average of two out of every three wells were fractured with at least one undisclosed chemical. The exact effect of fracturing fluid on natural water systems as well as drinking water supplies remains unclear even though improper wastewater disposal and pollution-prevention measures are among the top state-recorded violations at drilling sites, the researchers found.

“Some of the wells in the chemical disclosure registry were fractured with fluid containing 20 or more undisclosed chemicals,” said senior author Kimberly Terrell, a researcher at the Smithsonian Conservation Biology Institute. “This is an arbitrary and inconsistent standard of chemical disclosure.”

Asteroid attacks significantly altered ancient Earth

This is an artistic conception of the early Earth, showing a surface pummeled by large impacts, resulting in extrusion of deep seated magma onto the surface. At the same time, distal portion of the surface could have retained liquid water. -  Simone Marchi
This is an artistic conception of the early Earth, showing a surface pummeled by large impacts, resulting in extrusion of deep seated magma onto the surface. At the same time, distal portion of the surface could have retained liquid water. – Simone Marchi

New research shows that more than four billion years ago, the surface of Earth was heavily reprocessed – or mixed, buried and melted – as a result of giant asteroid impacts. A new terrestrial bombardment model based on existing lunar and terrestrial data sheds light on the role asteroid bombardments played in the geological evolution of the uppermost layers of the Hadean Earth (approximately 4 to 4.5 billion years ago).

An international team of researchers published their findings in the July 31, 2014 issue of Nature.

“When we look at the present day, we have a very high fidelity timeline over the last about 500 million years of what’s happened on Earth, and we have a pretty good understanding that plate tectonics and volcanism and all these kinds of processes have happened more or less the same way over the last couple of billion years,” says Lindy Elkins-Tanton, director of the School of Earth and Space Exploration at Arizona State University.

But, in the very beginning of Earth’s formation, the first 500 million years, there’s a less well-known period which has typically been called the Hadean (meaning hell-like) because it was assumed that it was wildly hot and volcanic and everything was covered with magma – completely unlike the present day.

Terrestrial planet formation models indicate Earth went through a sequence of major growth phases: accretion of planetesimals and planetary embryos over many tens of millions of years; a giant impact that led to the formation of our Moon; and then the late bombardment, when giant asteroids, dwarfing the one that presumably killed the dinosaurs, periodically hit ancient Earth.

While researchers estimate accretion during late bombardment contributed less than one percent of Earth’s present-day mass, giant asteroid impacts still had a profound effect on the geological evolution of early Earth. Prior to four billion years ago Earth was resurfaced over and over by voluminous impact-generated melt. Furthermore, large collisions as late as about four billion years ago, may have repeatedly boiled away existing oceans into steamy atmospheres. Despite heavy bombardment, the findings are compatible with the claim of liquid water on Earth’s surface as early as about 4.3 billion years ago based on geochemical data.

A key part of Earth’s mysterious infancy period that has not been well quantified in the past is the kind of impacts Earth was experiencing at the end of accretion. How big and how frequent were those incoming bombardments and what were their effects on the surface of the Earth? How much did they affect the ability of the now cooling crust to actually form plates and start to subduct and make plate tectonics? What kind of volcanism did it produce that was different from volcanoes today?”

“We are increasingly understanding both the similarities and the differences to present day Earth conditions and plate tectonics,” says Elkins-Tanton. “And this study is a major step in that direction, trying to bridge that time from the last giant accretionary impact that largely completed the Earth and produced the Moon to the point where we have something like today’s plate tectonics and habitable surface.”

The new research reveals that asteroidal collisions not only severely altered the geology of the Hadean Earth, but likely played a major role in the subsequent evolution of life on Earth as well.

“Prior to approximately four billion years ago, no large region of Earth’s surface could have survived untouched by impacts and their effects,” says Simone Marchi, of NASA’s Solar System Exploration Research Virtual Institute at the Southwest Research Institute. “The new picture of the Hadean Earth emerging from this work has important implications for its habitability.”

Large impacts had particularly severe effects on existing ecosystems. Researchers found that on average, Hadean Earth could have been hit by one to four impactors that were more than 600 miles wide and capable of global sterilization, and by three to seven impactors more than 300 miles wide and capable of global ocean vaporization.

