The bend in the Appalachian mountain chain is finally explained

A dense, underground block of volcanic rock (shown in red) helped shape the well-known bend in the Appalachian mountain range. -  Graphic by Michael Osadciw/University of Rochester.
A dense, underground block of volcanic rock (shown in red) helped shape the well-known bend in the Appalachian mountain range. – Graphic by Michael Osadciw/University of Rochester.

The 1500 mile Appalachian mountain chain runs along a nearly straight line from Alabama to Newfoundland-except for a curious bend in Pennsylvania and New York State. Researchers from the College of New Jersey and the University of Rochester now know what caused that bend-a dense, underground block of rigid, volcanic rock forced the chain to shift eastward as it was forming millions of years ago.

According to Cindy Ebinger, a professor of earth and environmental sciences at the University of Rochester, scientists had previously known about the volcanic rock structure under the Appalachians. “What we didn’t understand was the size of the structure or its implications for mountain-building processes,” she said.

The findings have been published in the journal Earth and Planetary Science Letters.

When the North American and African continental plates collided more than 300 million years ago, the North American plate began folding and thrusting upwards as it was pushed westward into the dense underground rock structure-in what is now the northeastern United States. The dense rock created a barricade, forcing the Appalachian mountain range to spring up with its characteristic bend.

The research team-which also included Margaret Benoit, an associate professor of physics at the College of New Jersey, and graduate student Melanie Crampton at the College of New Jersey-studied data collected by the Earthscope project, which is funded by the National Science Foundation. Earthscope makes use of 136 GPS receivers and an array of 400 portable seismometers deployed in the northeast United States to measure ground movement.

Benoit and Ebinger also made use of the North American Gravity Database, a compilation of open-source data from the U.S., Canada, and Mexico. The database, started two decades ago, contains measurements of the gravitational pull over the North American terrain. Most people assume that gravity has a constant value, but when gravity is experimentally measured, it changes from place to place due to variations in the density and thickness of Earth’s rock layers. Certain parts of the Earth are denser than others, causing the gravitational pull to be slightly greater in those places.

Data on the changes in gravitational pull and seismic velocity together allowed the researchers to determine the density of the underground structure and conclude that it is volcanic in origin, with dimensions of 450 kilometers by 100 kilometers. This information, along with data from the Earthscope project ultimately helped the researchers to model how the bend was formed.

Ebinger called the research project a “foundation study” that will improve scientists’ understanding of the Earth’s underlying structures. As an example, Ebinger said their findings could provide useful information in the debate over hydraulic fracturing-popularly known is hydrofracking-in New York State.

Hydrofracking is a mining technique used to extract natural gas from deep in the earth. It involves drilling horizontally into shale formations, then injecting the rock with sand, water, and a cocktail of chemicals to free the trapped gas for removal. The region just west of the Appalachian Basin-the Marcellus Shale formation-is rich in natural gas reserves and is being considered for development by drilling companies.

Ice-loss moves the Earth 250 miles down

At the surface, Antarctica is a motionless and frozen landscape. Yet hundreds of miles down the Earth is moving at a rapid rate, new research has shown.

The study, led by Newcastle University, UK, and published this week in Earth and Planetary Science Letters, explains for the first time why the upward motion of the Earth’s crust in the Northern Antarctic Peninsula is currently taking place so quickly.

Previous studies have shown the earth is ‘rebounding’ due to the overlying ice sheet shrinking in response to climate change. This movement of the land was understood to be due to an instantaneous, elastic response followed by a very slow uplift over thousands of years.

But GPS data collected by the international research team, involving experts from Newcastle University, UK; Durham University; DTU, Denmark; University of Tasmania, Australia; Hamilton College, New York; the University of Colorado and the University of Toulouse, France, has revealed that the land in this region is actually rising at a phenomenal rate of 15mm a year – much greater than can be accounted for by the present-day elastic response alone.

And they have shown for the first time how the mantle below the Earth’s crust in the Antarctic Peninsula is flowing much faster than expected, probably due to subtle changes in temperature or chemical composition. This means it can flow more easily and so responds much more quickly to the lightening load hundreds of miles above it, changing the shape of the land.

Lead researcher, PhD student Grace Nield, based in the School of Civil Engineering and Geosciences at Newcastle University, explains: “You would expect this rebound to happen over thousands of years and instead we have been able to measure it in just over a decade. You can almost see it happening which is just incredible.

