Scientists observe the Earth grow a new layer under an Icelandic volcano

New research into an Icelandic eruption has shed light on how the Earth’s crust forms, according to a paper published today in Nature.

When the Bárðarbunga volcano, which is buried beneath Iceland’s Vatnajökull ice cap, reawakened in August 2014, scientists had a rare opportunity to monitor how the magma flowed through cracks in the rock away from the volcano. The molten rock forms vertical sheet-like features known as dykes, which force the surrounding rock apart.

Study co-author Professor Andy Hooper from the Centre for Observation and Modelling of Earthquakes, volcanoes and Tectonics (COMET) at the University of Leeds explained: “New crust forms where two tectonic plates are moving away from each other. Mostly this happens beneath the oceans, where it is difficult to observe.

“However, in Iceland this happens beneath dry land. The events leading to the eruption in August 2014 are the first time that such a rifting episode has occurred there and been observed with modern tools, like GPS and satellite radar.”

Although it has a long history of eruptions, Bárðarbunga has been increasingly restless since 2005. There was a particularly dynamic period in August and September this year, when more than 22,000 earthquakes were recorded in or around the volcano in just four weeks, due to stress being released as magma forced its way through the rock.

Using GPS and satellite measurements, the team were able to track the path of the magma for over 45km before it reached a point where it began to erupt, and continues to do so to this day. The rate of dyke propagation was variable and slowed as the magma reached natural barriers, which were overcome by the build-up of pressure, creating a new segment.

The dyke grows in segments, breaking through from one to the next by the build up of pressure. This explains how focused upwelling of magma under central volcanoes is effectively redistributed over large distances to create new upper crust at divergent plate boundaries, the authors conclude.

As well as the dyke, the team found ‘ice cauldrons’ – shallow depressions in the ice with circular crevasses, where the base of the glacier had been melted by magma. In addition, radar measurements showed that the ice inside Bárðarbunga’s crater had sunk by 16m, as the volcano floor collapsed.

COMET PhD student Karsten Spaans from the University of Leeds, a co-author of the study, added: “Using radar measurements from space, we can form an image of caldera movement occurring in one day. Usually we expect to see just noise in the image, but we were amazed to see up to 55cm of subsidence.”

Like other liquids, magma flows along the path of least resistance, which explains why the dyke at Bárðarbunga changed direction as it progressed. Magma flow was influenced mostly by the lie of the land to start with, but as it moved away from the steeper slopes, the influence of plate movements became more important.

Summarising the findings, Professor Hooper said: “Our observations of this event showed that the magma injected into the crust took an incredibly roundabout path and proceeded in fits and starts.

“Initially we were surprised at this complexity, but it turns out we can explain all the twists and turns with a relatively simple model, which considers just the pressure of rock and ice above, and the pull exerted by the plates moving apart.”

The paper ‘Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland’ is published in Nature on 15 December 2014.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under Grant Agreement No. 308377 (Project FUTUREVOLC)

Scientists identify mechanism that accelerated the 2011 Japan earthquake

Stanford scientists have found evidence that sections of the fault responsible for the 9.0 magnitude Tohoku earthquake that devastated northern Japan in 2011 were relieving seismic stress at a gradually accelerating rate for years before the quake.

This “decoupling” process, in which the edges of two tectonic plates that are frictionally locked together slowly became unstuck, transferred stress to adjacent sections that were still locked. As a result, the quake, which was the most powerful ever recorded to hit Japan, may have occurred earlier than it might have otherwise, said Andreas Mavrommatis, a graduate student in Stanford’s School of Earth Sciences.

Mavrommatis and his advisor, Paul Segall, a professor of geophysics at Stanford, reached their conclusions after analyzing 15 years’ worth of GPS measurements from the Japanese island of Honshu. Their results were published earlier this year in the journal Geophysical Research Letters.

“We looked at northeastern Japan, which has one of the densest and longest running high-precision GPS networks in the world,” Mavrommatis said.

Segall said, “The measurements indicated the plate boundary was gradually becoming less locked over time. That was surprising.”

The scientists will present their work, “Decadal-Scale Decoupling of the Japan Trench Prior to the 2011 Tohoku-Oki Earthquake from Geodetic and Repeating-Earthquake Observations,” Dec. 17 at the American Geophysical Union’s Fall Meeting in San Francisco. The talk will take place at 5 p.m. PT at the Moscone Convention Center in Moscone South, Room 306.

