Past climate change and continental ice melt linked to varying CO2 levels

Scientists at the Universities of Southampton and Cardiff have discovered that a globally warm period in Earth’s geological past featured highly variable levels of CO2.

Previous studies have found that the Miocene climatic optimum, a period that extends from about 15 to 17 million years ago, was associated with big changes in both temperature and the amount of continental ice on the planet.

Now a new study, published in Paleoceanography, has found that these changes in temperature and ice volume were matched by equally dramatic shifts in atmospheric CO2.

Using more detailed records than has previously been available, scientists have shown that CO2 levels in this period reached around 500 ppm (parts per million), the same level that the Intergovernmental Panel on Climate Change (IPPC) projects for the end of the century.

Lead author Rosanna Greenop, from Ocean and Earth Science at the University of Southampton, says: “The drivers of short term, orbital-scale temperature and ice volume change during warm periods of the Earth’s history have never been analysed before. Here we are able to show that in the same way as the more recent ice ages are linked with cycles of CO2, it also plays an important role in cyclical climate changes during warm periods.

Researchers also showed that at low levels of CO2, ice volume varied strongly, but at higher levels, there was little or no additional change in volume. The authors of the study hypothesis that there must be a portion of the East Antarctic ice sheet that varies in volume at the lower end of the CO2 range. However, the absence of additional ice melt at higher CO2 levels suggests that there is also a portion of the ice sheet that remains stable at the maximum CO2 levels.

Evidence suggests that the northern Hemisphere and West Antarctic ice sheets did not exist during the warm Miocene climatic optimum.

“While we recognise that the Miocene climatic optimum is not a perfect analogue for our own warm future, the geological past does represent an actual reality that the Earth system experienced,” says the University of Southampton’s Dr Gavin Foster, co-author of the study. “As such the findings of this study have large implications for the stability of the continental ice sheets in the future. They indicate that portions of the East Antarctic ice sheet can act in a dynamic fashion, growing and shrinking in response to climate forcing.”

Co-author Caroline Lear, of Cardiff University, adds: “We tend to think of the Antarctic ice sheet as a sluggish ice sheet, but these records show that in past warm climates it has been surprisingly sensitive to natural variations in carbon dioxide levels.

Ancient ocean currents may have changed pace and intensity of ice ages

About 950,000 years ago, North Atlantic currents and northern hemisphere ice sheets underwent changes. -  NASA
About 950,000 years ago, North Atlantic currents and northern hemisphere ice sheets underwent changes. – NASA

Climate scientists have long tried to explain why ice-age cycles became longer and more intense some 900,000 years ago, switching from 41,000-year cycles to 100,000-year cycles.

In a paper published this week in the journal Science, researchers report that the deep ocean currents that move heat around the globe stalled or may have stopped at that time, possibly due to expanding ice cover in the Northern Hemisphere.

“The research is a breakthrough in understanding a major change in the rhythm of Earth’s climate, and shows that the ocean played a central role,” says Candace Major, program director in the National Science Foundation (NSF)’s Division of Ocean Sciences, which funded the research.

The slowing currents increased carbon dioxide (CO2) storage in the oceans, leaving less CO2 in the atmosphere. That kept temperatures cold and kicked the climate system into a new phase of colder, but less frequent, ice ages, the scientists believe.

“The oceans started storing more carbon dioxide for a longer period of time,” says Leopoldo Pena, the paper’s lead author and a paleoceanographer at Columbia University’s Lamont-Doherty Earth Observatory (LDEO). “Our evidence shows that the oceans played a major role in slowing the pace of the ice ages and making them more severe.”

The researchers reconstructed the past strength of Earth’s system of ocean currents by sampling deep-sea sediments off the coast of South Africa, where powerful currents originating in the North Atlantic Ocean pass on their way to Antarctica.

How vigorously those currents moved can be inferred by how much North Atlantic water made it that far, as measured by isotope ratios of the element neodymium bearing the signature of North Atlantic seawater.

Like tape recorders, the shells of ancient plankton incorporate these seawater signals through time, allowing scientists to approximate when currents grew stronger and when weaker.

Over the last 1.2 million years, the conveyor-like currents strengthened during warm periods and lessened during ice ages, as previously thought.

But at about 950,000 years ago, ocean circulation slowed significantly and stayed weak for 100,000 years.

During that period the planet skipped an interglacial–the warm interval between ice ages. When the system recovered, it entered a new phase of longer, 100,000-year ice age cycles.

After this turning point, deep ocean currents remained weak during ice ages, and ice ages themselves became colder.