“Because the mantle is ‘runnier’ below the Northern Antarctic Peninsula it responds much more quickly to what’s happening on the surface. So as the glaciers thin and the load in that localised area reduces, the mantle pushes up the crust.

“At the moment we have only studied the vertical deformation so the next step is to look at horizontal motion caused by the ice unloading to get more of a 3-D picture of how the Earth is deforming, and to use other geophysical data to understand the mechanism of the flow.”

Since 1995 several ice shelves in the Northern Antarctic Peninsula have collapsed and triggered ice-mass unloading, causing the solid Earth to ‘bounce back’.

“Think of it a bit like a stretched piece of elastic,” says Nield, whose project is funded by the Natural Environment Research Council (NERC). “The ice is pressing down on the Earth and as this weight reduces the crust bounces back. But what we found when we compared the ice loss to the uplift was that they didn’t tally – something else had to be happening to be pushing the solid Earth up at such a phenomenal rate.”

Collating data from seven GPS stations situated across the Northern Peninsula, the team found the rebound was so fast that the upper mantle viscosity – or resistance to flow – had to be at least ten times lower than previously thought for the region and much lower than the rest of Antarctica.

Professor Peter Clarke, Professor of Geophysical Geodesy at Newcastle University and one of the authors of the paper, adds: “Seeing this sort of deformation of the earth at such a rate is unprecedented in Antarctica. What is particularly interesting here is that we can actually see the impact that glacier thinning is having on the rocks 250 miles down.”

Precise to a fault: How GPS revolutionized seismic research

Global Positioning System (GPS) technology was conceived in the 1960s to provide precise time and location data to the U.S. military, but it was soon embraced by geodesists and earth scientists. The first major test of GPS as a seismic tool occurred on Oct. 17, 1989, when the Loma Prieta earthquake struck San Francisco just as the third game of the World Series was about to begin at Candlestick Park. The quake killed 63 people, injured several thousand and caused an estimated $6 billion in damage.

Prior to the quake, geoscientists had placed GPS markers in and around the San Francisco area. Immediately after the quake, researchers converged on the area to collect and compare the pre- and post-quake GPS data, which revealed the direction and speed of surface movements, allowing scientists to infer the pattern of slip on the fault plane that had ruptured far underground.

GPS had proved its worth. Whereas strain gauges, trenching and other approaches provide useful information on crustal motion, only GPS can provide scientists with precise measurements of both large- and small-scale displacements. Today, GPS is an essential tool for geoscience research that extends far below – and above – Earth’s surface.

Read more about how GPS benefits science as well as the millions of people living close to fault systems in the May issue of EARTH Magazine, now available on the digital newsstand:

For more stories about the science of our planet, check out EARTH Magazine online or subscribe at The May issue features stories on earthquakes setting off electrical displays in rift zones, scientists discovering 17 ancient super-eruptions in Utah and Nevada, and a recipe for remediation that mixes acid mine drainage with contaminated wastewater from hydraulic fracturing, plus much, much more.

Great earthquakes, water under pressure, high risk

The largest earthquakes occur where oceanic plates move beneath continents. Obviously, water trapped in the boundary between both plates has a dominant influence on the earthquake rupture process. Analyzing the great Chile earthquake of February, 27th, 2010, a group of scientists from the GFZ German Research Centre for Geosciences and from Liverpool University found that the water pressure in the pores of the rocks making up the plate boundary zone takes the key role (Nature Geoscience, 28.03.2014).

The stress build-up before an earthquake and the magnitude of subsequent seismic energy release are substantially controlled by the mechanical coupling between both plates. Studies of recent great earthquakes have revealed that the lateral extent of the rupture and magnitude of these events are fundamentally controlled by the stress build-up along the subduction plate interface. Stress build-up and its lateral distribution in turn are dependent on the distribution and pressure of fluids along the plate interface.

“We combined observations of several geoscience disciplines – geodesy, seismology, petrology. In addition, we have a unique opportunity in Chile that our natural observatory there provides us with long time series of data,” says Onno Oncken, director of the GFZ-Department “Geodynamics and Geomaterials”. Earth observation (Geodesy) using GPS technology and radar interferometry today allows a detailed mapping of mechanical coupling at the plate boundary from the Earth’s surface. A complementary image of the rock properties at depth is provided by seismology. Earthquake data yield a high resolution three-dimensional image of seismic wave speeds and their variations in the plate interface region. Data on fluid pressure and rock properties, on the other hand, are available from laboratory measurements. All these data had been acquired shortly before the great Chile earthquake of February 2010 struck with a magnitude of 8.8.