The pair’s hypothesis is further supported by a recent analysis they conducted of so-called repeating earthquakes offshore of northern Honshu. The small quakes, which were typically magnitude 3 or 4, occurred along the entire length of the fault line, but each one occurred at the same spot every few years. Furthermore, many of them were repeating not at a constant but an accelerating rate, the scientists found. This acceleration would be expected if the fault were becoming less locked over time, Mavrommatis said, because the decoupling process would have relieved pent-up stress along some sections of the fault but increased stress on adjacent sections.

“According to our model, the decoupling process would have had the effect of adding stress to the section of the fault that nucleated the Tohoku quake,” Segall said. “We suspect this could have accelerated the occurrence of the earthquake.”

The scientists caution that their results cannot be used to predict the occurrence of the next major earthquake in Japan, but it could shed light on the physical processes that operate on faults that generate the world’s largest quakes.

Geologists discover ancient buried canyon in South Tibet

This photo shows the Yarlung Tsangpo Valley close to the Tsangpo Gorge, where it is rather narrow and underlain by only about 250 meters of sediments. The mountains in the upper left corner belong to the Namche Barwa massif. Previously, scientists had suspected that the debris deposited by a glacier in the foreground was responsible for the formation of the steep Tsangpo Gorge -- the new discoveries falsify this hypothesis. -  Ping Wang
This photo shows the Yarlung Tsangpo Valley close to the Tsangpo Gorge, where it is rather narrow and underlain by only about 250 meters of sediments. The mountains in the upper left corner belong to the Namche Barwa massif. Previously, scientists had suspected that the debris deposited by a glacier in the foreground was responsible for the formation of the steep Tsangpo Gorge — the new discoveries falsify this hypothesis. – Ping Wang

A team of researchers from Caltech and the China Earthquake Administration has discovered an ancient, deep canyon buried along the Yarlung Tsangpo River in south Tibet, north of the eastern end of the Himalayas. The geologists say that the ancient canyon–thousands of feet deep in places–effectively rules out a popular model used to explain how the massive and picturesque gorges of the Himalayas became so steep, so fast.

“I was extremely surprised when my colleagues, Jing Liu-Zeng and Dirk Scherler, showed me the evidence for this canyon in southern Tibet,” says Jean-Philippe Avouac, the Earle C. Anthony Professor of Geology at Caltech. “When I first saw the data, I said, ‘Wow!’ It was amazing to see that the river once cut quite deeply into the Tibetan Plateau because it does not today. That was a big discovery, in my opinion.”

Geologists like Avouac and his colleagues, who are interested in tectonics–the study of the earth’s surface and the way it changes–can use tools such as GPS and seismology to study crustal deformation that is taking place today. But if they are interested in studying changes that occurred millions of years ago, such tools are not useful because the activity has already happened. In those cases, rivers become a main source of information because they leave behind geomorphic signatures that geologists can interrogate to learn about the way those rivers once interacted with the land–helping them to pin down when the land changed and by how much, for example.

“In tectonics, we are always trying to use rivers to say something about uplift,” Avouac says. “In this case, we used a paleocanyon that was carved by a river. It’s a nice example where by recovering the geometry of the bottom of the canyon, we were able to say how much the range has moved up and when it started moving.”

The team reports its findings in the current issue of Science.

Last year, civil engineers from the China Earthquake Administration collected cores by drilling into the valley floor at five locations along the Yarlung Tsangpo River. Shortly after, former Caltech graduate student Jing Liu-Zeng, who now works for that administration, returned to Caltech as a visiting associate and shared the core data with Avouac and Dirk Scherler, then a postdoc in Avouac’s group. Scherler had previously worked in the far western Himalayas, where the Indus River has cut deeply into the Tibetan Plateau, and immediately recognized that the new data suggested the presence of a paleocanyon.

Liu-Zeng and Scherler analyzed the core data and found that at several locations there were sedimentary conglomerates, rounded gravel and larger rocks cemented together, that are associated with flowing rivers, until a depth of 800 meters or so, at which point the record clearly indicated bedrock. This suggested that the river once carved deeply into the plateau.

To establish when the river switched from incising bedrock to depositing sediments, they measured two isotopes, beryllium-10 and aluminum-26, in the lowest sediment layer. The isotopes are produced when rocks and sediment are exposed to cosmic rays at the surface and decay at different rates once buried, and so allowed the geologists to determine that the paleocanyon started to fill with sediment about 2.5 million years ago.

