Scientists observe the Earth grow a new layer under an Icelandic volcano

New research into an Icelandic eruption has shed light on how the Earth’s crust forms, according to a paper published today in Nature.

When the Bárðarbunga volcano, which is buried beneath Iceland’s Vatnajökull ice cap, reawakened in August 2014, scientists had a rare opportunity to monitor how the magma flowed through cracks in the rock away from the volcano. The molten rock forms vertical sheet-like features known as dykes, which force the surrounding rock apart.

Study co-author Professor Andy Hooper from the Centre for Observation and Modelling of Earthquakes, volcanoes and Tectonics (COMET) at the University of Leeds explained: “New crust forms where two tectonic plates are moving away from each other. Mostly this happens beneath the oceans, where it is difficult to observe.

“However, in Iceland this happens beneath dry land. The events leading to the eruption in August 2014 are the first time that such a rifting episode has occurred there and been observed with modern tools, like GPS and satellite radar.”

Although it has a long history of eruptions, Bárðarbunga has been increasingly restless since 2005. There was a particularly dynamic period in August and September this year, when more than 22,000 earthquakes were recorded in or around the volcano in just four weeks, due to stress being released as magma forced its way through the rock.

Using GPS and satellite measurements, the team were able to track the path of the magma for over 45km before it reached a point where it began to erupt, and continues to do so to this day. The rate of dyke propagation was variable and slowed as the magma reached natural barriers, which were overcome by the build-up of pressure, creating a new segment.

The dyke grows in segments, breaking through from one to the next by the build up of pressure. This explains how focused upwelling of magma under central volcanoes is effectively redistributed over large distances to create new upper crust at divergent plate boundaries, the authors conclude.

As well as the dyke, the team found ‘ice cauldrons’ – shallow depressions in the ice with circular crevasses, where the base of the glacier had been melted by magma. In addition, radar measurements showed that the ice inside Bárðarbunga’s crater had sunk by 16m, as the volcano floor collapsed.

COMET PhD student Karsten Spaans from the University of Leeds, a co-author of the study, added: “Using radar measurements from space, we can form an image of caldera movement occurring in one day. Usually we expect to see just noise in the image, but we were amazed to see up to 55cm of subsidence.”

Like other liquids, magma flows along the path of least resistance, which explains why the dyke at Bárðarbunga changed direction as it progressed. Magma flow was influenced mostly by the lie of the land to start with, but as it moved away from the steeper slopes, the influence of plate movements became more important.

Summarising the findings, Professor Hooper said: “Our observations of this event showed that the magma injected into the crust took an incredibly roundabout path and proceeded in fits and starts.

“Initially we were surprised at this complexity, but it turns out we can explain all the twists and turns with a relatively simple model, which considers just the pressure of rock and ice above, and the pull exerted by the plates moving apart.”

The paper ‘Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland’ is published in Nature on 15 December 2014.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under Grant Agreement No. 308377 (Project FUTUREVOLC)

Scientists observe the Earth grow a new layer under an Icelandic volcano

New research into an Icelandic eruption has shed light on how the Earth’s crust forms, according to a paper published today in Nature.

When the Bárðarbunga volcano, which is buried beneath Iceland’s Vatnajökull ice cap, reawakened in August 2014, scientists had a rare opportunity to monitor how the magma flowed through cracks in the rock away from the volcano. The molten rock forms vertical sheet-like features known as dykes, which force the surrounding rock apart.

Study co-author Professor Andy Hooper from the Centre for Observation and Modelling of Earthquakes, volcanoes and Tectonics (COMET) at the University of Leeds explained: “New crust forms where two tectonic plates are moving away from each other. Mostly this happens beneath the oceans, where it is difficult to observe.

“However, in Iceland this happens beneath dry land. The events leading to the eruption in August 2014 are the first time that such a rifting episode has occurred there and been observed with modern tools, like GPS and satellite radar.”

Although it has a long history of eruptions, Bárðarbunga has been increasingly restless since 2005. There was a particularly dynamic period in August and September this year, when more than 22,000 earthquakes were recorded in or around the volcano in just four weeks, due to stress being released as magma forced its way through the rock.

Using GPS and satellite measurements, the team were able to track the path of the magma for over 45km before it reached a point where it began to erupt, and continues to do so to this day. The rate of dyke propagation was variable and slowed as the magma reached natural barriers, which were overcome by the build-up of pressure, creating a new segment.

