Asian monsoon much older than previously thought

University of Arizona geoscientist Alexis Licht (bottom left) and his colleagues from the French-Burmese Paleontological Team led by Jean-Jacques Jaeger of the University of Poitiers, France (center with hiking staff) used fossils they collected in Myanmar to figure out that the Asian monsoon started at least 40 million years ago. -  French-Burmese Paleontological Team 2012
University of Arizona geoscientist Alexis Licht (bottom left) and his colleagues from the French-Burmese Paleontological Team led by Jean-Jacques Jaeger of the University of Poitiers, France (center with hiking staff) used fossils they collected in Myanmar to figure out that the Asian monsoon started at least 40 million years ago. – French-Burmese Paleontological Team 2012

The Asian monsoon already existed 40 million years ago during a period of high atmospheric carbon dioxide and warmer temperatures, reports an international research team led by a University of Arizona geoscientist.

Scientists thought the climate pattern known as the Asian monsoon began 22-25 million years ago as a result of the uplift of the Tibetan Plateau and the Himalaya Mountains.

“It is surprising,” said lead author Alexis Licht, now a research associate in the UA department of geosciences. “People thought the monsoon started much later.”

The monsoon, the largest climate system in the world, governs the climate in much of mainland Asia, bringing torrential summer rains and dry winters.

Co-author Jay Quade, a UA professor of geosciences, said, “This research compellingly shows that a strong Asian monsoon system was in place at least by 35-40 million years ago.”

The research by Licht and his colleagues shows the earlier start of the monsoon occurred at a time when atmospheric CO2 was three to four times greater than it is now. The monsoon then weakened 34 million years ago when atmospheric CO2 then decreased by 50 percent and an ice age occurred.

Licht said the study is the first to show the rise of the monsoon is as much a result of global climate as it is a result of topography. The team’s paper is scheduled for early online publication in the journal Nature on Sept. 14.

“This finding has major consequences for the ongoing global warming,” he said. “It suggests increasing the atmospheric CO2 will increase the monsoonal precipitation significantly.”

Unraveling the monsoon’s origins required contributions from three different teams of scientists that were independently studying the environment of 40 million years ago.

All three investigations showed the monsoon climate pattern occurred 15 million years earlier than previously thought. Combining different lines of evidence from different places strengthened the group’s confidence in the finding, Licht said. The climate modeling team also linked the development of the monsoon to the increased CO2 of the time.

Licht and his colleagues at Poitiers and Nancy universities in France examined snail and mammal fossils in Myanmar. The group led by G. Dupont-Nivet and colleagues at Utrecht University in the Netherlands studied lake deposits in Xining Basin in central China. J.-B. Ladant and Y. Donnadieu of the Laboratory of Sciences of the Climate and Environment (LSCE) in Gif-sur-Yvette, France, created climate simulations of the Asian climate 40 million years ago.

A complete list of authors of the group’s publication, “Asian monsoons in a late Eocene greenhouse world,” is at the bottom of this release, as is a list of funding sources.

Licht didn’t set out to study the origin of the monsoon.

He chose his study site in Myanmar because the area was rich in mammal fossils, including some of the earliest ancestors of modern monkeys and apes. The research, part of his doctoral work at the University of Poitiers, focused on understanding the environments those early primates inhabited. Scientists thought those primates had a habitat like the current evergreen tropical rain forests of Borneo, which do not have pronounced differences between wet and dry seasons.

To learn about the past environment, Licht analyzed 40-million-year-old freshwater snail shells and teeth of mammals to see what types of oxygen they contained. The ratio of two different forms of oxygen, oxygen-18 and oxygen-16, shows whether the animal lived in a relatively wet climate or an arid one.

“One of the goals of the study was to document the pre-monsoonal conditions, but what we found were monsoonal conditions,” he said.

To his surprise, the oxygen ratios told an unexpected story: The region had a seasonal pattern very much like the current monsoon – dry winters and very rainy summers.

“The early primates of Myanmar lived under intense seasonal stress – aridity and then monsoons,” he said. “That was completely unexpected.”

The team of researchers working in China found another line of evidence pointing to the existence of the monsoon about 40 million years ago. The monsoon climate pattern generates winter winds that blow dust from central Asia and deposits it in thick piles in China. The researchers found deposits of such dust dating back 41 million years ago, indicating the monsoon had occurred that long ago.

The third team’s climate simulations indicated strong Asian monsoons 40 million years ago. The simulations showed the level of atmospheric CO2 was connected to the strength of the monsoon, which was stronger 40 million years ago when CO2 levels were higher and weakened 34 million years ago when CO2 levels dropped.