The researchers’ reconstruction of the former valley floor showed that the slope of the river once increased gradually from the Gangetic Plain to the Tibetan Plateau, with no sudden changes, or knickpoints. Today, the river, like most others in the area, has a steep knickpoint where it meets the Himalayas, at a place known as the Namche Barwa massif. There, the uplift of the mountains is extremely rapid (on the order of 1 centimeter per year, whereas in other areas 5 millimeters per year is more typical) and the river drops by 2 kilometers in elevation as it flows through the famous Tsangpo Gorge, known by some as the Yarlung Tsangpo Grand Canyon because it is so deep and long.

Combining the depth and age of the paleocanyon with the geometry of the valley, the geologists surmised that the river existed in this location prior to about 3 million years ago, but at that time, it was not affected by the Himalayas. However, as the Indian and Eurasian plates continued to collide and the mountain range pushed northward, it began impinging on the river. Suddenly, about 2.5 million years ago, a rapidly uplifting section of the mountain range got in the river’s way, damming it, and the canyon subsequently filled with sediment.

“This is the time when the Namche Barwa massif started to rise, and the gorge developed,” says Scherler, one of two lead authors on the paper and now at the GFZ German Research Center for Geosciences in Potsdam, Germany.

That picture of the river and the Tibetan Plateau, which involves the river incising deeply into the plateau millions of years ago, differs quite a bit from the typically accepted geologic vision. Typically, geologists believe that when rivers start to incise into a plateau, they eat at the edges, slowly making their way into the plateau over time. However, the rivers flowing across the Himalayas all have strong knickpoints and have not incised much at all into the Tibetan Plateau. Therefore, the thought has been that the rapid uplift of the Himalayas has pushed the rivers back, effectively pinning them, so that they have not been able to make their way into the plateau. But that explanation does not work with the newly discovered paleocanyon.

The team’s new hypothesis also rules out a model that has been around for about 15 years, called tectonic aneurysm, which suggests that the rapid uplift seen at the Namche Barwa massif was triggered by intense river incision. In tectonic aneurysm, a river cuts down through the earth’s crust so fast that it causes the crust to heat up, making a nearby mountain range weaker and facilitating uplift.

The model is popular among geologists, and indeed Avouac himself published a modeling paper in 1996 that showed the viability of the mechanism. “But now we have discovered that the river was able to cut into the plateau way before the uplift happened,” Avouac says, “and this shows that the tectonic aneurysm model was actually not at work here. The rapid uplift is not a response to river incision.”


The other lead author on the paper, “Tectonic control of the Yarlung Tsangpo Gorge, revealed by a 2.5 Myr old buried canyon in Southern Tibet,” is Ping Wang of the State Key Laboratory of Earthquake Dynamics, in Beijing, China. Additional authors include Jürgen Mey, of the University of Potsdam, in Germany; and Yunda Zhang and Dingguo Shi of the Chengdu Engineering Corporation, in China. The work was supported by the National Natural Science Foundation of China, the State Key Laboratory for Earthquake Dynamics, and the Alexander von Humboldt Foundation.

Subtle shifts in the Earth could forecast earthquakes, tsunamis

University of South Florida graduate student Jacob Richardson stands beside a completed installation.  The large white disc is the dual frequency antenna.  A portable solar panel that powers the system is visible in the foreground. -  Photo by Denis Voytenko
University of South Florida graduate student Jacob Richardson stands beside a completed installation. The large white disc is the dual frequency antenna. A portable solar panel that powers the system is visible in the foreground. – Photo by Denis Voytenko

Earthquakes and tsunamis can be giant disasters no one sees coming, but now an international team of scientists led by a University of South Florida professor have found that subtle shifts in the earth’s offshore plates can be a harbinger of the size of the disaster.

In a new paper published today in the Proceedings of the National Academies of Sciences, USF geologist Tim Dixon and the team report that a geological phenomenon called “slow slip events” identified just 15 years ago is a useful tool in identifying the precursors to major earthquakes and the resulting tsunamis. The scientists used high precision GPS to measure the slight shifts on a fault line in Costa Rica, and say better monitoring of these small events can lead to better understanding of maximum earthquake size and tsunami risk.

“Giant earthquakes and tsunamis in the last decade – Sumatra in 2004 and Japan in 2011 – are a reminder that our ability to forecast these destructive events is painfully weak,” Dixon said.

Dixon was involved in the development of high precision GPS for geophysical applications, and has been making GPS measurements in Costa Rica since 1988, in collaboration with scientists at Observatorio Vulcanológico y Sismológico de Costa Rica, the University of California-Santa Cruz, and Georgia Tech. The project is funded by the National Science Foundation.

