Research links soil mineral surfaces to key atmospheric processes

Pictured are, from left, are David Bish, Melissa Donaldson and Jonathan Raff. -  Indiana University
Pictured are, from left, are David Bish, Melissa Donaldson and Jonathan Raff. – Indiana University

Research by Indiana University scientists finds that soil may be a significant and underappreciated source of nitrous acid, a chemical that plays a pivotal role in atmospheric processes such as the formation of smog and determining the lifetime of greenhouse gases.

The study shows for the first time that the surface acidity of common minerals found in soil determines whether the gas nitrous acid will be released into the atmosphere. The finding could contribute to improved models for understanding and controlling air pollution, a significant public health concern.

“We find that the surfaces of minerals in the soil can be much more acidic than the overall pH of the soil would suggest,” said Jonathan Raff, assistant professor in the School of Public and Environmental Affairs and Department of Chemistry. “It’s the acidity of the soil minerals that acts as a knob or a control lever, and that determines whether nitrous acid outgasses from soil or remains as nitrite.”

The article, “Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid,” will be published this week in the journal Proceedings of the National Academy of Sciences. Melissa A. Donaldson, a Ph.D. student in the School of Public and Environmental Affairs, is the lead author. Co-authors are Raff and David L. Bish, the Haydn Murray Chair of Applied Clay Mineralogy in the Department of Geological Sciences.

Nitrous acid, or HONO, plays a key role in regulating atmospheric processes. Sunlight causes it to break down into nitric oxide and the hydroxyl radical, OH. The latter controls the atmospheric lifetime of gases important to air quality and climate change and initiates the chemistry leading to the formation of ground-level ozone, a primary component of smog.

Scientists have known about the nitrous acid’s role in air pollution for 40 years, but they haven’t fully understood how it is produced and destroyed or how it interacts with other substances, because HONO is unstable and difficult to measure.

“Only in the last 10 years have we had the technology to study nitrous acid under environmentally relevant conditions,” Raff said.

Recent studies have shown nitrous acid to be emitted from soil in many locations. But this was unexpected because, according to basic chemistry, the reactions that release nitrous acid should take place only in extremely acidic soils, typically found in rain forests or the taiga of North America and Eurasia.

The standard method to determine the acidity of soil is to mix bulk soil with water and measure the overall pH. But the IU researchers show that the crucial factor is not overall pH but the acidity at the surface of soil minerals, especially iron oxides and aluminum oxides. At the molecular level, the water adsorbed directly to these minerals is unusually acidic and facilitates the conversion of nitrite in the soil to nitrous acid, which then volatilizes.

“With the traditional approach of calculating soil pH, we were severely underestimating nitrous acid emissions from soil,” Raff said. “I think the source is going to turn out to be more important than was previously imagined.”

The research was carried out using soil from a farm field near Columbus, Ind. But aluminum and iron oxides are ubiquitous in soil, and the researchers say the results suggest that about 70 percent of Earth’s soils could be sources of nitrous acid.

Ultimately, the research will contribute to a better understanding of how nitrous acid is produced and how it affects atmospheric processes. That in turn will improve the computer models used by the U.S. Environmental Protection Agency and other regulatory agencies to control air pollution, which the World Health Organization estimates contributes to 7 million premature deaths annually.

“With improved models, policymakers can make better judgments about the costs and benefits of regulations,” Raff said. “If we don’t get the chemistry right, we’re not going to get the right answers to our policy questions regarding air pollution.”

Research links soil mineral surfaces to key atmospheric processes

Pictured are, from left, are David Bish, Melissa Donaldson and Jonathan Raff. -  Indiana University
Pictured are, from left, are David Bish, Melissa Donaldson and Jonathan Raff. – Indiana University

Research by Indiana University scientists finds that soil may be a significant and underappreciated source of nitrous acid, a chemical that plays a pivotal role in atmospheric processes such as the formation of smog and determining the lifetime of greenhouse gases.

The study shows for the first time that the surface acidity of common minerals found in soil determines whether the gas nitrous acid will be released into the atmosphere. The finding could contribute to improved models for understanding and controlling air pollution, a significant public health concern.

“We find that the surfaces of minerals in the soil can be much more acidic than the overall pH of the soil would suggest,” said Jonathan Raff, assistant professor in the School of Public and Environmental Affairs and Department of Chemistry. “It’s the acidity of the soil minerals that acts as a knob or a control lever, and that determines whether nitrous acid outgasses from soil or remains as nitrite.”