The dyke grows in segments, breaking through from one to the next by the build up of pressure. This explains how focused upwelling of magma under central volcanoes is effectively redistributed over large distances to create new upper crust at divergent plate boundaries, the authors conclude.

As well as the dyke, the team found ‘ice cauldrons’ – shallow depressions in the ice with circular crevasses, where the base of the glacier had been melted by magma. In addition, radar measurements showed that the ice inside Bárðarbunga’s crater had sunk by 16m, as the volcano floor collapsed.

COMET PhD student Karsten Spaans from the University of Leeds, a co-author of the study, added: “Using radar measurements from space, we can form an image of caldera movement occurring in one day. Usually we expect to see just noise in the image, but we were amazed to see up to 55cm of subsidence.”

Like other liquids, magma flows along the path of least resistance, which explains why the dyke at Bárðarbunga changed direction as it progressed. Magma flow was influenced mostly by the lie of the land to start with, but as it moved away from the steeper slopes, the influence of plate movements became more important.

Summarising the findings, Professor Hooper said: “Our observations of this event showed that the magma injected into the crust took an incredibly roundabout path and proceeded in fits and starts.

“Initially we were surprised at this complexity, but it turns out we can explain all the twists and turns with a relatively simple model, which considers just the pressure of rock and ice above, and the pull exerted by the plates moving apart.”

The paper ‘Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland’ is published in Nature on 15 December 2014.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under Grant Agreement No. 308377 (Project FUTUREVOLC)

Icelandic volcano sits on massive magma hot spot

This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. -  Morten S. Riishuus, Nordic Volcanological Institute
This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. – Morten S. Riishuus, Nordic Volcanological Institute

Spectacular eruptions at Bárðarbunga volcano in central Iceland have been spewing lava continuously since Aug. 31. Massive amounts of erupting lava are connected to the destruction of supercontinents and dramatic changes in climate and ecosystems.

New research from UC Davis and Aarhus University in Denmark shows that high mantle temperatures miles beneath the Earth’s surface are essential for generating such large amounts of magma. In fact, the scientists found that the Bárðarbunga volcano lies directly above the hottest portion of the North Atlantic mantle plume.

The study, published online Oct. 5 and appearing in the November issue of Nature Geoscience, comes from Charles Lesher, professor of Earth and Planetary Science at UC Davis and a visiting professor at Aarhus University, and his former PhD student, Eric Brown, now a post-doctoral scholar at Aarhus University.

“From time to time the Earth’s mantle belches out huge quantities of magma on a scale unlike anything witnessed in historic times,” Lesher said. “These events provide unique windows into the internal working of our planet.”

Such fiery events have produced large igneous provinces throughout Earth’s history. They are often attributed to upwelling of hot, deeply sourced mantle material, or “mantle plumes.”

Recent models have dismissed the role of mantle plumes in the formation of large igneous provinces, ascribing their origin instead to chemical anomalies in the shallow mantle.

Based on the volcanic record in and around Iceland over the last 56 million years and numerical modeling, Brown and Lesher show that high mantle temperatures are essential for generating the large magma volumes that gave rise to the North Atlantic large igneous provinces bordering Greenland and northern Europe.

Their findings further substantiate the critical role of mantle plumes in forming large igneous provinces.

“Our work offers new tools to constrain the physical and chemical conditions in the mantle responsible for large igneous provinces,” Brown said. “There’s little doubt that the mantle is composed of different types of chemical compounds, but this is not the dominant factor. Rather, locally high mantle temperatures are the key ingredient.”

The research was supported by grants from the US National Science Foundation and by the Niels Bohr Professorship funded by Danish National Research Foundation.

Read the full study at http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2264.html.

Icelandic volcano sits on massive magma hot spot

This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. -  Morten S. Riishuus, Nordic Volcanological Institute
This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. – Morten S. Riishuus, Nordic Volcanological Institute

Spectacular eruptions at Bárðarbunga volcano in central Iceland have been spewing lava continuously since Aug. 31. Massive amounts of erupting lava are connected to the destruction of supercontinents and dramatic changes in climate and ecosystems.

New research from UC Davis and Aarhus University in Denmark shows that high mantle temperatures miles beneath the Earth’s surface are essential for generating such large amounts of magma. In fact, the scientists found that the Bárðarbunga volcano lies directly above the hottest portion of the North Atlantic mantle plume.