Slow slip events have some similarities to earthquakes (caused by motion on faults) but release their energy slowly, over weeks or months, and cannot be felt or even recorded by conventional seismographs, Dixon said. Their discovery in 2001 by Canadian scientist Herb Dragert at the Pacific Geoscience Center had to await the development of high precision GPS, which is capable of measuring subtle movements of the Earth.

The scientists studied the Sept. 5, 2012 earthquake on the Costa Rica subduction plate boundary, as well as motions of the Earth in the previous decade. High precision GPS recorded numerous slow slip events in the decade leading up to the 2012 earthquake. The scientists made their measurements from a peninsula overlying the shallow portion of a megathrust fault in northwest Costa Rica.

The 7.6-magnitude quake was one of the strongest earthquakes ever to hit the Central American nation and unleased more than 1,600 aftershocks. Marino Protti, one of the authors of the paper and a resident of Costa Rica, has spent more than two decades warning local populations of the likelihood of a major earthquake in their area and recommending enhanced building codes.

A tsunami warning was issued after the quake, but only a small tsunami occurred. The group’s finding shed some light on why: slow slip events in the offshore region in the decade leading up to the earthquake may have released much of the stress and strain that would normally occur on the offshore fault.

While the group’s findings suggest that slow slip events have limited value in knowing exactly when an earthquake and tsunami will strike, they suggest that these events provide critical hazard assessment information by delineating rupture area and the magnitude and tsunami potential of future earthquakes.

The scientists recommend monitoring slow slip events in order to provide accurate forecasts of earthquake magnitude and tsunami potential.


The authors on the paper are Dixon; his former graduate student Yan Jiang, now at the Pacific Geoscience Centre in British Columba, Canada; USF Assistant Professor of Geosciences Rocco Malservisi; Robert McCaffrey of Portland State University; USF doctoral candidate Nicholas Voss; and Protti and Victor Gonzalez of the Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional.

The University of South Florida is a high-impact, global research university dedicated to student success. USF is a Top 50 research university among both public and private institutions nationwide in total research expenditures, according to the National Science Foundation. Serving nearly 48,000 students, the USF System has an annual budget of $1.5 billion and an annual economic impact of $4.4 billion. USF is a member of the American Athletic Conference.

Study shows tectonic plates not rigid, deform horizontally in cooling process

Corné Kreemer, associate professor in the College of Science at the University of Nevada, Reno, conducts research on plate tectonics and geodetics. His latest research shows that oceanic tectonic plates deform due to cooling, causing shortening of the plates and mid-plate seismicity. -  Photo by Mike Wolterbeek, University of Nevada, Reno.
Corné Kreemer, associate professor in the College of Science at the University of Nevada, Reno, conducts research on plate tectonics and geodetics. His latest research shows that oceanic tectonic plates deform due to cooling, causing shortening of the plates and mid-plate seismicity. – Photo by Mike Wolterbeek, University of Nevada, Reno.

The puzzle pieces of tectonic plates that make up the outer layer of the earth are not rigid and don’t fit together as nicely as we were taught in high school.

A study published in the journal Geology by Corné Kreemer, an associate professor at the University of Nevada, Reno, and his colleague Richard Gordon of Rice University, quantifies deformation of the Pacific plate and challenges the central approximation of the plate tectonic paradigm that plates are rigid.

Using large-scale numerical modeling as well as GPS velocities from the largest GPS data-processing center in the world – the Nevada Geodetic Laboratory at the University of Nevada, Reno – Kreemer and Gordon have showed that cooling of the lithosphere, the outermost layer of Earth, makes some sections of the Pacific plate contract horizontally at faster rates than other sections. This causes the plate to deform.

Gordon’s idea is that the plate cooling, which makes the ocean deeper, also affects horizontal movement and that there is shortening and deformation of the plates due to the cooling. In partnering with Kreemer, the two put their ideas and expertise together to show that the deformation could explain why some parts of the plate tectonic puzzle didn’t fall neatly into place in recent plate motion models, which is based on spreading rates along mid-oceanic ridges. Kreemer and Gordon also showed that there is a positive correlation between where the plate is predicted to deform and where intraplate earthquakes occur. Their work was supported by the National Science Foundation.

Results of the study suggest that plate-scale horizontal thermal contraction is significant, and that it may be partly released seismically. . The pair of researchers are, as the saying goes, rewriting the textbooks.