The article, “Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid,” will be published this week in the journal Proceedings of the National Academy of Sciences. Melissa A. Donaldson, a Ph.D. student in the School of Public and Environmental Affairs, is the lead author. Co-authors are Raff and David L. Bish, the Haydn Murray Chair of Applied Clay Mineralogy in the Department of Geological Sciences.

Nitrous acid, or HONO, plays a key role in regulating atmospheric processes. Sunlight causes it to break down into nitric oxide and the hydroxyl radical, OH. The latter controls the atmospheric lifetime of gases important to air quality and climate change and initiates the chemistry leading to the formation of ground-level ozone, a primary component of smog.

Scientists have known about the nitrous acid’s role in air pollution for 40 years, but they haven’t fully understood how it is produced and destroyed or how it interacts with other substances, because HONO is unstable and difficult to measure.

“Only in the last 10 years have we had the technology to study nitrous acid under environmentally relevant conditions,” Raff said.

Recent studies have shown nitrous acid to be emitted from soil in many locations. But this was unexpected because, according to basic chemistry, the reactions that release nitrous acid should take place only in extremely acidic soils, typically found in rain forests or the taiga of North America and Eurasia.

The standard method to determine the acidity of soil is to mix bulk soil with water and measure the overall pH. But the IU researchers show that the crucial factor is not overall pH but the acidity at the surface of soil minerals, especially iron oxides and aluminum oxides. At the molecular level, the water adsorbed directly to these minerals is unusually acidic and facilitates the conversion of nitrite in the soil to nitrous acid, which then volatilizes.

“With the traditional approach of calculating soil pH, we were severely underestimating nitrous acid emissions from soil,” Raff said. “I think the source is going to turn out to be more important than was previously imagined.”

The research was carried out using soil from a farm field near Columbus, Ind. But aluminum and iron oxides are ubiquitous in soil, and the researchers say the results suggest that about 70 percent of Earth’s soils could be sources of nitrous acid.

Ultimately, the research will contribute to a better understanding of how nitrous acid is produced and how it affects atmospheric processes. That in turn will improve the computer models used by the U.S. Environmental Protection Agency and other regulatory agencies to control air pollution, which the World Health Organization estimates contributes to 7 million premature deaths annually.

“With improved models, policymakers can make better judgments about the costs and benefits of regulations,” Raff said. “If we don’t get the chemistry right, we’re not going to get the right answers to our policy questions regarding air pollution.”

New study measures methane emissions from natural gas production and offers insights into 2 large sources

A team of researchers from the Cockrell School of Engineering at The University of Texas at Austin and environmental testing firm URS reports that a small subset of natural gas wells are responsible for the majority of methane emissions from two major sources — liquid unloadings and pneumatic controller equipment — at natural gas production sites.

With natural gas production in the United States expected to continue to increase during the next few decades, there is a need for a better understanding of methane emissions during natural gas production. The study team believes this research, published Dec. 9 in Environmental Science & Technology, will help to provide a clearer picture of methane emissions from natural gas production sites.

The UT Austin-led field study closely examined two major sources of methane emissions — liquid unloadings and pneumatic controller equipment — at well pad sites across the United States. Researchers found that 19 percent of the pneumatic devices accounted for 95 percent of the emissions from pneumatic devices, and 20 percent of the wells with unloading emissions that vent to the atmosphere accounted for 65 percent to 83 percent of those emissions.

“To put this in perspective, over the past several decades, 10 percent of the cars on the road have been responsible for the majority of automotive exhaust pollution,” said David Allen, chemical engineering professor at the Cockrell School and principal investigator for the study. “Similarly, a small group of sources within these two categories are responsible for the vast majority of pneumatic and unloading emissions at natural gas production sites.”

Additionally, for pneumatic devices, the study confirmed regional differences in methane emissions first reported by the study team in 2013. The researchers found that methane emissions from pneumatic devices were highest in the Gulf Coast and lowest in the Rocky Mountains.

The study is the second phase of the team’s 2013 study, which included some of the first measurements for methane emissions taken directly at hydraulically fractured well sites. Both phases of the study involved a partnership between the Environmental Defense Fund, participating energy companies, an independent Scientific Advisory Panel and the UT Austin study team.

The unprecedented access to natural gas production facilities and equipment allowed researchers to acquire direct measurements of methane emissions.