“Our discovery of such a major breakdown in the ocean circulation system was a big surprise,” said paper co-author Steven Goldstein, a geochemist at LDEO. “It allowed the ice sheets to grow when they should have melted, triggering the first 100,000-year cycle.”

Ice ages come and go at predictable intervals based on the changing amount of sunlight that falls on the planet, due to variations in Earth’s orbit around the sun.

Orbital changes alone, however, are not enough to explain the sudden switch to longer ice age intervals.

According to one earlier hypothesis for the transition, advancing glaciers in North America stripped away soils in Canada, causing thicker, longer-lasting ice to build up on the remaining bedrock.

Building on that idea, the researchers believe that the advancing ice might have triggered the slowdown in deep ocean currents, leading the oceans to vent less carbon dioxide, which suppressed the interglacial that should have followed.

“The ice sheets must have reached a critical state that switched the ocean circulation system into a weaker mode,” said Goldstein.

Neodymium, a key component of cellphones, headphones, computers and wind turbines, also offers a good way of measuring the vigor of ancient ocean currents.

Goldstein and colleagues had used neodymium ratios in deep-sea sediment samples to show that ocean circulation slowed during past ice ages.

They used the same method to show that changes in climate preceded changes in ocean circulation.

A trace element in Earth’s crust, neodymium washes into the oceans through erosion from the continents, where natural radioactive decay leaves a signature unique to the land mass from which it originated.

When Goldstein and Lamont colleague Sidney Hemming pioneered this method in the late 1990s, they rarely worried about surrounding neodymium contaminating their samples.

The rise of consumer electronics has changed that.

“I used to say you could do sample processing for neodymium analysis in a parking lot,” said Goldstein. “Not anymore.”

Study links Greenland ice sheet collapse, sea level rise 400,000 years ago

A research team is hiking to sample the Greenland ice-sheet margin in south Greenland. -  (Photo by Kelsey Winsor, courtesy Oregon State University)
A research team is hiking to sample the Greenland ice-sheet margin in south Greenland. – (Photo by Kelsey Winsor, courtesy Oregon State University)

A new study suggests that a warming period more than 400,000 years ago pushed the Greenland ice sheet past its stability threshold, resulting in a nearly complete deglaciation of southern Greenland and raising global sea levels some 4-6 meters.

The study is one of the first to zero in on how the vast Greenland ice sheet responded to warmer temperatures during that period, which were caused by changes in the Earth’s orbit around the sun.

Results of the study, which was funded by the National Science Foundation, are being published this week in the journal Nature.

“The climate 400,000 years ago was not that much different than what we see today, or at least what is predicted for the end of the century,” said Anders Carlson, an associate professor at Oregon State University and co-author on the study. “The forcing was different, but what is important is that the region crossed the threshold allowing the southern portion of the ice sheet to all but disappear.

“This may give us a better sense of what may happen in the future as temperatures continue rising,” Carlson added.

Few reliable models and little proxy data exist to document the extent of the Greenland ice sheet loss during a period known as the Marine Isotope Stage 11. This was an exceptionally long warm period between ice ages that resulted in a global sea level rise of about 6-13 meters above present. However, scientists have been unsure of how much sea level rise could be attributed to Greenland, and how much may have resulted from the melting of Antarctic ice sheets or other causes.

To find the answer, the researchers examined sediment cores collected off the coast of Greenland from what is called the Eirik Drift. During several years of research, they sampled the chemistry of the glacial stream sediment on the island and discovered that different parts of Greenland have unique chemical features. During the presence of ice sheets, the sediments are scraped off and carried into the water where they are deposited in the Eirik Drift.

“Each terrain has a distinct fingerprint,” Carlson noted. “They also have different tectonic histories and so changes between the terrains allow us to predict how old the sediments are, as well as where they came from. The sediments are only deposited when there is significant ice to erode the terrain. The absence of terrestrial deposits in the sediment suggests the absence of ice.

“Not only can we estimate how much ice there was,” he added, “but the isotopic signature can tell us where ice was present, or from where it was missing.”

This first “ice sheet tracer” utilizes strontium, lead and neodymium isotopes to track the terrestrial chemistry.

The researchers’ analysis of the scope of the ice loss suggests that deglaciation in southern Greenland 400,000 years ago would have accounted for at least four meters – and possibly up to six meters – of global sea level rise. Other studies have shown, however, that sea levels during that period were at least six meters above present, and may have been as much as 13 meters higher.

Carlson said the ice sheet loss likely went beyond the southern edges of Greenland, though not all the way to the center, which has not been ice-free for at least one million years.