“This is plate tectonics 2.0, it revolutionizes the concepts of plate rigidity,” Kreemer, who teaches in the University’s College of Science, said. “We have shown that the Pacific plate deforms, that it is pliable. We are refining the plate tectonic theory and have come up with an explanation for mid-plate seismicity.”

The oceanic plates are shortening due to cooling, which causes relative motion inside the plate, Kreemer said. The oceanic crust of the Pacific plate off shore California is moving 2 mm to the south every year relative to the Pacific/Antarctic plate boundary.

“It may not sound like much, but it is significant considering that we can measure crustal motion with GPS within a fraction of a millimeter per year,” he said. “Unfortunately, all existing GPS stations on Pacific islands are in the old part of the plate that is not expected nor shown to deform. New measurements will be needed within the young parts of the plate to confirm this study’s predictions, either on very remote islands or through sensors on the ocean floor.”

This work is complementary to Kreemer’s ongoing effort to quantify the deformation in all of the Earth’s plate boundary zones with GPS velocities – data that are for a large part processed in the Nevada Geodetic Laboratory. The main goal of the global modeling is to convert the strain rates to earthquake forecast maps.

“Because we don’t have GPS data in the right places of the Pacific plate, our prediction of how that plate deforms can supplement the strain rates I’ve estimated in parts of the world where we can quantify them with GPS data,” Kreemer said. “Ultimately, we hope to have a good estimate of strain rates everywhere so that the models not only forecast earthquakes for places like Reno and San Francisco, but also for places where you may expect them the least.”

Seismic gap may be filled by an earthquake near Istanbul

When a segment of a major fault line goes quiet, it can mean one of two things: The “seismic gap” may simply be inactive – the result of two tectonic plates placidly gliding past each other – or the segment may be a source of potential earthquakes, quietly building tension over decades until an inevitable seismic release.

Researchers from MIT and Turkey have found evidence for both types of behavior on different segments of the North Anatolian Fault – one of the most energetic earthquake zones in the world. The fault, similar in scale to California’s San Andreas Fault, stretches for about 745 miles across northern Turkey and into the Aegean Sea.

The researchers analyzed 20 years of GPS data along the fault, and determined that the next large earthquake to strike the region will likely occur along a seismic gap beneath the Sea of Marmara, some five miles west of Istanbul. In contrast, the western segment of the seismic gap appears to be moving without producing large earthquakes.

“Istanbul is a large city, and many of the buildings are very old and not built to the highest modern standards compared to, say, southern California,” says Michael Floyd, a research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “From an earthquake scientist’s perspective, this is a hotspot for potential seismic hazards.”

Although it’s impossible to pinpoint when such a quake might occur, Floyd says this one could be powerful – on the order of a magnitude 7 temblor, or stronger.

“When people talk about when the next quake will be, what they’re really asking is, ‘When will it be, to within a few hours, so that I can evacuate?’ But earthquakes can’t be predicted that way,” Floyd says. “Ultimately, for people’s safety, we encourage them to be prepared. To be prepared, they need to know what to prepare for – that’s where our work can contribute”

Floyd and his colleagues, including Semih Ergintav of the Kandilli Observatory and Earthquake Research Institute in Istanbul and MIT research scientist Robert Reilinger, have published their seismic analysis in the journal Geophysical Research Letters.

In recent decades, major earthquakes have occurred along the North Anatolian Fault in a roughly domino-like fashion, breaking sequentially from east to west. The most recent quake occurred in 1999 in the city of Izmit, just east of Istanbul. The initial shock, which lasted less than a minute, killed thousands. As Istanbul sits at the fault’s western end, many scientists have thought the city will be near the epicenter of the next major quake.

To get an idea of exactly where the fault may fracture next, the MIT and Turkish researchers used GPS data to measure the region’s ground movement over the last 20 years. The group took data along the fault from about 100 GPS locations, including stations where data are collected continuously and sites where instruments are episodically set up over small markers on the ground, the positions of which can be recorded over time as the Earth slowly shifts.

“By continuously tracking, we can tell which parts of the Earth’s crust are moving relative to other parts, and we can see that this fault has relative motion across it at about the rate at which your fingernail grows,” Floyd says.

From their ground data, the researchers estimate that, for the most part, the North Anatolian Fault must move at about 25 millimeters – or one inch – per year, sliding quietly or slipping in a series of earthquakes.

As there’s currently no way to track the Earth’s movement offshore, the group also used fault models to estimate the motion off the Turkish coast. The team identified a segment of the fault under the Sea of Marmara, west of Istanbul, that is essentially stuck, with the “missing” slip accumulating at 10 to 15 millimeters per year. This section – called the Princes’ Island segment, for a nearby tourist destination – last experienced an earthquake 250 years ago.