The study, published online Oct. 5 and appearing in the November issue of Nature Geoscience, comes from Charles Lesher, professor of Earth and Planetary Science at UC Davis and a visiting professor at Aarhus University, and his former PhD student, Eric Brown, now a post-doctoral scholar at Aarhus University.

“From time to time the Earth’s mantle belches out huge quantities of magma on a scale unlike anything witnessed in historic times,” Lesher said. “These events provide unique windows into the internal working of our planet.”

Such fiery events have produced large igneous provinces throughout Earth’s history. They are often attributed to upwelling of hot, deeply sourced mantle material, or “mantle plumes.”

Recent models have dismissed the role of mantle plumes in the formation of large igneous provinces, ascribing their origin instead to chemical anomalies in the shallow mantle.

Based on the volcanic record in and around Iceland over the last 56 million years and numerical modeling, Brown and Lesher show that high mantle temperatures are essential for generating the large magma volumes that gave rise to the North Atlantic large igneous provinces bordering Greenland and northern Europe.

Their findings further substantiate the critical role of mantle plumes in forming large igneous provinces.

“Our work offers new tools to constrain the physical and chemical conditions in the mantle responsible for large igneous provinces,” Brown said. “There’s little doubt that the mantle is composed of different types of chemical compounds, but this is not the dominant factor. Rather, locally high mantle temperatures are the key ingredient.”

The research was supported by grants from the US National Science Foundation and by the Niels Bohr Professorship funded by Danish National Research Foundation.

Read the full study at http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2264.html.

Four-billion-year-old rocks yield clues about Earth’s earliest crust

University of Alberta Ph.D. student Jesse Reimink studied some of the oldest rocks on Earth to find out how the earliest continents formed. -  Bryan Alary/University of Alberta
University of Alberta Ph.D. student Jesse Reimink studied some of the oldest rocks on Earth to find out how the earliest continents formed. – Bryan Alary/University of Alberta

It looks like just another rock, but what Jesse Reimink holds in his hands is a four-billion-year-old chunk of an ancient protocontinent that holds clues about how the Earth’s first continents formed.

The University of Alberta geochemistry student spent the better part of three years collecting and studying ancient rock samples from the Acasta Gneiss Complex in the Northwest Territories, part of his PhD research to understand the environment in which they formed.

“The timing and mode of continental crust formation throughout Earth’s history is a controversial topic in early Earth sciences,” says Reimink, lead author of a new study in Nature Geoscience that points to Iceland as a solid comparison for how the earliest continents formed.

Continents today form when one tectonic plate shifts beneath another into the Earth’s mantle and cause magma to rise to the surface, a process called subduction. It’s unclear whether plate tectonics existed 2.5 billion to four billion years ago or if another process was at play, says Reimink.

One theory is the first continents formed in the ocean as liquid magma rose from the Earth’s mantle before cooling and solidifying into a crust.

Iceland’s crust formed when magma from the mantle rises to shallow levels, incorporating previously formed volcanic rocks. For this reason, Reimink says Iceland is considered a theoretical analogue on early Earth continental crust formation.

Working under the supervision of co-author Tom Chacko, Reimink spent his summers in the field collecting rock samples from the Acasta Gneiss Complex, which was discovered in the 1980s and found to contain some of the Earth’s oldest rocks, between 3.6 and four billion years old. Due to their extreme age, the rocks have undergone multiple metamorphic events, making it difficult to understand their geochemistry, Reimink says.

Fortunately, a few rocks-which the research team dubbed “Idiwhaa” meaning “ancient” in the local Tlicho dialect-were better preserved. This provided a “window” to see the samples’ geochemical characteristics, which Reimink says showed crust-forming processes that are very similar to those occurring in present-day Iceland.

“This provides the first physical evidence that a setting similar to modern Iceland was present on the early Earth.”

These ancient rocks are among the oldest samples of protocontinental crust that we have, he adds, and may have helped jump-start the formation of the rest of the continental crust.

Reimink, who came to the U of A to work with Chacko, says the university’s lab resources are “second to none,” particularly the Ion Microprobe facility within the Canadian Centre for Isotopic Microanalysis run by co-author Richard Stern, which was instrumental to the discovery.