In their Nature article, the researchers contrasted the events of Marine Isotope Stage 11 with another warming period that occurred about 125,000 years ago and resulted in a sea level rise of 5-10 meters. Their analysis of the sediment record suggests that not as much of the Greenland ice sheet was lost – in fact, only enough to contribute to a sea level rise of less than 2.5 meters.

“However, other studies have shown that Antarctica may have been unstable at the time and melting there may have made up the difference,” Carlson pointed out.

The researchers say the discovery of an ice sheet tracer that can be documented through sediment core analysis is a major step to understanding the history of ice sheets in Greenland – and their impact on global climate and sea level changes. They acknowledge the need for more widespread coring data and temperature reconstructions.

“This is the first step toward more complete knowledge of the ice history,” Carlson said, “but it is an important one.”

Studies show movements of continents speeding up after slow ‘middle age’

Two studies show that the movement rate of plates carrying the Earth’s crust may not be constant over time. This could provide a new explanation for the patterns observed in the speed of evolution and has implications for the interpretation of climate models. The work is presented today at Goldschmidt 2014, the premier geochemistry conference taking place in Sacramento, California, USA.

The Earth’s continental crust can be thought of as an archive of Earth’s history, containing information on rock formation, the atmosphere and the fossil record. However, it is not clear when and how regularly crust formed since the beginning of Earth history, 4.5 billion years ago.

Researchers led by Professor Peter Cawood, from the University of St. Andrews, UK, examined several measures of continental movement and geologic processes from a number of previous studies. They found that, from 1.7 to 0.75 billion years ago (termed Earth’s middle age), Earth appears to have been very stable in terms of its environment, with little in the way of crust building activity, no major fluctuations in atmospheric composition and few major developments seen in the fossil record. This contrasts markedly with the time periods either side of this, which contained major ice ages and changes in oxygen levels. Earth’s middle age also coincides with the formation of a supercontinent called Rodinia, which appears to have been stable throughout this time.

Professor Cawood suggests this stability may have been due to the gradual cooling of the earth’s crust over time. “Before 1.7 billion years ago, the Earth’s crust would have been substantially hotter, meaning that continental plate movement may have been governed by different rules to those that operate today,” said Professor Cawood. “0.75 billion years ago, the crust reached a point where it had cooled sufficiently to allow modern day plate tectonics to start working, in particular allowing subduction zones to form (where one plate of the crust moves under another). This increase in activity could have kick-started a myriad of changes including the break-up of Rodinia and changes to levels of key elements in the atmosphere and seas, which in turn may have induced evolutionary changes in the life forms present.”

This view is backed up by work from Professor Kent Condie from New Mexico Tech, USA, which suggests the movement rate of the Earth’s crust is not constant but may be speeding up over time. Professor Condie examined how supercontinents assemble and break up. “Our results challenge the view that the rate of plate movement is stable over time,” said Professor Condie. “The interpretation of data from many other disciplines such as stable isotope geochemistry, palaeontology and paleoclimatology in part rely on the assumption that the movement rate of the Earth’s crust is constant.”

Results from these fields may now need to be re-examined in light of Condie’s findings. “We now urgently need to collect further data on critical time periods to understand more about the constraints on plate speeds and the frequency of collision between continental blocks,” concluded Professor Condie.

Solving the puzzle of ice age climates

The paleoclimate record for the last ice age – a time 21,000 years ago called the “Last Glacial Maximum” (LGM) – tells of a cold Earth whose northern continents were covered by vast ice sheets. Chemical traces from plankton fossils in deep-sea sediments reveal rearranged ocean water masses, as well as extended sea ice coverage off Antarctica. Air bubbles in ice cores show that carbon dioxide in the atmosphere was far below levels seen before the Industrial Revolution.

While ice ages are set into motion by Earth’s slow wobbles in its transit around the sun, researchers agree that the solar-energy decrease alone wasn’t enough to cause this glacial state. Paleoclimatologists have been trying to explain the actual mechanism behind these changes for 200 years.

“We have all these scattered pieces of information about changes in the ocean, atmosphere, and ice cover,” says Raffaele Ferrari, the Breene M. Kerr Professor of Physical Oceanography in MIT’s Department of Earth, Atmospheric and Planetary Sciences, “and what we really want to see is how they all fit together.”

Researchers have always suspected that the answer must lie somewhere in the oceans. Powerful regulators of Earth’s climate, the oceans store vast amounts of organic carbon for thousands of years, keeping it from escaping into the atmosphere as CO2. Seawater also takes up CO2 from the atmosphere via photosynthesizing microbes at the surface, and via circulation patterns.