Floyd and colleagues calculate that the Princes’ Island segment should have slipped about 8 to 11 feet – but it hasn’t. Instead, strain has likely been building along the segment for the last 250 years. If this tension were to break the fault in one cataclysmic earthquake, the Earth could shift by as much as 11 feet within seconds.

Although such accumulated strain may be released in a series of smaller, less hazardous rumbles, Floyd says that given the historical pattern of major quakes along the North Anatolian Fault, it would be reasonable to expect a large earthquake off the coast of Istanbul within the next few decades.

“Earthquakes are not regular or predictable,” Floyd says. “They’re far more random over the long run, and you can go many lifetimes without experiencing one. But it only takes one to affect many lives. In a location like Istanbul that is known to be subject to large earthquakes, it comes back to the message: Always be prepared.”

Mystery solved: ‘Sailing stones’ of Death Valley seen in action for the first time

Racetrack Playa is home to an enduring Death Valley mystery. Littered across the surface of this dry lake, also called a “playa,” are hundreds of rocks – some weighing as much as 320 kilograms (700 pounds) – that seem to have been dragged across the ground, leaving synchronized trails that can stretch for hundreds of meters.

What powerful force could be moving them? Researchers have investigated this question since the 1940s, but no one has seen the process in action – until now.

In a paper published in the journal PLOS ONE on Aug. 27, a team led by Scripps Institution of Oceanography, UC San Diego, paleobiologist Richard Norris reports on first-hand observations of the phenomenon.

Because the stones can sit for a decade or more without moving, the researchers did not originally expect to see motion in person. Instead, they decided to monitor the rocks remotely by installing a high-resolution weather station capable of measuring gusts to one-second intervals and fitting 15 rocks with custom-built, motion-activated GPS units. (The National Park Service would not let them use native rocks, so they brought in similar rocks from an outside source.) The experiment was set up in winter 2011 with permission of the Park Service. Then – in what Ralph Lorenz of the Applied Physics Laboratory at the Johns Hopkins University, one of the paper’s authors, suspected would be “the most boring experiment ever” – they waited for something to happen.

But in December 2013, Norris and co-author and cousin Jim Norris arrived in Death Valley to discover that the playa was covered with a pond of water seven centimeters (three inches) deep. Shortly after, the rocks began moving.

“Science sometimes has an element of luck,” Richard Norris said. “We expected to wait five or ten years without anything moving, but only two years into the project, we just happened to be there at the right time to see it happen in person.”

Their observations show that moving the rocks requires a rare combination of events. First, the playa fills with water, which must be deep enough to form floating ice during cold winter nights but shallow enough to expose the rocks. As nighttime temperatures plummet, the pond freezes to form thin sheets of “windowpane” ice, which must be thin enough to move freely but thick enough to maintain strength. On sunny days, the ice begins to melt and break up into large floating panels, which light winds drive across the playa, pushing rocks in front of them and leaving trails in the soft mud below the surface.

“On Dec. 21, 2013, ice breakup happened just around noon, with popping and cracking sounds coming from all over the frozen pond surface,” said Richard Norris. “I said to Jim, ‘This is it!'”

These observations upended previous theories that had proposed hurricane-force winds, dust devils, slick algal films, or thick sheets of ice as likely contributors to rock motion. Instead, rocks moved under light winds of about 3-5 meters per second (10 miles per hour) and were driven by ice less than 3-5 millimeters (0.25 inches) thick, a measure too thin to grip large rocks and lift them off the playa, which several papers had proposed as a mechanism to reduce friction. Further, the rocks moved only a few inches per second (2-6 meters per minute), a speed that is almost imperceptible at a distance and without stationary reference points.

“It’s possible that tourists have actually seen this happening without realizing it,” said Jim Norris of the engineering firm Interwoof in Santa Barbara. “It is really tough to gauge that a rock is in motion if all the rocks around it are also moving.”

Individual rocks remained in motion for anywhere from a few seconds to 16 minutes. In one event, the researchers observed rocks three football fields apart began moving simultaneously and traveled over 60 meters (200 feet) before stopping. Rocks often moved multiple times before reaching their final resting place. The researchers also observed rock-less trails formed by grounding ice panels – features that the Park Service had previously suspected were the result of tourists stealing rocks.