Licht’s next step is to investigate how geologically short-term increases of atmospheric CO2 known as hyperthermals affected the monsoon’s behavior 40 million years ago.

“The response of the monsoon to those hyperthermals could provide interesting analogs to the ongoing global warming,” he said.

Ancient ‘hyperthermals’ a guide to anticipated climate changes

Sediment samples in the lab of Richard Norris obtained by the Ocean Drilling Program reveal the mark of 'hyperthermals,' warming events lasting thousands of years that changed the composition of the sediment and its color.  The packaged sediment sample on the left contains sediment formed in the wake of a 55-million-year-old warming event and the sample on the right is sediment from a later era after global temperatures stabilized. -  Scripps Institution of Oceanography, UC San Diego
Sediment samples in the lab of Richard Norris obtained by the Ocean Drilling Program reveal the mark of ‘hyperthermals,’ warming events lasting thousands of years that changed the composition of the sediment and its color. The packaged sediment sample on the left contains sediment formed in the wake of a 55-million-year-old warming event and the sample on the right is sediment from a later era after global temperatures stabilized. – Scripps Institution of Oceanography, UC San Diego

Bursts of intense global warming that have lasted tens of thousands of years have taken place more frequently throughout history than previously believe, according to evidence gathered by a team led by Scripps Institution of Oceanography, UC San Diego researchers.

Richard Norris, a professor of geology at Scripps who co-authored the report, said that releases of carbon dioxide sequestered in the deep oceans were the most likely trigger of these ancient “hyperthermal” events. Most of the events raised average global temperatures between 2° and 3° Celsius (3.6 and 5.4° F), an amount comparable to current conservative estimates of how much temperatures are expected to rise in coming decades as a consequence of anthropogenic global warming. Most hyperthermals lasted about 40,000 years before temperatures returned to normal.

The study appears in the March 17 issue of the journal Nature.

“These hyperthermals seem not to have been rare events,” Norris said, “hence there are lots of ancient examples of global warming on a scale broadly like the expected future warming. We can use these events to examine the impact of global change on marine ecosystems, climate and ocean circulation.”

The hyperthermals took place roughly every 400,000 years during a warm period of Earth history that prevailed some 50 million years ago. The strongest of them coincided with an event known as the Paleocene-Eocene Thermal Maximum, the transition between two geologic epochs in which global temperatures rose between 4° and 7° C (7.2° and 12.6° F) and needed 200,000 years to return to historical norms. The events stopped taking place around 40 million years ago, when the planet entered a cooling phase. No warming events of the magnitude of these hyperthermals have been detected in the geological record since then.

Phil Sexton, a former student of Norris’ now at the Open University in the United Kingdom, led the analysis of sediment cores collected off the South American coast. In the cores, evidence of the warm periods presented itself in bands of gray sediment layered within otherwise pale greenish mud. The gray sediment contained increased amounts of clay left after the calcareous shells of microscopic organisms were dissolved on the sea floor. These clay-rich intervals are consistent with ocean acidification episodes that would have been triggered by large-scale releases of carbon dioxide. Large influxes of carbon dioxide change the chemistry of seawater by producing greater amounts of carbonic acid in the oceans.

The authors concluded that a release of carbon dioxide from the deep oceans was a more likely cause of the hyperthermals than other triggering events that have been hypothesized. The regularity of the hyperthermals and relatively warm ocean temperatures of the period makes them less likely to have been caused by events such as large melt-offs of methane hydrates, terrestrial burning of peat or even proposed cometary impacts. The hyperthermals could have been set in motion by a build-up of carbon dioxide in the deep oceans caused by slowing or stopping of circulation in ocean basins that prevented carbon dioxide release.

Norris noted that the hyperthermals provide historical perspective on what Earth will experience as it continues to warm from widespread use of fossil fuels, which has increased carbon dioxide concentrations in the atmosphere nearly 50 percent since the beginning of the Industrial Revolution. Hyperthermals can help scientists produce a range of estimates for how long it will take for temperatures to fully revert to historical norms depending on how much warming human activities cause.

“In 100 to 300 years, we could produce a signal on Earth that takes tens of thousands of years to equilibrate, judging from the geologic record,” he said.

The scientists hope to better understand how fast the conditions that set off hyperthermals developed. Norris said that 50 million year old sediments in the North Sea are finely layered enough for scientists to distinguish decade-to-decade or even year-to-year changes.