In a new application of ocean physics, Ferrari, along with Malte Jansen PhD ’12 of Princeton University and others at the California Institute of Technology, have found a new approach to the puzzle, which they detail in this week’s Proceedings of the National Academy of Sciences.

Lung of the ocean


The researchers focused on the Southern Ocean, which encircles Antarctica – a critical part of the carbon cycle because it provides a connection between the atmosphere and the deep ocean abyss. Ruffled by the winds whipping around Antarctica, the Southern Ocean is one of the only places where the deepest carbon-rich waters ever rise to the surface, to “breathe” CO2 in and out.

The modern-day Southern Ocean has a lot of room to breathe: Deeper, carbon-rich waters are constantly mixing into the waters above, a process enhanced by turbulence as water runs over jagged, deep-ocean ridges.

But during the LGM, permanent sea ice covered much more of the Southern Ocean’s surface. Ferrari and colleagues decided to explore how that extended sea ice would have affected the Southern Ocean’s ability to exchange CO2 with the atmosphere.

Shock to the system


This question demanded the use of the field’s accumulated knowledge of ocean physics. Using a mathematical equation that describes the wind-driven ocean circulation patterns around Antarctica, the researchers calculated the amount of water that was trapped under the sea ice by currents in the LGM. They found that the shock to the entire Earth from this added ice cover was massive: The ice covered the only spot where the deep ocean ever got to breathe. Since the sea ice capped these deep waters, the Southern Ocean’s CO2 was never exhaled to the atmosphere.

The researchers then saw a link between the sea ice change and the massive rearrangement of ocean waters that is evident in the paleoclimate record. Under the expanded sea ice, a greater amount of upwelled deep water sank back downward. Southern Ocean abyssal water eventually filled a greater volume of the entire midlevel and lower ocean – lifting the interface between upper and lower waters to a shallower depth, such that the deep, carbon-rich waters lost contact with the upper ocean. Breathing less, the ocean could store a lot more carbon.

A Southern Ocean suffocated by sea ice, the researchers say, helps explain the big drop in atmospheric CO2 during the LGM.

Dependent relationship


The study suggests a dynamic link between sea-ice expansion and the increase of ocean water insulated from the atmosphere, which the field has long treated as independent events. This insight takes on extra relevance in light of the fact that paleoclimatologists need to explain not just the very low levels of atmospheric CO2 during the last ice age, but also the fact that this happened during each of the last four glacial periods, as the paleoclimate record reveals.

Ferrari says that it never made sense to argue that independent changes drew down CO2 by the exact same amount in every ice age. “To me, that means that all the events that co-occurred must be incredibly tightly linked, without much freedom to drift beyond a narrow margin,” he says. “If there is a causality effect among the events at the start of an ice age, then they could happen in the same ratio.”

Scientists successfully use krypton to accurately date ancient Antarctic ice

This is the sampling trench for dust studies on Taylor Glacier. Windblown dust from local sources contaminates the upper ice layers and uncontaminated samples are obtained from a meter below the glacier's surface. -  (Photo courtesy of Hinrich Schaefer)
This is the sampling trench for dust studies on Taylor Glacier. Windblown dust from local sources contaminates the upper ice layers and uncontaminated samples are obtained from a meter below the glacier’s surface. – (Photo courtesy of Hinrich Schaefer)

A team of scientists has successfully identified the age of 120,000-year-old Antarctic ice using radiometric krypton dating – a new technique that may allow them to locate and date ice that is more than a million years old.

The ability to discover ancient ice is critical, the researchers say, because it will allow them to reconstruct the climate much farther back into Earth’s history and potentially understand the mechanisms that have triggered the planet to shift into and out of ice ages.

Results of the discovery are being published this week in the Proceedings of the National Academy of Sciences. The work was funded by the National Science Foundation and the U.S. Department of Energy.

“The oldest ice found in drilled cores is around 800,000 years old and with this new technique we think we can look in other regions and successfully date polar ice back as far as 1.5 million years,” said Christo Buizert, a postdoctoral researcher at Oregon State University and lead author on the PNAS article. “That is very exciting because a lot of interesting things happened with the Earth’s climate prior to 800,000 years ago that we currently cannot study in the ice core record.”