“During that time, the lag between major collisions was long enough to allow intervals of more clement conditions, at least on a local scale,” said Marchi. “Any life emerging during the Hadean eon likely needed to be resistant to high temperatures, and could have survived such a violent period in Earth’s history by thriving in niches deep underground or in the ocean’s crust.

From ‘Finding Nemo’ to minerals — what riches lie in the deep sea?

Left: The first species ever recovered from the deep sea. Center: Rockfish use deep-sea carbonate formations at Hydrate Ridge, US, as a refuge. Right: Deep-sea corals such as the one pictured are a source of jewelery and other riches. -  SERPENT Project/D.O.B. Jones, L. Levin, UK's BIS Department
Left: The first species ever recovered from the deep sea. Center: Rockfish use deep-sea carbonate formations at Hydrate Ridge, US, as a refuge. Right: Deep-sea corals such as the one pictured are a source of jewelery and other riches. – SERPENT Project/D.O.B. Jones, L. Levin, UK’s BIS Department

As fishing and the harvesting of metals, gas and oil have expanded deeper and deeper into the ocean, scientists are drawing attention to the services provided by the deep sea, the world’s largest environment. “This is the time to discuss deep-sea stewardship before exploitation is too much farther underway,” says lead-author Andrew Thurber. In a review published today in Biogeosciences, a journal of the European Geosciences Union (EGU), Thurber and colleagues summarise what this habitat provides to humans, and emphasise the need to protect it.

“The deep sea realm is so distant, but affects us in so many ways. That’s where the passion lies: to tell everyone what’s down there and that we still have a lot to explore,” says co-author Jeroen Ingels of Plymouth Marine Laboratory in the UK.

“What we know highlights that it provides much directly to society,” says Thurber, a researcher at the College of Earth, Ocean and Atmospheric Sciences at Oregon State University in the US. Yet, the deep sea is facing impacts from climate change and, as resources are depleted elsewhere, is being increasingly exploited by humans for food, energy and metals like gold and silver.

“We felt we had to do something,” says Ingels. “We all felt passionate about placing the deep sea in a relevant context and found that there was little out there aimed at explaining what the deep sea does for us to a broad audience that includes scientists, the non-specialists and ultimately the policy makers. There was a gap to be filled. So we said: ‘Let’s just make this happen’.”

In the review of over 200 scientific papers, the international team of researchers points out how vital the deep sea is to support our current way of life. It nurtures fish stocks, serves as a dumping ground for our waste, and is a massive reserve of oil, gas, precious metals and the rare minerals we use in modern electronics, such as cell phones and hybrid-car batteries. Further, hydrothermal vents and other deep-sea environments host life forms, from bacteria to sponges, that are a source of new antibiotics and anti-cancer chemicals. It also has a cultural value, with its strange species and untouched habitats inspiring books and films from 20,000 Leagues Under the Sea to Finding Nemo.

“From jewellery to oil and gas and future potential energy reserves as well as novel pharmaceuticals, deep-sea’s worth should be recognised so that, as we decide how to use it more in the future, we do not inhibit or lose the services that it already provides,” says Thurber.

The deep sea (ocean areas deeper than 200m) represents 98.5% of the volume of our planet that is hospitable to animals. It has received less attention than other environments because it is vast, dark and remote, and much of it is inaccessible to humans. But it has important global functions. In the Biogeosciences review the team shows that deep-sea marine life plays a crucial role in absorbing carbon dioxide from the atmosphere, as well as methane that occasionally leaks from under the seafloor. In doing so, the deep ocean has limited much of the effects of climate change.

This type of process occurs over a vast area and at a slow rate. Thurber gives other examples: manganese nodules, deep-sea sources of nickel, copper, cobalt and rare earth minerals, take centuries or longer to form and are not renewable. Likewise, slow-growing and long-lived species of fish and coral in the deep sea are more susceptible to overfishing. “This means that a different approach needs to be taken as we start harvesting the resources within it.”

By highlighting the importance of the deep sea and identifying the traits that differentiate this environment from others, the researchers hope to provide the tools for effective and sustainable management of this habitat.

“This study is one of the steps in making sure that the benefits of the deep sea are understood by those who are trying to, or beginning to, regulate its resources,” concludes Thurber. “We ultimately hope that it will be a useful tool for policy makers.”