Study and Findings on Pneumatic Devices

Pneumatic devices, which use gas pressure to control the opening and closing of valves, emit gas as they operate. These emissions are estimated to be among the larger sources of methane emissions from the natural gas supply chain. The Environmental Protection Agency reports that 477,606 pneumatic (gas actuated) devices are in use at natural gas production sites throughout the U.S.

“Our team’s previous work established that pneumatics are a major contributor to emissions,” Allen said. “Our goal here was to measure a more diverse population of wells to characterize the features of high-emitting pneumatic controllers.”

The research team measured emissions from 377 gas actuated (pneumatic) controllers at natural gas production sites and a small number of oil production sites throughout the U.S.

The researchers sampled all identifiable pneumatic controller devices at each well site, a more comprehensive approach than the random sampling previously conducted. The average methane emissions per pneumatic controller reported in this study are 17 percent higher than the average emissions per pneumatic controller in the 2012 EPA greenhouse gas national emission inventory (released in 2014), but the average from the study is dominated by a small subpopulation of the controllers. Specifically, 19 percent of controllers, with measured emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95 percent of emissions.

The high-emitting pneumatic devices are a combination of devices that are not operating as designed, are used in applications that cause them to release gas frequently or are designed to emit continuously at a high rate.

The researchers also observed regional differences in methane emission levels, with the lowest emissions per device measured in the Rocky Mountains and the highest emissions in the Gulf Coast, similar to the earlier 2013 study. At least some of the regional differences in emission rates can be attributed to the difference in controller type (continuous vent vs. intermittent vent) among regions.

Study and Findings on Liquid Unloadings

After observing variable emissions for liquid unloadings for a limited group of well types in the 2013 study, the research team made more extensive measurements and confirmed that a majority of emissions come from a small fraction of wells that vent frequently. Although it is not surprising to see some correlation between frequency of unloadings and higher annual emissions, the study’s findings indicate that wells with a high frequency of unloadings have annual emissions that are 10 or more times as great as wells that unload less frequently.

The team’s field study, which measured emissions from unloadings from wells at 107 natural gas production wells throughout the U.S., represents the most extensive measurement of emissions associated with liquid unloadings in scientific literature thus far.

A liquid unloading is one method used to clear wells of accumulated liquids to increase production. Because older wells typically produce less gas as they near the end of their life cycle, liquid unloadings happen more often in those wells than in newer wells. The team found a statistical correlation between the age of wells and the frequency of liquid unloadings. The researchers found that the key identifier for high-emitting wells is how many times the well unloads in a given year.

Because liquid unloadings can employ a variety of liquid lifting mechanisms, the study results also reflect differences in liquid unloadings emissions between wells that use two different mechanisms (wells with plunger lifts and wells without plunger lifts). Emissions for unloading events for wells without plunger lifts averaged 21,000 scf (standard cubic feet) to 35,000 scf. For wells with plunger lifts that vent to the atmosphere, emissions averaged 1,000 scf to 10,000 scf of methane per event. Although the emissions per event were higher for wells without plunger lifts, these wells had, on average, fewer events than wells with plunger lifts. Wells without plunger lifts averaged fewer than 10 unloading events per year, and wells with plunger lifts averaged more than 200 events per year.Overall, wells with plunger lifts were estimated to account for 70 percent of emissions from unloadings nationally.

Additionally, researchers found that the Rocky Mountain region, with its large number of wells with a high frequency of unloadings that vent to the atmosphere, accounts for about half of overall emissions from liquid unloadings.

The study team hopes its measurements of liquid unloadings and pneumatic devices will provide a clearer picture of methane emissions from natural gas well sites and about the relationship between well characteristics and emissions.

The study was a cooperative effort involving experts from the Environmental Defense Fund, Anadarko Petroleum Corporation, BG Group PLC, Chevron, ConocoPhillips, Encana Oil & Gas (USA) Inc., Pioneer Natural Resources Company, SWEPI LP (Shell), Statoil, Southwestern Energy and XTO Energy, a subsidiary of ExxonMobil.