“For the first time, our results allow us to map the spatial distribution of the fluid pressure with unprecedented resolution showing how they control mechanical locking and subsequent seismic energy release”, explains Professor Oncken. “Zones of changed seismic wave speeds reflect zones of reduced mechanical coupling between plates”. This state supports creep along the plate interface. In turn, high mechanical locking is promoted in lower pore fluid pressure domains. It is these locked domains that subsequently ruptured during the Chile earthquake releasing most seismic energy causing destruction at the Earth’s surface and tsunami waves. The authors suggest the spatial pore fluid pressure variations to be related to oceanic water accumulated in an altered oceanic fracture zone within the Pacific oceanic plate. Upon subduction of the latter beneath South America the fluid volumes are released and trapped along the overlying plate interface, leading to increasing pore fluid pressures. This study provides a powerful tool to monitor the physical state of a plate interface and to forecast its seismic potential.

Volcanoes, including Mt. Hood, can go from dormant to active quickly

Mount Hood, in the Oregon Cascades, doesn't have a highly explosive history. -  Photo courtesy Alison M Koleszar
Mount Hood, in the Oregon Cascades, doesn’t have a highly explosive history. – Photo courtesy Alison M Koleszar

A new study suggests that the magma sitting 4-5 kilometers beneath the surface of Oregon’s Mount Hood has been stored in near-solid conditions for thousands of years, but that the time it takes to liquefy and potentially erupt is surprisingly short – perhaps as little as a couple of months.

The key, scientists say, is to elevate the temperature of the rock to more than 750 degrees Celsius, which can happen when hot magma from deep within the Earth’s crust rises to the surface. It is the mixing of the two types of magma that triggered Mount Hood’s last two eruptions – about 220 and 1,500 years ago, said Adam Kent, an Oregon State University geologist and co-author of the study.

Results of the research, which was funded by the National Science Foundation, were published this week in the journal Nature.

“If the temperature of the rock is too cold, the magma is like peanut butter in a refrigerator,” Kent said. “It just isn’t very mobile. For Mount Hood, the threshold seems to be about 750 degrees (C) – if it warms up just 50 to 75 degrees above that, it greatly increases the viscosity of the magma and makes it easier to mobilize.”

Thus the scientists are interested in the temperature at which magma resides in the crust, they say, since it is likely to have important influence over the timing and types of eruptions that could occur. The hotter magma from down deep warms the cooler magma stored at 4-5 kilometers, making it possible for both magmas to mix and to be transported to the surface to eventually produce an eruption.

The good news, Kent said, is that Mount Hood’s eruptions are not particularly violent. Instead of exploding, the magma tends to ooze out the top of the peak. A previous study by Kent and OSU postdoctoral researcher Alison Koleszar found that the mixing of the two magma sources – which have different compositions – is both a trigger to an eruption and a constraining factor on how violent it can be.

“What happens when they mix is what happens when you squeeze a tube of toothpaste in the middle,” said Kent, a professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “A big glob kind of plops out the top, but in the case of Mount Hood – it doesn’t blow the mountain to pieces.”

The collaborative study between Oregon State and the University of California, Davis is important because little was known about the physical conditions of magma storage and what it takes to mobilize the magma. Kent and UC-Davis colleague Kari Cooper, also a co-author on the Nature article, set out to find if they could determine how long Mount Hood’s magma chamber has been there, and in what condition.

When Mount Hood’s magma first rose up through the crust into its present-day chamber, it cooled and formed crystals. The researchers were able to document the age of the crystals by the rate of decay of naturally occurring radioactive elements. However, the growth of the crystals is also dictated by temperature – if the rock is too cold, they don’t grow as fast.

Thus the combination of the crystals’ age and apparent growth rate provides a geologic fingerprint for determining the approximate threshold for making the near-solid rock viscous enough to cause an eruption. The diffusion rate of the element strontium, which is also sensitive to temperature, helped validate the findings.

“What we found was that the magma has been stored beneath Mount Hood for at least 20,000 years – and probably more like 100,000 years,” Kent said. “And during the time it’s been there, it’s been in cold storage – like the peanut butter in the fridge – a minimum of 88 percent of the time, and likely more than 99 percent of the time.”