“The last suspected movement was in 2006, and so rocks may move only about one millionth of the time,” said Lorenz. “There is also evidence that the frequency of rock movement, which seems to require cold nights to form ice, may have declined since the 1970s due to climate change.”

Richard and Jim Norris, and co-author Jib Ray of Interwoof started studying the Racetrack’s moving rocks to solve the “public mystery” and set up the “Slithering Stones Research Initiative” to engage a wide circle of friends in the effort. They needed the help of volunteers who repeatedly visited the remote dry lake, quarried the rocks that were fitted with GPS, and maintained custom-made instruments. Lorenz and Brian Jackson of the Department of Physics at Boise State University started working on the phenomenon for their own reasons: They wanted to study dust devils and other desert weather features that might have analogs to processes happening on other planets.

“What is striking about prior research on the Racetrack is that almost everybody was doing the work not to gain fame or fortune, but because it is such a neat problem,” said Jim Norris.

So is the mystery of the sliding rocks finally solved?

“We documented five movement events in the two and a half months the pond existed and some involved hundreds of rocks”, says Richard Norris, “So we have seen that even in Death Valley, famous for its heat, floating ice is a powerful force in rock motion. But we have not seen the really big boys move out there?.Does that work the same way?”

Severe drought is causing the western US to rise

The severe drought gripping the western United States in recent years is changing the landscape well beyond localized effects of water restrictions and browning lawns. Scientists at Scripps Institution of Oceanography at UC San Diego have now discovered that the growing, broad-scale loss of water is causing the entire western U.S. to rise up like an uncoiled spring.

Investigating ground positioning data from GPS stations throughout the west, Scripps researchers Adrian Borsa, Duncan Agnew, and Dan Cayan found that the water shortage is causing an “uplift” effect up to 15 millimeters (more than half an inch) in California’s mountains and on average four millimeters (0.15 of an inch) across the west. From the GPS data, they estimate the water deficit at nearly 240 gigatons (62 trillion gallons of water), equivalent to a six-inch layer of water spread out over the entire western U.S.

Results of the study, which was supported by the U.S. Geological Survey (USGS), appear in the August 21 online edition of the journal Science.

While poring through various sets of data of ground positions from highly precise GPS stations within the National Science Foundation’s Plate Boundary Observatory and other networks, Borsa, a Scripps assistant research geophysicist, kept noticing the same pattern over the 2003-2014 period: All of the stations moved upwards in the most recent years, coinciding with the timing of the current drought.

Agnew, a Scripps Oceanography geophysics professor who specializes in studying earthquakes and their impact on shaping the earth’s crust, says the GPS data can only be explained by rapid uplift of the tectonic plate upon which the western U.S. rests (Agnew cautions that the uplift has virtually no effect on the San Andreas fault and therefore does not increase the risk of earthquakes).

For Cayan, a research meteorologist with Scripps and USGS, the results paint a new picture of the dire hydrological state of the west.

“These results quantify the amount of water mass lost in the past few years,” said Cayan. “It also represents a powerful new way to track water resources over a very large landscape. We can home in on the Sierra Nevada mountains and critical California snowpack. These results demonstrate that this technique can be used to study changes in fresh water stocks in other regions around the world, if they have a network of GPS sensors.”

Foreshock series controls earthquake rupture

A long lasting foreshock series controlled the rupture process of this year’s great earthquake near Iquique in northern Chile. The earthquake was heralded by a three quarter year long foreshock series of ever increasing magnitudes culminating in a Mw 6.7 event two weeks before the mainshock. The mainshock (magnitude 8.1) finally broke on April 1st a central piece out of the most important seismic gap along the South American subduction zone. An international research team under leadership of the GFZ German Research Centre for Geosciences now revealed that the Iquique earthquake occurred in a region where the two colliding tectonic plates where only partly locked.

The Pacific Nazca plate and the South American plate are colliding along South America’s western coast. While the Pacific sea floor submerges in an oceanic trench under the South American coast the plates get stressed until occasionally relieved by earthquakes. In about 150 years time the entire plate margin from Patagonia in the south to Panama in the north breaks once completely through in great earthquakes. This cycle is almost complete with the exception of a last segment – the seismic gap near Iquique in northern Chile. The last great earthquake in this gap occurred back in 1877. On initiative of the GFZ this gap was monitored in an international cooperation (GFZ, Institut de Physique du Globe Paris, Centro Sismologico National – Universidad de Chile, Universidad de Catolica del Norte, Antofagasta, Chile) by the Integrated Plate Boundary Observatory Chile (IPOC), with among other instruments seismographs and cont. GPS. This long and continuous monitoring effort makes the Iquique earthquake the best recorded subduction megathrust earthquake globally. The fact that data of IPOC is distributed to the scientific community in near real time, allowed this timely analysis.