“That lab is producing some of the best data of its kind in the world. That was very key to this project.”

Four-billion-year-old rocks yield clues about Earth’s earliest crust

University of Alberta Ph.D. student Jesse Reimink studied some of the oldest rocks on Earth to find out how the earliest continents formed. -  Bryan Alary/University of Alberta
University of Alberta Ph.D. student Jesse Reimink studied some of the oldest rocks on Earth to find out how the earliest continents formed. – Bryan Alary/University of Alberta

It looks like just another rock, but what Jesse Reimink holds in his hands is a four-billion-year-old chunk of an ancient protocontinent that holds clues about how the Earth’s first continents formed.

The University of Alberta geochemistry student spent the better part of three years collecting and studying ancient rock samples from the Acasta Gneiss Complex in the Northwest Territories, part of his PhD research to understand the environment in which they formed.

“The timing and mode of continental crust formation throughout Earth’s history is a controversial topic in early Earth sciences,” says Reimink, lead author of a new study in Nature Geoscience that points to Iceland as a solid comparison for how the earliest continents formed.

Continents today form when one tectonic plate shifts beneath another into the Earth’s mantle and cause magma to rise to the surface, a process called subduction. It’s unclear whether plate tectonics existed 2.5 billion to four billion years ago or if another process was at play, says Reimink.

One theory is the first continents formed in the ocean as liquid magma rose from the Earth’s mantle before cooling and solidifying into a crust.

Iceland’s crust formed when magma from the mantle rises to shallow levels, incorporating previously formed volcanic rocks. For this reason, Reimink says Iceland is considered a theoretical analogue on early Earth continental crust formation.

Working under the supervision of co-author Tom Chacko, Reimink spent his summers in the field collecting rock samples from the Acasta Gneiss Complex, which was discovered in the 1980s and found to contain some of the Earth’s oldest rocks, between 3.6 and four billion years old. Due to their extreme age, the rocks have undergone multiple metamorphic events, making it difficult to understand their geochemistry, Reimink says.

Fortunately, a few rocks-which the research team dubbed “Idiwhaa” meaning “ancient” in the local Tlicho dialect-were better preserved. This provided a “window” to see the samples’ geochemical characteristics, which Reimink says showed crust-forming processes that are very similar to those occurring in present-day Iceland.

“This provides the first physical evidence that a setting similar to modern Iceland was present on the early Earth.”

These ancient rocks are among the oldest samples of protocontinental crust that we have, he adds, and may have helped jump-start the formation of the rest of the continental crust.

Reimink, who came to the U of A to work with Chacko, says the university’s lab resources are “second to none,” particularly the Ion Microprobe facility within the Canadian Centre for Isotopic Microanalysis run by co-author Richard Stern, which was instrumental to the discovery.

“That lab is producing some of the best data of its kind in the world. That was very key to this project.”

Hot mantle drives elevation, volcanism along mid-ocean ridges

Scientists have found that temperature deep in Earth's mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth's crust. -  Dalton Lab / Brown University
Scientists have found that temperature deep in Earth’s mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth’s crust. – Dalton Lab / Brown University

Scientists have shown that temperature differences deep within Earth’s mantle control the elevation and volcanic activity along mid-ocean ridges, the colossal mountain ranges that line the ocean floor. The findings, published April 4 in the journal Science, shed new light on how temperature in the depths of the mantle influences the contours of the Earth’s crust.

Mid-ocean ridges form at the boundaries between tectonic plates, circling the globe like seams on a baseball. As the plates move apart, magma from deep within the Earth rises up to fill the void, creating fresh crust as it cools. The crust formed at these seams is thicker in some places than others, resulting in ridges with widely varying elevations. In some places, the peaks are submerged miles below the ocean surface. In other places – Iceland, for example – the ridge tops are exposed above the water’s surface.

“These variations in ridge depth require an explanation,” said Colleen Dalton, assistant professor of geological sciences at Brown and lead author of the new research. “Something is keeping them either sitting high or sitting low.”

That something, the study found, is the temperature of rocks deep below Earth’s surface.

By analyzing the speeds of seismic waves generated by earthquakes, the researchers show that mantle temperature along the ridges at depths extending below 400 kilometers varies by as much as 250 degrees Celsius. High points on the ridges tend to be associated with higher mantle temperatures, while low points are associated with a cooler mantle. The study also showed that volcanic hot spots along the ridge – volcanoes near Iceland as well as the islands of Ascension, Tristan da Cunha, and elsewhere – all sit above warm spots in Earth’s mantle.