Krypton dating is much like the more-heralded carbon-14 dating technique that measures the decay of a radioactive isotope – which has constant and well-known decay rates – and compares it to a stable isotope. Unlike carbon-14, however, krypton is a noble gas that does not interact chemically and is much more stable with a half-life of around 230,000 years. Carbon dating doesn’t work well on ice because carbon-14 is produced in the ice itself by cosmic rays and only goes back some 50,000 years.

Krypton is produced by cosmic rays bombarding the Earth and then stored in air bubbles trapped within Antarctic ice. It has a radioactive isotope (krypton-81) that decays very slowly, and a stable isotope (krypton-83) that does not decay. Comparing the proportion of stable-to-radioactive isotopes provides the age of the ice.

Though scientists have been interested in radiokrypton dating for more than four decades, krypton-81 atoms are so limited and difficult to count that it wasn’t until a 2011 breakthrough in detector technology that krypton-81 dating became feasible for this kind of research. The new atom counter, named Atom Trap Trace Analysis, or ATTA, was developed by a team of nuclear physicists led by Zheng-Tian Lu at Argonne National Laboratory near Chicago.

In their experiment at Taylor Glacier in Antarctica, the researchers put several 300-kilogram (about 660 pounds) chunks of ice into a container and melted it to release the air from the bubbles, which was then stored in flasks. The krypton was isolated from the air at the University of Bern, Switzerland, and sent to Argonne for krypton-81 counting.

“The atom trap is so sensitive that it can capture and count individual atoms,” said Buizert, who is in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “The only problem is that there isn’t a lot of krypton in the air, and thus there isn’t much in the ice, either. That’s why we need such large samples to melt down.”

The group at Argonne is continually improving the ATTA detector, researchers there say, and they aim to perform analysis on an ice sample as small as 20 kilograms in the near future.

The researchers determined from the isotope ratio that the Taylor Glacier samples were 120,000 years old, and validated the estimate by comparing the results to well-dated ice core measurements of atmospheric methane and oxygen from that same period.

Now the challenge is to locate some of the oldest ice in Antarctica, which may not be as easy as it sounds.

“Most people assume that it’s a question of just drilling deeper for ice cores, but it’s not that simple,” said Edward Brook, an Oregon State University geologist and co-author on the study. “Very old ice probably exists in small isolated patches at the base of the ice sheet that have not yet been identified, but in many places it has probably melted and flowed out into the ocean.”

There also are special regions where old ice is exposed at the edges of an ice field, Brook pointed out.

“The international scientific community is really interested in exploring for old ice in both types of places and this new dating will really help,” Brook said. “There are places where meteorites originating from Mars have been pushed out by glaciers and collect at the margins. Some have been on Earth for a million years or more, so the ice in these spots may be that old as well.”

Buizert said reconstructing the Earth’s climate back to 1.5 million years is important because a shift in the frequency of ice ages took place in what is known as the Middle Pleistocene transition. The Earth is thought to have shifted in and out of ice ages every 100,000 years or so during the past 800,000 years, but there is evidence that such a shift took place every 40,000 years prior to that time.

“Why was there a transition from a 40,000-year cycle to a 100,000-year cycle?” Buizert said. “Some people believe a change in the level of atmospheric carbon dioxide may have played a role. That is one reason we are so anxious to find ice that will take us back further in time so we can further extend data on past carbon dioxide levels and test this hypothesis.”

Ancient sea-levels give new clues on ice ages

International researchers, led by the Australian National University (ANU), have developed a new way to determine sea-level changes and deep-sea temperature variability over the past 5.3 million years.

The findings will help scientists better understand the climate surrounding ice ages over the past two million years, and could help determine the relationship between carbon dioxide levels, global temperatures and sea levels.

The team from ANU, the University of Southampton (UoS) and the National Oceanography Centre (NOC) in the United Kingdom, examined oxygen isotope levels in fossils of microscopic plankton recovered from the Mediterranean Sea, dating back as far as 5.3 million years.

“This is the first step for reconstructions from the Mediterranean records,” says lead researcher Eelco Rohling from the ANU Research School of Earth Sciences.

Professor Rohling said the team focused on the flow of water through Strait of Gibraltar, which was particularly sensitive to sea-level changes.

“As continental ice sheets grew during the ice ages, flow through the Strait of Gibraltar was reduced, causing measurable changes in oxygen isotope ratios in Mediterranean waters, which became preserved in the shells of the ancient plankton,” he said.

Co-author Gavin Foster from UoS said the research for the first time found long-term trends in cooling and continental ice-volume build-up cycles over the past 5.3 Million years were not the same.

“In fact, for temperature the major step toward the ice ages of the past two million years was a cooling event at 2.7 million years ago,” he said.