Ruptures in Detail

The mainshock of magnitude 8.1 broke the 150 km long central piece of the seismic gap, leaving, however, two large segments north and south intact. GFZ scientist Bernd Schurr headed the newly published study that appeared in the lastest issue of Nature Advance Online Publication: “The foreshocks skirted around the central rupture patch of the mainshock, forming several clusters that propagated from south to north.” The long-term earthquake catalogue derived from IPOC data revealed that stresses were increasing along the plate boundary in the years before the earthquake. Hence, the plate boundary started to gradually unlock through the foreshock series under increasing stresses, until it finally broke in the Iquique earthquake. Schurr further states: “If we use the from GPS data derived locking map to calculate the convergence deficit assuming the ~6.7 cm/yr convergence rate and subtract the earthquakes known since 1877, this still adds up to a possible M 8.9 earthquake.” This applies if the entire seismic gap would break at once. However, the region of the Iquique earthquake might now form a barrier that makes it more likely that the unbroken regions north and south break in separate, smaller earthquakes.

International Field Campaign

Despite the fact that the IPOC instruments delivered continuous data before, during and after the earthquake, the GFZ HART (Hazard And Risk Team) group went into the field to meet with international colleagues to conduct additional investigations. More than a dozen researchers continue to measure on site deformation and record aftershocks in the aftermath of this great rupture. Because the seismic gap is still not closed, IPOC gets further developed. So far 20 multi-parameter stations have been deployed. These consist of seismic broadband and strong-motion sensors, continuous GPS receivers, magneto-telluric and climate sensors, as well as creepmeters, which transmit data in near real-time to Potsdam. The European Southern astronomical Observatory has also been integrated into the observation network.

New Oso report, rockfall in Yosemite, and earthquake models

From AGU’s blogs: Oso disaster had its roots in earlier landslides

A research team tasked with being some of the first scientists and engineers to evaluate extreme events has issued its findings on disastrous Oso, Washington, landslide. The report studies the conditions and causes related to the March 22 mudslide that killed 43 people and destroyed the Steelhead Haven neighborhood in Oso, Washington. The team from the Geotechnical Extreme Events Reconnaissance (GEER) Association, funded by the National Science Foundation, determined that intense rainfall in the three weeks before the slide likely was a major issue, but factors such as altered groundwater migration, weakened soil consistency because of previous landslides and changes in hillside stresses played key roles.

From this week’s Eos: Reducing Rockfall Risk in Yosemite National Park

The glacially sculpted granite walls of Yosemite Valley attract 4 million visitors a year, but rockfalls from these cliffs pose substantial hazards. Responding to new studies, the National Park Service recently took actions to reduce the human risk posed by rockfalls in Yosemite National Park.

From AGU’s journals: A new earthquake model may explain discrepancies in San Andreas fault slip

Investigating the earthquake hazards of the San Andreas Fault System requires an accurate understanding of accumulating stresses and the history of past earthquakes. Faults tend to go through an “earthquake cycle”-locking and accumulating stress, rupturing in an earthquake, and locking again in a well-accepted process known as “elastic rebound.” One of the key factors in preparing for California’s next “Big One” is estimating the fault slip rate, the speed at which one side of the San Andreas Fault is moving past the other.

Broadly speaking, there are two ways geoscientists study fault slip. Geologists formulate estimates by studying geologic features at key locations to study slip rates through time. Geodesists, scientists who measure the size and shape of the planet, use technologies like GPS and satellite radar interferometry to estimate the slip rate, estimates which often differ from the geologists’ estimations.

In a recent study by Tong et al., the authors develop a new three-dimensional viscoelastic earthquake cycle model that represents 41 major fault segments of the San Andreas Fault System. While previous research has suggested that there are discrepancies between the fault slip rates along the San Andreas as measured by geologic and geodetic means, the authors find that there are no significant differences between the two measures if the thickness of the tectonic plate and viscoelasticity are taken into account. The authors find that the geodetic slip rate depends on the plate thickness over the San Andreas, a variable lacking in previous research.

The team notes that of the 41 studied faults within the San Andreas Fault system, a small number do in fact have disagreements between the geologic and geodetic slip rates. These differences could be attributed to inadequate data coverage or to incomplete knowledge of the fault structures or the chronological sequence of past events.