“It is clear from our results that what’s being erupted at the ridges is controlled by temperature deep in the mantle,” Dalton said. “It resolves a long-standing controversy and has not been shown definitively before.”

A CAT scan of the Earth


The mid-ocean ridges provide geologists with a window to the interior of the Earth. The ridges form when mantle material melts, rises into the cracks between tectonic plates, and solidifies again. The characteristics of the ridges provide clues about the properties of the mantle below.

For example, a higher ridge elevation suggests a thicker crust, which in turn suggests that a larger volume of magma was erupted at the surface. This excess molten rock can be caused by very hot temperatures in the mantle. The problem is that hot mantle is not the only way to produce excess magma. The chemical composition of the rocks in Earth’s mantle also controls how much melt is produced. For certain rock compositions, it is possible to generate large volumes of molten rock under cooler conditions. For many decades it has not been clear whether mid-ocean ridge elevations are caused by variations in the temperature of the mantle or variations in the rock composition of the mantle.

To distinguish between these two possibilities, Dalton and her colleagues introduced two additional data sets. One was the chemistry of basalts, the rock that forms from solidification of magma at the mid-ocean ridge. The chemical composition of basalts differs depending upon the temperature and composition of the mantle material from which they’re derived. The authors analyzed the chemistry of nearly 17,000 basalts formed along mid-ocean ridges around the globe.

The other data set was seismic wave tomography. During earthquakes, seismic waves are sent pulsing through the rocks in the crust and mantle. By measuring the velocity of those waves, scientists can gather data about the characteristics of the rocks through which they traveled. “It’s like performing a CAT scan of the inside of the Earth,” Dalton said.

Seismic wave speeds are especially sensitive to the temperature of rocks. In general, waves propagate more quickly in cooler rocks and more slowly in hotter rocks.

Dalton and her colleagues combined the seismic data from hundreds of earthquakes with data on elevation and rock chemistry from the ridges. Correlations among the three data sets revealed that temperature deep in the mantle varied between around 1,300 and 1,550 degrees Celsius underneath about 61,000 kilometers of ridge terrain. “It turned out,” said Dalton, “that seismic tomography was the smoking gun. The only plausible explanation for the seismic wave speeds is a very large temperature range.”

The study showed that as ridge elevation falls, so does mantle temperature. The coolest point beneath the ridges was found near the lowest point, an area of very deep and rugged seafloor known as the Australian-Antarctic discordance in the Indian Ocean. The hottest spot was near Iceland, which is also the ridges’ highest elevation point.

Iceland is also where scientists have long debated whether a mantle plume – a vertical jet of hot rock originating from deep in the Earth – intersects the mid-ocean ridge. This study provides strong support for a mantle plume located beneath Iceland. In fact, this study showed that all regions with above-average temperature are located near volcanic hot spots, which points to mantle plumes as the culprit for the excess volume of magma in these areas.

Understanding a churning planet


Despite being made of solid rock, Earth’s mantle doesn’t sit still. It undergoes convection, a slow churning of material from the depths of the Earth toward the surface and back again.

“Convection is why we have plate tectonics and earthquakes,” Dalton said. “It’s also responsible for almost all volcanism at the surface. So understanding mantle convection is crucial to understanding many fundamental questions about the Earth.”

Two factors influence how that convection works: variations in the composition of the mantle and variations in its temperature. This work, says Dalton, points to temperature as a primary factor in how convection is expressed on the surface.

“We get consistent and coherent temperature measurements from the mantle from three independent datasets,” Dalton said. “All of them suggest that what we see at the surface is due to temperature, and that composition is only a secondary factor. What is surprising is that the data require the temperature variations to exist not only near the surface but also many hundreds of kilometers deep inside the Earth.”

The findings from this study will also be useful in future research using seismic waves, Dalton says. Because the temperature readings as indicated by seismology were backed up by the other datasets, they can be used to calibrate seismic readings for places where geochemical samples aren’t available. This makes it possible to estimate temperature deep in Earth’s mantle all over the globe.

That will help geologists gain a new insights into how processes deep within the Earth mold the ground beneath our feet.