In other words – even though hot magma from below can quickly mobilize the magma chamber at 4-5 kilometers below the surface, most of the time magma is held under conditions that make it difficult for it to erupt.

“What is encouraging from another standpoint is that modern technology should be able to detect when magma is beginning to liquefy, or mobilize,” Kent said, “and that may give us warning of a potential eruption. Monitoring gases, utilizing seismic waves and studying ground deformation through GPS are a few of the techniques that could tell us that things are warming.”

The researchers hope to apply these techniques to other, larger volcanoes to see if they can determine their potential for shifting from cold storage to potential eruption, a development that might bring scientists a step closer to being able to forecast volcanic activity.

Scientists anticipated size and location of 2012 Costa Rica earthquake

Andrew Newman, an associate professor in the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology, performs a GPS survey in Costa Rica's Nicoya Peninsula in 2010. -  Lujia Feng
Andrew Newman, an associate professor in the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology, performs a GPS survey in Costa Rica’s Nicoya Peninsula in 2010. – Lujia Feng

Scientists using GPS to study changes in the Earth’s shape accurately forecasted the size and location of the magnitude 7.6 Nicoya earthquake that occurred in 2012 in Costa Rica.

The Nicoya Peninsula in Costa Rica is one of the few places where land sits atop the portion of a subduction zone where the Earth’s greatest earthquakes take place. Costa Rica’s location therefore makes it the perfect spot for learning how large earthquakes rupture. Because earthquakes greater than about magnitude 7.5 have occurred in this region roughly every 50 years, with the previous event striking in 1950, scientists have been preparing for this earthquake through a number of geophysical studies. The most recent study used GPS to map out the area along the fault storing energy for release in a large earthquake.

“This is the first place where we’ve been able to map out the likely extent of an earthquake rupture along the subduction megathrust beforehand,” said Andrew Newman, an associate professor in the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology.

The study was published online Dec. 22, 2013, in the journal Nature Geoscience. The research was supported by the National Science Foundation and was a collaboration of researchers from Georgia Tech, the Costa Rica Volcanological and Seismological Observatory (OVSICORI) at Universidad Nacional, University California, Santa Cruz, and the University of South Florida.

Subduction zones are locations where one tectonic plate is forced under another one. The collision of tectonic plates during this process can unleash devastating earthquakes, and sometimes devastating tsunamis. The magnitude 9.0 earthquake off the coast of Japan in 2011 was due to just such a subduction zone eaerthquake. The Cascadia subduction zone in the Pacific Northwest is capable of unleashing a similarly sized quake. Damage from the Nicoya earthquake was not as bad as might be expected from a magnitude 7.6 quake.

“Fortunately there was very little damage considering the earthquake’s size,” said Marino Protti of OVSICORI and the study’s lead author. “The historical pattern of earthquakes not only allowed us to get our instruments ready, it also allowed Costa Ricans to upgrade their buildings to be earthquake safe.”

Plate tectonics are the driving force for subduction zones. As tectonic plates converge, strain temporarily accumulates across the plate boundary when portions of the interface between these tectonic plates, called a megathrust, become locked together. The strain can accumulate to dangerous levels before eventually being released as a massive earthquake.

“The Nicoya Peninsula is an ideal natural lab for studying these events, because the coastline geometry uniquely allows us to get our equipment close to the zone of active strain accumulation,” said Susan Schwartz, professor of earth sciences at the University of California, Santa Cruz, and a co-author of the study.

Through a series of studies starting in the early 1990s using land-based tools, the researchers mapped regions where tectonic plates were completely locked along the subduction interface. Detailed geophysical observations of the region allowed the researchers to create an image of where the faults had locked.

The researchers published a study a few months before the earthquake, describing the particular locked patch with the clearest potential for the next large earthquake in the region. The team projected the total amount of energy that could have developed across that region and forecasted that if the locking remained similar since the last major earthquake in 1950, then there is presently enough energy for an earthquake on the order of magnitude 7.8 there.

Because of limits in technology and scientific understanding about processes controlling fault locking and release, scientists cannot say much about precisely where or when earthquakes will occur. However, earthquakes in Nicoya have occurred about every 50 years, so seismologists had been anticipating another one around 2000, give or take 20 years, Newman said. The earthquake occurred in September of 2012 as a magnitude 7.6 quake.

“It occurred right in the area we determined to be locked and it had almost the size we expected,” Newman said.