“But for ice-volume, the crucial step was the development of the first intense ice age at around 2.15 million years ago. Before our results, these were thought to have occurred together at about 2.5 million years ago.”
Professor Rohling said the findings will help scientists better understand the nature of ice ages and development of coastal sediment.

“The observed decoupling of temperature and ice-volume changes provides crucial new information for our understanding of how the ice ages came about,” he said.

“However, there are wider implications. For example, a more refined sea-level record over millions of years is commercially interesting because it allows a better understanding of coastal sediment sequences that are relevant to the petroleum industry.

“Our record is also of interest to climate policy developments, because it opens the door to detailed comparisons between past atmospheric carbon dioxide concentrations, global temperatures, and sea levels, which has enormous value to long-term future climate projections.”

The findings have been published in the latest on-line edition of Nature.

Study provides crucial new information about how the ice ages came about

An international team of scientists has discovered new relationships between deep-sea temperature and ice-volume changes to provide crucial new information about how the ice ages came about.

Researchers from the University of Southampton, the National Oceanography Centre and the Australian National University developed a new method for determining sea-level and deep-sea temperature variability over the past 5.3 million years. It provides new insight into the climatic relationships that caused the development of major ice-age cycles during the past two million years.

The researchers found, for the first time, that the long-term trends in cooling and continental ice-volume cycles over the past 5.3 million years were not the same. In fact, for temperature the major step toward the ice ages that have characterised the past two to three million years was a cooling event at 2.7 million years ago, but for ice-volume the crucial step was the development of the first intense ice age at around 2.15 million years ago. Before these results, these were thought to have occurred together at about 2.5 million years ago.

The results are published in the scientific journal Nature.

Co-author Dr Gavin Foster, from Ocean and Earth Science at the University of Southampton, says: “Our work focused on the discovery of new relationships within the natural Earth system. In that sense, the observed decoupling of temperature and ice-volume changes provides crucial new information for our understanding of how the ice ages developed.

“However, there are wider implications too. For example, a more refined sea-level record over millions of years is commercially interesting because it allows a better understanding of coastal sediment sequences that are relevant to the petroleum industry. Our record is also of interest to climate policy developments, because it opens the door to detailed comparisons between past atmospheric CO2 concentrations, global temperatures, and sea levels, which has enormous value to long-term future climate projections.”

The team used records of oxygen isotope ratios (which provide a record of ancient water temperature) from microscopic plankton fossils recovered from the Mediterranean Sea, spanning the last 5.3 million years. This is a particularly useful region because the oxygen isotopic composition of the seawater is largely determined by the flow of water through the Strait of Gibraltar, which in turn is sensitive to changes in global sea level – in a way like the pinching of a hosepipe.

As continental ice sheets grew during the ice ages, flow through the Strait of Gibraltar was reduced, causing measurable increases in the oxygen isotope O-18 (8 protons and 10 neutrons) relative to O-16 (8 protons and 8 neutrons) in Mediterranean waters, which became preserved in the shells of the ancient plankton. Using long drill cores and uplifted sections of sea-floor sediments, previous work had analysed such microfossil-based oxygen isotope records from carefully dated sequences.

The current study added a numerical model for calculating water exchange through the Strait of Gibraltar as a function of sea-level change, which allowed the microfossil records to be used as a sensitive recorder of global sea-level changes. The new sea-level record was then used in combination with existing deep-sea oxygen isotope records from the open ocean, to work out deep-sea temperature changes.

Lead author, Professor Eelco Rohling of Australian National University, says: “This is the first step for reconstructions from the Mediterranean records. Our previous work has developed and refined this technique for Red Sea records, but in that location it is restricted to the last half a million years because there are no longer drill cores. In the Mediterranean, we could take it down all the way to 5.3 million years ago. There are uncertainties involved, so we included wide-ranging assessments of these, as well as pointers to the most promising avenues for improvement. This work lays the foundation for a concentrated effort toward refining and improving the new sea-level record.”

Noting the importance of the Strait of Gibraltar to the analysis, co-author Dr Mark Tamisiea from the National Oceanography Centre, Southampton adds: “Flow through the Strait will depend not only on the ocean’s volume, but also on how the land in the region moves up and down in response to the changing water levels. We use a global model of changes in the ocean and the ice sheets to estimate the deformation and gravity changes in the region, and how that will affect our estimate of global sea-level change.”