Hot mantle drives elevation, volcanism along mid-ocean ridges

Scientists have found that temperature deep in Earth's mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth's crust. -  Dalton Lab / Brown University
Scientists have found that temperature deep in Earth’s mantle controls the expression of mid-ocean ridges, mountain ranges that line the ocean floor. Higher mantle temperatures are associated with higher elevations. The findings help scientists understand how mantle temperature influences the contours of Earth’s crust. – Dalton Lab / Brown University

Scientists have shown that temperature differences deep within Earth’s mantle control the elevation and volcanic activity along mid-ocean ridges, the colossal mountain ranges that line the ocean floor. The findings, published April 4 in the journal Science, shed new light on how temperature in the depths of the mantle influences the contours of the Earth’s crust.

Mid-ocean ridges form at the boundaries between tectonic plates, circling the globe like seams on a baseball. As the plates move apart, magma from deep within the Earth rises up to fill the void, creating fresh crust as it cools. The crust formed at these seams is thicker in some places than others, resulting in ridges with widely varying elevations. In some places, the peaks are submerged miles below the ocean surface. In other places – Iceland, for example – the ridge tops are exposed above the water’s surface.

“These variations in ridge depth require an explanation,” said Colleen Dalton, assistant professor of geological sciences at Brown and lead author of the new research. “Something is keeping them either sitting high or sitting low.”

That something, the study found, is the temperature of rocks deep below Earth’s surface.

By analyzing the speeds of seismic waves generated by earthquakes, the researchers show that mantle temperature along the ridges at depths extending below 400 kilometers varies by as much as 250 degrees Celsius. High points on the ridges tend to be associated with higher mantle temperatures, while low points are associated with a cooler mantle. The study also showed that volcanic hot spots along the ridge – volcanoes near Iceland as well as the islands of Ascension, Tristan da Cunha, and elsewhere – all sit above warm spots in Earth’s mantle.

“It is clear from our results that what’s being erupted at the ridges is controlled by temperature deep in the mantle,” Dalton said. “It resolves a long-standing controversy and has not been shown definitively before.”

A CAT scan of the Earth


The mid-ocean ridges provide geologists with a window to the interior of the Earth. The ridges form when mantle material melts, rises into the cracks between tectonic plates, and solidifies again. The characteristics of the ridges provide clues about the properties of the mantle below.

For example, a higher ridge elevation suggests a thicker crust, which in turn suggests that a larger volume of magma was erupted at the surface. This excess molten rock can be caused by very hot temperatures in the mantle. The problem is that hot mantle is not the only way to produce excess magma. The chemical composition of the rocks in Earth’s mantle also controls how much melt is produced. For certain rock compositions, it is possible to generate large volumes of molten rock under cooler conditions. For many decades it has not been clear whether mid-ocean ridge elevations are caused by variations in the temperature of the mantle or variations in the rock composition of the mantle.

To distinguish between these two possibilities, Dalton and her colleagues introduced two additional data sets. One was the chemistry of basalts, the rock that forms from solidification of magma at the mid-ocean ridge. The chemical composition of basalts differs depending upon the temperature and composition of the mantle material from which they’re derived. The authors analyzed the chemistry of nearly 17,000 basalts formed along mid-ocean ridges around the globe.

The other data set was seismic wave tomography. During earthquakes, seismic waves are sent pulsing through the rocks in the crust and mantle. By measuring the velocity of those waves, scientists can gather data about the characteristics of the rocks through which they traveled. “It’s like performing a CAT scan of the inside of the Earth,” Dalton said.

Seismic wave speeds are especially sensitive to the temperature of rocks. In general, waves propagate more quickly in cooler rocks and more slowly in hotter rocks.

Dalton and her colleagues combined the seismic data from hundreds of earthquakes with data on elevation and rock chemistry from the ridges. Correlations among the three data sets revealed that temperature deep in the mantle varied between around 1,300 and 1,550 degrees Celsius underneath about 61,000 kilometers of ridge terrain. “It turned out,” said Dalton, “that seismic tomography was the smoking gun. The only plausible explanation for the seismic wave speeds is a very large temperature range.”

The study showed that as ridge elevation falls, so does mantle temperature. The coolest point beneath the ridges was found near the lowest point, an area of very deep and rugged seafloor known as the Australian-Antarctic discordance in the Indian Ocean. The hottest spot was near Iceland, which is also the ridges’ highest elevation point.