The researchers hope to apply what they’ve learned in Costa Rica to other environments. Virtually every damaging subduction zone earthquake occurs far offshore.

“Nicoya is the only place on Earth where we’ve actually been able to get a very accurate image of the locked patch because it occurs directly under land,” Newman said. “If we really want to understand the seismic potential for most of the world, we have to go offshore.”

Scientists have been able to reasonably map portions of these locked areas offshore using data on land, but the resolution is poor, particularly in the regions that are most responsible for generating tsunamis, Newman said. He hopes that his group’s work in Nicoya will be a driver for geodetic studies on the seafloor to observe such Earth deformation. These seafloor geodetic studies are rare and expensive today.

“If we want to understand the potential for large earthquakes, then we really need to start doing more seafloor observations,” Newman said. “It’s a growing push in our community and this study highlights the type of results that one might be able to obtain for most other dangerous environments, including offshore the Pacific Northwest.”

East Antarctica is sliding sideways

It’s official: East Antarctica is pushing West Antarctica around.

Now that West Antarctica is losing weight–that is, billions of tons of ice per year–its softer mantle rock is being nudged westward by the harder mantle beneath East Antarctica.

The discovery comes from researchers led by The Ohio State University, who have recorded GPS measurements that show West Antarctic bedrock is being pushed sideways at rates up to about twelve millimeters–about half an inch–per year. This movement is important for understanding current ice loss on the continent, and predicting future ice loss.

They reported the results on Thursday, Dec. 12 at the American Geophysical Union meeting in San Francisco.

Half an inch doesn’t sound like a lot, but it’s actually quite dramatic compared to other areas of the planet, explained Terry Wilson, professor of earth sciences at Ohio State. Wilson leads POLENET, an international collaboration that has planted GPS and seismic sensors all over the West Antarctic Ice Sheet.

She and her team weren’t surprised to detect the horizontal motion. After all, they’ve been using GPS to observe vertical motion on the continent since the 1990’s.

They were surprised, she said, to find the bedrock moving towards regions of greatest ice loss.

“From computer models, we knew that the bedrock should rebound as the weight of ice on top of it goes away,” Wilson said. “But the rock should spread out from the site where the ice used to be. Instead, we see movement toward places where there was the most ice loss.”

The seismic sensors explained why. By timing how fast seismic waves pass through the earth under Antarctica, the researchers were able to determine that the mantle regions beneath east and west are very different. West Antarctica contains warmer, softer rock, and East Antarctica has colder, harder rock.

Stephanie Konfal, a research associate with POLENET, pointed out that where the transition is most pronounced, the sideways movement runs perpendicular to the boundary between the two types of mantle.

She likened the mantle interface to a pot of honey.

“If you imagine that you have warm spots and cold spots in the honey, so that some of it is soft and some is hard,” Konfal said, “and if you press down on the surface of the honey with a spoon, the honey will move away from the spoon, but the movement won’t be uniform. The hard spots will push into the soft spots. And when you take the spoon away, the soft honey won’t uniformly flow back up to fill the void, because the hard honey is still pushing on it.”

Or, put another way, ice compressed West Antarctica’s soft mantle. Some ice has melted away, but the soft mantle isn’t filling back in uniformly, because East Antarctica’s harder mantle is pushing it sideways. The crust is just along for the ride.

This finding is significant, Konfal said, because we use these crustal motions to understand ice loss.

“We’re witnessing expected movements being reversed, so we know we really need computer models that can take lateral changes in mantle properties into account.”

Wilson said that such extreme differences in mantle properties are not seen elsewhere on the planet where glacial rebound is occurring.

“We figured Antarctica would be different,” she said. “We just didn’t know how different.”

Ohio State’s POLENET academic partners in the United States are Pennsylvania State University, Washington University, New Mexico Tech, Central Washington University, the University of Texas Institute for Geophysics and the University of Memphis. A host of international partners are part of the effort as well. The project is supported by the UNAVCO and IRIS-PASSCAL geodetic and seismic facilities.

What drives aftershocks?

On 27 February 2010 an earthquake of magnitude 8.8 struck South-Central Chile near the town of Maule. The main shock displaced the subduction interface by up to 16 meters. Like usually after strong earthquakes a series of aftershocks occurred in the region with decreasing size over the next months. A surprising result came from an afterslip study: Up to 2 meters additional slip occurred along the plate interface within 420 days only, in a pulse like fashion and without associated seismicity. An international research group lead by GFZ analysed the main shock as well as the following postseismic phase with a dense network of instruments including more than 60 high-resolution GPS stations (Earth and Planetary Science Letters ,Dec. 01, 2013).