Dust in the wind drove iron fertilization during ice age

Nitrogen is a critical building block for marine algae, yet the plankton in the Southern Ocean north of Antarctica leave much of it unused partly because they lack another needed nutrient, iron. The late John Martin hypothesized that dust-borne iron carried to the region by winds during ice ages may have fertilized the marine algae, allowing more of the Southern Ocean nitrogen to be used for growth and thus drawing CO2 into the ocean.  
To confirm Martin's hypothesis, the researchers measured isotopes of nitrogen in a sediment sample collected from a site that lies within the path of the winds that deposit iron-laden dust in the Subantarctic zone of the Southern Ocean (labeled ODP Site 1090). They found that the ratios of the types of nitrogen in the sample coincided with the predictions of Martin's hypothesis. The colors indicate simulated ice-age dust deposition from low to high (blue to red). The black contour lines show the concentrations of nitrate (a form of nitrogen) in modern surface waters. -  Image courtesy of Alfredo Martínez-García of ETH Zurich and Science/American Association for the Advancement of Science
Nitrogen is a critical building block for marine algae, yet the plankton in the Southern Ocean north of Antarctica leave much of it unused partly because they lack another needed nutrient, iron. The late John Martin hypothesized that dust-borne iron carried to the region by winds during ice ages may have fertilized the marine algae, allowing more of the Southern Ocean nitrogen to be used for growth and thus drawing CO2 into the ocean.
To confirm Martin’s hypothesis, the researchers measured isotopes of nitrogen in a sediment sample collected from a site that lies within the path of the winds that deposit iron-laden dust in the Subantarctic zone of the Southern Ocean (labeled ODP Site 1090). They found that the ratios of the types of nitrogen in the sample coincided with the predictions of Martin’s hypothesis. The colors indicate simulated ice-age dust deposition from low to high (blue to red). The black contour lines show the concentrations of nitrate (a form of nitrogen) in modern surface waters. – Image courtesy of Alfredo Martínez-García of ETH Zurich and Science/American Association for the Advancement of Science

Researchers from Princeton University and the Swiss Federal Institute of Technology in Zurich have confirmed that during the last ice age iron fertilization caused plankton to thrive in a region of the Southern Ocean.

The study published in Science confirms a longstanding hypothesis that wind-borne dust carried iron to the region of the globe north of Antarctica, driving plankton growth and eventually leading to the removal of carbon dioxide from the atmosphere.

Plankton remove the greenhouse gas carbon dioxide (CO2) from the atmosphere during growth and transfer it to the deep ocean when their remains sink to the bottom. Iron fertilization has previously been suggested as a possible cause of the lower CO2 levels that occur during ice ages. These decreases in atmospheric CO2 are believed to have “amplified” the ice ages, making them much colder, with some scientists believing that there would have been no ice ages at all without the CO2 depletion.

Iron fertilization has also been suggested as one way to draw down the rising levels of CO2 associated with the burning of fossil fuels. Improved understanding of the drivers of ocean carbon storage could lead to better predictions of how the rise in manmade carbon dioxide will affect climate in the coming years.

The role of iron in storing carbon dioxide during ice ages was first proposed in 1990 by the late John Martin, an oceanographer at Moss Landing Marine Laboratories in California who made the landmark discovery that iron limits plankton growth in large regions of the modern ocean.

Based on evidence that there was more dust in the atmosphere during the ice ages, Martin hypothesized that this increased dust supply to the Southern Ocean allowed plankton to grow more rapidly, sending more of their biomass into the deep ocean and removing CO2 from the atmosphere. Martin focused on the Southern Ocean because its surface waters contain the nutrients nitrogen and phosphorus in abundance, allowing plankton to be fertilized by iron without running low on these necessary nutrients.

The research confirms Martin’s hypothesis, said Daniel Sigman, Princeton’s Dusenbury Professor of Geological and Geophysical Sciences, and a co-leader of the study. “I was an undergraduate when Martin published his ‘ice age iron hypothesis,'” he said. “I remember being captivated by it, as was everyone else at the time. But I also remember thinking that Martin would have to be the luckiest person in the world to pose such a simple, beautiful explanation for the ice age CO2 paradox and then turn out to be right about it.”

Previous efforts to test Martin’s hypothesis established a strong correlation of cold climate, high dust and productivity in the Subantarctic region, a band of ocean encircling the globe between roughly 40 and 50 degrees south latitude that lies in the path of the winds that blow off South America, South Africa and Australia. However, it was not clear whether the productivity was due to iron fertilization or the northward shift of a zone of naturally occurring productivity that today lies to the south of the Subantarctic. This uncertainty was made more acute by the finding that ice age productivity was lower in the Antarctic Ocean, which lies south of the Subantarctic region.