Iceland is also where scientists have long debated whether a mantle plume – a vertical jet of hot rock originating from deep in the Earth – intersects the mid-ocean ridge. This study provides strong support for a mantle plume located beneath Iceland. In fact, this study showed that all regions with above-average temperature are located near volcanic hot spots, which points to mantle plumes as the culprit for the excess volume of magma in these areas.

Understanding a churning planet


Despite being made of solid rock, Earth’s mantle doesn’t sit still. It undergoes convection, a slow churning of material from the depths of the Earth toward the surface and back again.

“Convection is why we have plate tectonics and earthquakes,” Dalton said. “It’s also responsible for almost all volcanism at the surface. So understanding mantle convection is crucial to understanding many fundamental questions about the Earth.”

Two factors influence how that convection works: variations in the composition of the mantle and variations in its temperature. This work, says Dalton, points to temperature as a primary factor in how convection is expressed on the surface.

“We get consistent and coherent temperature measurements from the mantle from three independent datasets,” Dalton said. “All of them suggest that what we see at the surface is due to temperature, and that composition is only a secondary factor. What is surprising is that the data require the temperature variations to exist not only near the surface but also many hundreds of kilometers deep inside the Earth.”

The findings from this study will also be useful in future research using seismic waves, Dalton says. Because the temperature readings as indicated by seismology were backed up by the other datasets, they can be used to calibrate seismic readings for places where geochemical samples aren’t available. This makes it possible to estimate temperature deep in Earth’s mantle all over the globe.

That will help geologists gain a new insights into how processes deep within the Earth mold the ground beneath our feet.

World’s first magma-enhanced geothermal system created in Iceland

This image shows a flow test of the IDDP-1 well at Krafla. Note the transparent superheated steam at the top of the rock muffler. -  Kristján Einarsson.
This image shows a flow test of the IDDP-1 well at Krafla. Note the transparent superheated steam at the top of the rock muffler. – Kristján Einarsson.

In 2009, a borehole drilled at Krafla, northeast Iceland, as part of the Icelandic Deep Drilling Project (IDDP), unexpectedly penetrated into magma (molten rock) at only 2100 meters depth, with a temperature of 900-1000 C. The borehole, IDDP-1, was the first in a series of wells being drilled by the IDDP in Iceland in the search for high-temperature geothermal resources.

The January 2014 issue of the international journal Geothermics is dedicated to scientific and engineering results arising from that unusual occurrence. This issue is edited by Wilfred Elders, a professor emeritus of geology at the University of California, Riverside, who also co-authored three of the research papers in the special issue with Icelandic colleagues.

“Drilling into magma is a very rare occurrence anywhere in the world and this is only the second known instance, the first one, in 2007, being in Hawaii,” Elders said. “The IDDP, in cooperation with Iceland’s National Power Company, the operator of the Krafla geothermal power plant, decided to investigate the hole further and bear part of the substantial costs involved.”

Accordingly, a steel casing, perforated in the bottom section closest to the magma, was cemented into the well. The hole was then allowed to heat slowly and eventually allowed to flow superheated steam for the next two years, until July 2012, when it was closed down in order to replace some of the surface equipment.

“In the future, the success of this drilling and research project could lead to a revolution in the energy efficiency of high-temperature geothermal areas worldwide,” Elders said.

He added that several important milestones were achieved in this project: despite some difficulties, the project was able to drill down into the molten magma and control it; it was possible to set steel casing in the bottom of the hole; allowing the hole to blow superheated, high-pressure steam for months at temperatures exceeding 450 C, created a world record for geothermal heat (this well was the hottest in the world and one of the most powerful); steam from the IDDP-1 well could be fed directly into the existing power plant at Krafla; and the IDDP-1 demonstrated that a high-enthalpy geothermal system could be successfully utilized.

“Essentially, the IDDP-1 created the world’s first magma-enhanced geothermal system,” Elders said. “This unique engineered geothermal system is the world’s first to supply heat directly from a molten magma.”

Elders explained that in various parts of the world so-called enhanced or engineered geothermal systems are being created by pumping cold water into hot dry rocks at 4-5 kilometers depths. The heated water is pumped up again as hot water or steam from production wells. In recent decades, considerable effort has been invested in Europe, Australia, the United States, and Japan, with uneven, and typically poor, results.