The aftershocks and the now found “silent” afterslip are key to understand the processes occurring after strong earthquakes. The GPS data in combination with seismological data allowed for the first time a comparative analysis: Are after-shocks triggered solely by stress transfer from the main shock or are additional mechanisms active? ?Our results suggest, that the classic view of the stress re-laxation due to aftershocks are too simple” says Jonathan Bedford from GFZ to the new observation: ?Areas with large stress transfer do not correlate with af-tershocks in all magnitude classes as hitherto assumed and stress shadows show surprisingly high seismic activity.

A conclusion is that local processes which are not detectable at the surface by GPS monitoring along the plate interface have a significant effect on the local stress field. Pressurized fluids in the crust and mantle could be the agent here. As suspected previously, the main and aftershocks might have generated perme-abilities in the source region which are explored by hydrous fluids. This effects the local stress field triggering aftershocks rather independently from the large scale, main shock induced stress transfer. The present study provides evidences for such a mechanism. Volume (3D) seismic tomography which is sensitive to fluid pressure changes in combination with GPS monitoring will allow to better monitor the evolution of such processes.

The main shock was due to a rupture of the interface between the Nasca and the South American plates. Aftershocks are associated with hazards as they can be of similar size as the main shock and, in contrast to the latter, much shallower in the crust.

Early-career investigator discovers current volcanic activity under West Antarctica

This image shows a researcher digging out a seismographic instrument in Antarctica. -  Douglas Wiens, Washington University in St. Louis
This image shows a researcher digging out a seismographic instrument in Antarctica. – Douglas Wiens, Washington University in St. Louis

Scientists funded by the National Science Foundation (NSF) have observed “swarms” of seismic activity–thousands of events in the same locations, sometimes dozens in a single day–between January 2010 and March 2011, indicating current volcanic activity under the massive West Antarctic Ice Sheet (WAIS).

Previous studies using aerial radar and magnetic data detected the presence of subglacial volcanoes in West Antarctica, but without visible eruptions or seismic instruments recording data, the activity status of those systems ranged from extinct to unknown. However, as Amanda Lough, a doctoral candidate at Washington University in St. Louis, points out, “Just because we can’t see …below the ice, doesn’t mean there’s not something going on there.”

“This [study] is saying that we have seismicity, which means [this system] is active right now,” according to Lough. “This is saying that the magmatic chamber is still alive; that there is magma that is moving around in the crust.”

Lough published her discovery in this week’s issue of Nature Geoscience along with her advisor Douglas Wiens, a professor of earth and planetary sciences at Washington University in St. Louis, and a team of co-authors.

NSF has a presidential mandate to manage the U.S. Antarctic Program, through which it coordinates all U.S. science on the Southernmost continent and in the Southern Ocean and the logistical support which makes the science possible.

The characteristics of the seismic events, including the 25- to 40-kilometer (15- to 25-mile) depth at which they occurred, the low frequency of the seismic waves, and the swarm-like behavior rule out glacial and tectonic sources, but are typical of deep long-period earthquakes. Deep long-period earthquakes indicate active magma moving within the Earth’s crust and are most often associated with volcanic activity.

The two swarms of seismic activity were detected by instruments deployed to obtain data on the behavior of the WAIS as part of the NSF-funded POLENET project, a global network of GPS and seismic stations. Wiens is a POLENET principal investigator.

Lough plotted the location of the swarms and realized their proximity to the Executive Committee Range, a cluster of volcanoes that were believed to be dormant, in Marie Byrd Land. She consulted with a volcanic seismologist to confirm that the frequency content and the waveforms of the seismic signals were indicative of a volcanic system.

The location of the current seismicity, about 55-60 kilometers (34-37 miles) south of Mt. Sidley, is where current volcanic activity would be predicted to occur based on the geographic locations and the ages of the lava of the known volcanoes in the Executive Committee Range. The seismic swarms were also located near a subglacial high-point of elevation and magnetic anomalies which are both indicative of a volcano.

In some volcanic systems, deep long period earthquakes can indicate an imminent eruption, but Lough sent samples of her data to volcano seismologists who “didn’t see seismic events that would occur during an eruption.” However, the elevation in bed topography did indicate to Lough and her colleagues that this newly discovered volcano had erupted in the past.