To settle the matter, the research groups of Sigman at Princeton and Gerald Haug and Tim Eglinton at ETH Zurich teamed up to use a new method developed at Princeton. They analyzed fossils found in deep sea sediment -deposited during the last ice age in the Subantarctic region – with the goal of reconstructing past changes in the nitrogen concentration of surface waters and combining the results with side-by-side measurements of dust-borne iron and productivity. If the dust-borne iron fertilization hypothesis was correct, then nitrogen would have been more completely consumed by the plankton, leading to lower residual nitrogen concentrations in the surface waters. In contrast, if the productivity increases were in response to a northward shift in ocean conditions, then nitrogen concentrations would have risen.

The researchers measured the ratio of nitrogen isotopes, which have the same number of protons but differing numbers of neutrons, that were preserved within the carbonate shells of a group of marine microfossils called foraminifera. The investigators found that nitrogen concentrations indeed declined during the cold periods when iron deposition and productivity rose, in a manner consistent with the dust-borne iron fertilization theory. Ocean models as well as the strong correlation of the sediment core changes with the known changes in atmospheric CO2 suggest that this iron fertilization of Southern Ocean plankton can explain roughly half of the CO2 decline during peak ice ages.

Although Martin had proposed that purposeful iron addition to the Southern Ocean could reduce the rise in atmospheric CO2, Sigman noted that the amount of CO2 removed though iron fertilization is likely to be minor compared to the amount of CO2 that humans are now pushing into the atmosphere.

“The dramatic fertilization that we observed during ice ages should have caused a decline in atmospheric CO2 over hundreds of years, which was important for climate changes over ice age cycles,” Sigman said. “But for humans to duplicate it today would require unprecedented engineering of the global environment, and it would still only compensate for less than 20 years of fossil fuel burning.”

Edward Brook, a paleoclimatologist at Oregon State University who was not involved in the research, said, “This group has been doing a lot of important work in this area for quite a while and this an important advance. It will be interesting to see if the patterns they see in this one spot are consistent with variations in other places relevant to global changes in carbon dioxide.”

Glacial history affects shape and growth habit of alpine plants

Climate change reflects in the morphology and genes of plants. -  (Image: University of Basel / Jürg Stöcklin)
Climate change reflects in the morphology and genes of plants. – (Image: University of Basel / Jürg Stöcklin)

Alpine plants that survived the Ice Ages in different locations still show accrued differences in appearance and features. These findings were made by botanists from the University of Basel using two plant species. So far, it was only known that the glacial climate changes had left a «genetic fingerprint» in the DNA of alpine plants.

During the Ice Ages the European Alps were covered by a thick layer of ice. Climate fluctuations led to great changes in the occurrences of plants: They survived the cold periods in refugia on the periphery of the Alps which they then repopulated after the ice had drawn back. Such processes in the history of the earth can be detected by molecular analysis as «genetic fingerprints»: refugia and colonization routes can be identified as genetic groups within the plant species. Thus, the postglacial colonization history of alpine plants is still borne in plants alive today.

Yellow Bellflower and Creeping Avens


So far, it was unknown if the Ice Ages also affected the structure and growth habit of alpine plants. Prof. Jürg Stöcklin and his colleagues from the Institute of Botany at the University of Basel were now able to proof this phenomenon in two publications. The glacial periods have left marks on the Yellow Bellflower and the Creeping Avens that are visible to the naked eye. The ancestors of these plants survived the Ice Ages in different glacial refugia which led to the fact that today they show genetic differences in their external morphology and in important functional traits.

Notably, the Yellow Bellflower’s inflorescence and timing of flowering differ between plants from the Eastern Alps and plants from the central or western parts of the Alps. Regarding the Creeping Avens, plants from the Western Alps show significantly more offshoots but have fewer flowers than those from the Eastern Alps, while the dissection of the leaves increases from West to East.

Plants are more adaptable than assumed

The Botanists from Basel further discovered that the variations within one species are partly due to natural selection. For example, the timing of flowering in the Yellow Bellflower can be explained with variability in growing season length. Plants shorten their flowering duration as adaptation to the shorter growing seasons at higher elevations.

«The findings are important for understanding the effects that future climate changes may have on plants», says Stöcklin. «The glacial periods have positively affected the intraspecific biodiversity.» Furthermore, the scientists were able to show that plants are more adaptable than has been assumed previously. Climate changes do have an effect on the distribution of species; however, alpine plants also possess considerable skills to genetically adapt to changing environmental conditions.