“Although the IDDP-1 hole had to be shut in, the aim now is to repair the well or to drill a new similar hole,” Elders said. “The experiment at Krafla suffered various setbacks that tried personnel and equipment throughout. However, the process itself was very instructive, and, apart from scientific articles published in Geothermics, comprehensive reports on practical lessons learned are nearing completion.”

The IDDP is a collaboration of three energy companies – HS Energy Ltd., National Power Company and Reykjavik Energy – and a government agency, the National Energy Authority of Iceland. It will drill the next borehole, IDDP-2, in southwest Iceland at Reykjanes in 2014-2015. From the onset, international collaboration has been important to the project, and in particular a consortium of U.S. scientists, coordinated by Elders, has been very active, authoring several research papers in the special issue of Geothermics.

World’s first magma-enhanced geothermal system created in Iceland

This image shows a flow test of the IDDP-1 well at Krafla. Note the transparent superheated steam at the top of the rock muffler. -  Kristján Einarsson.
This image shows a flow test of the IDDP-1 well at Krafla. Note the transparent superheated steam at the top of the rock muffler. – Kristján Einarsson.

In 2009, a borehole drilled at Krafla, northeast Iceland, as part of the Icelandic Deep Drilling Project (IDDP), unexpectedly penetrated into magma (molten rock) at only 2100 meters depth, with a temperature of 900-1000 C. The borehole, IDDP-1, was the first in a series of wells being drilled by the IDDP in Iceland in the search for high-temperature geothermal resources.

The January 2014 issue of the international journal Geothermics is dedicated to scientific and engineering results arising from that unusual occurrence. This issue is edited by Wilfred Elders, a professor emeritus of geology at the University of California, Riverside, who also co-authored three of the research papers in the special issue with Icelandic colleagues.

“Drilling into magma is a very rare occurrence anywhere in the world and this is only the second known instance, the first one, in 2007, being in Hawaii,” Elders said. “The IDDP, in cooperation with Iceland’s National Power Company, the operator of the Krafla geothermal power plant, decided to investigate the hole further and bear part of the substantial costs involved.”

Accordingly, a steel casing, perforated in the bottom section closest to the magma, was cemented into the well. The hole was then allowed to heat slowly and eventually allowed to flow superheated steam for the next two years, until July 2012, when it was closed down in order to replace some of the surface equipment.

“In the future, the success of this drilling and research project could lead to a revolution in the energy efficiency of high-temperature geothermal areas worldwide,” Elders said.

He added that several important milestones were achieved in this project: despite some difficulties, the project was able to drill down into the molten magma and control it; it was possible to set steel casing in the bottom of the hole; allowing the hole to blow superheated, high-pressure steam for months at temperatures exceeding 450 C, created a world record for geothermal heat (this well was the hottest in the world and one of the most powerful); steam from the IDDP-1 well could be fed directly into the existing power plant at Krafla; and the IDDP-1 demonstrated that a high-enthalpy geothermal system could be successfully utilized.

“Essentially, the IDDP-1 created the world’s first magma-enhanced geothermal system,” Elders said. “This unique engineered geothermal system is the world’s first to supply heat directly from a molten magma.”

Elders explained that in various parts of the world so-called enhanced or engineered geothermal systems are being created by pumping cold water into hot dry rocks at 4-5 kilometers depths. The heated water is pumped up again as hot water or steam from production wells. In recent decades, considerable effort has been invested in Europe, Australia, the United States, and Japan, with uneven, and typically poor, results.

“Although the IDDP-1 hole had to be shut in, the aim now is to repair the well or to drill a new similar hole,” Elders said. “The experiment at Krafla suffered various setbacks that tried personnel and equipment throughout. However, the process itself was very instructive, and, apart from scientific articles published in Geothermics, comprehensive reports on practical lessons learned are nearing completion.”

The IDDP is a collaboration of three energy companies – HS Energy Ltd., National Power Company and Reykjavik Energy – and a government agency, the National Energy Authority of Iceland. It will drill the next borehole, IDDP-2, in southwest Iceland at Reykjanes in 2014-2015. From the onset, international collaboration has been important to the project, and in particular a consortium of U.S. scientists, coordinated by Elders, has been very active, authoring several research papers in the special issue of Geothermics.