Radar data showed an ash layer trapped within the ice directly above the area of seismic and magmatic activity. Lough initially thought that the ash layer might have evidence of a past eruption from the volcano detected in this study, but based on the distribution of the materials and the prevailing winds, the ash most likely came from an eruption of nearby Mt. Waesche about 8000 years ago. The dating of the ash layer did confirm that Mt. Waesche, believed to have last been active around 100,000 years ago, erupted much more recently than previously thought.

Only an extremely powerful eruption from the active magmatic complex discovered in this study would break through the 1- to 1.5-kilometer (0.6-0.9 miles) thick ice sheet overlying the area, but this research extends the range of active volcanism deeper into the interior of the WAIS than previously known. Should an eruption occur at this location, the short-term increase in heat could cause additional melting of the bottom of the ice sheet, thereby increasing the bed lubrication and hastening ice loss from WAIS.

Researchers shed new light on supraglacial lake drainage

Supraglacial lakes – bodies of water that collect on the surface of the Greenland ice sheet – lubricate the bottom of the sheet when they drain, causing it to flow faster. Differences in how the lakes drain can impact glacial movement’s speed and direction, researchers from The City College of New York (CCNY), University of Cambridge and Los Alamos National Laboratory report in “Environmental Research Letters.”

“Knowledge of the draining mechanisms allows us to improve our understanding of how surface melting can impact sea-level rise, not only through the direct contribution of meltwater from the surface, but also through the indirect contribution on the mass loss through ice dynamics,” says Dr. Marco Tedesco, the principal investigator and lead author.

Dr. Tedesco is an associate professor in CCNY’s Department of Earth and Atmospheric Sciences at CCNY and is currently serving as temporary program director for the National Science Foundation’s Polar Cyberinfrastructure Program. The research described in the paper was funded before Dr. Tedesco accepted the position at NSF.

NSF supported the research along with NASA’s cryosphere program, the Natural Environment Research Council, the U.S. Department of Energy’s earth systems modeling program, St. Catherine’s College (Cambridge), the Scandinavian Studies Fund and the B.B. Roberts Fund.

Over the past decade, surface melting in Greenland has increased considerably.

Previous research already suggested that the water injected from the rapid draining of the supraglacial lakes controlled sliding of ice over the bed beneath it. However, there was no evidence of the impact of the slow draining mechanism, which the paper identified.

Professor Tedesco and colleagues documented that supraglacial lakes have two different drainage mechanisms that cause them to empty rapidly or slowly. The findings are based on analysis of data collected in 2011 from five GPS stations the team installed around two supraglacial lakes in the Paakistoq region of West Greenland.

The smaller of the two lakes, Lake Half Moon, overflowed its banks and drained from the side to reach a moulin. It took approximately 45 hours to empty. The larger lake, Lake Ponting, drained through a crack in the ice beneath it and was voided in around two hours.

“At first, a crack in the ice beneath the lake may be small, but it deepens as water enters it because the pressure of the water overcomes the compressive action of the ice, which is trying to close the crack,” Professor Tedesco explains. “When the crack reaches the bed beneath the glacier, which could be 1,000 meters or more below the surface, the lake empties rapidly, like a bathtub after its plug is pulled.”

Drainage from both lakes accelerated glacial movement. However, water from Lake Ponting caused the glacier to move faster and further. While the slower drainage from Lake Half Moon caused the glacial pace to increase from baseline values of 90 – 100 meters per year to a maximum of around 420 meters a year, glacial movement in the area affected by Lake Ponting reached maximum velocities of 1,500 – 1,600 meters per year, nearly four times greater.

The drainage of the two lakes impacted the glacier’s trajectory differently, as well. The emptying of Lake Half Moon via the moulin did not change the direction of glacial movement. However, when Lake Ponting drained a slight southerly shift in the glacier’s direction was detected.

“Because the different draining mechanisms affect ice velocity, they could also affect the amount of ice lost through calving of glaciers, which results in icebergs,” Professor Tedesco points out. “Because what happens on a glacier’s surface impacts what is going on below, researchers are trying to look at glaciers as a system instead of independent components,” he adds.

“The surface is like the skin of a tissue and the subglacial and englacial channels that develop because of the surface water act like arteries or veins that redistribute this water internally.”