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest of its researchers. Lead researcher David Allen serves as chair of the Environmental Protection Agency’s Science Advisory Board and in this role is a paid Special Governmental Employee. He is also a journal editor for the American Chemical Society and has served as a consultant for multiple companies, including Eastern Research Group, ExxonMobil and the Research Triangle Institute. He has worked on other research projects funded by a variety of governmental, nonprofit and private sector sources including the National Science Foundation, the Environmental Protection Agency, the Texas Commission on Environmental Quality, the American Petroleum Institute and an air monitoring and surveillance project that was ordered by the U.S. District Court for the Southern District of Texas. Adam Pacsi and Daniel Zavala-Araiza, who were graduate students at The University of Texas at the time this work was done, have accepted positions at Chevron Energy Technology Company and the Environmental Defense Fund, respectively.

Financial support for this work was provided by the Environmental Defense Fund (EDF), Anadarko Petroleum Corporation, BG Group PLC, Chevron, ConocoPhillips, Encana Oil & Gas (USA) Inc., Pioneer Natural Resources Company, SWEPI LP (Shell), Statoil, Southwestern Energy and XTO Energy, a subsidiary of ExxonMobil.

Major funding for the EDF’s 30-month methane research series, including their portion of the University of Texas study, is provided for by the following individuals and foundations: Fiona and Stan Druckenmiller, the Heising-Simons Foundation, Bill and Susan Oberndorf, Betsy and Sam Reeves, the Robertson Foundation, TomKat Charitable Trust and the Walton Family Foundation.

New study measures methane emissions from natural gas production and offers insights into 2 large sources

A team of researchers from the Cockrell School of Engineering at The University of Texas at Austin and environmental testing firm URS reports that a small subset of natural gas wells are responsible for the majority of methane emissions from two major sources — liquid unloadings and pneumatic controller equipment — at natural gas production sites.

With natural gas production in the United States expected to continue to increase during the next few decades, there is a need for a better understanding of methane emissions during natural gas production. The study team believes this research, published Dec. 9 in Environmental Science & Technology, will help to provide a clearer picture of methane emissions from natural gas production sites.

The UT Austin-led field study closely examined two major sources of methane emissions — liquid unloadings and pneumatic controller equipment — at well pad sites across the United States. Researchers found that 19 percent of the pneumatic devices accounted for 95 percent of the emissions from pneumatic devices, and 20 percent of the wells with unloading emissions that vent to the atmosphere accounted for 65 percent to 83 percent of those emissions.

“To put this in perspective, over the past several decades, 10 percent of the cars on the road have been responsible for the majority of automotive exhaust pollution,” said David Allen, chemical engineering professor at the Cockrell School and principal investigator for the study. “Similarly, a small group of sources within these two categories are responsible for the vast majority of pneumatic and unloading emissions at natural gas production sites.”

Additionally, for pneumatic devices, the study confirmed regional differences in methane emissions first reported by the study team in 2013. The researchers found that methane emissions from pneumatic devices were highest in the Gulf Coast and lowest in the Rocky Mountains.

The study is the second phase of the team’s 2013 study, which included some of the first measurements for methane emissions taken directly at hydraulically fractured well sites. Both phases of the study involved a partnership between the Environmental Defense Fund, participating energy companies, an independent Scientific Advisory Panel and the UT Austin study team.

The unprecedented access to natural gas production facilities and equipment allowed researchers to acquire direct measurements of methane emissions.

Study and Findings on Pneumatic Devices

Pneumatic devices, which use gas pressure to control the opening and closing of valves, emit gas as they operate. These emissions are estimated to be among the larger sources of methane emissions from the natural gas supply chain. The Environmental Protection Agency reports that 477,606 pneumatic (gas actuated) devices are in use at natural gas production sites throughout the U.S.

“Our team’s previous work established that pneumatics are a major contributor to emissions,” Allen said. “Our goal here was to measure a more diverse population of wells to characterize the features of high-emitting pneumatic controllers.”

The research team measured emissions from 377 gas actuated (pneumatic) controllers at natural gas production sites and a small number of oil production sites throughout the U.S.

The researchers sampled all identifiable pneumatic controller devices at each well site, a more comprehensive approach than the random sampling previously conducted. The average methane emissions per pneumatic controller reported in this study are 17 percent higher than the average emissions per pneumatic controller in the 2012 EPA greenhouse gas national emission inventory (released in 2014), but the average from the study is dominated by a small subpopulation of the controllers. Specifically, 19 percent of controllers, with measured emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95 percent of emissions.

The high-emitting pneumatic devices are a combination of devices that are not operating as designed, are used in applications that cause them to release gas frequently or are designed to emit continuously at a high rate.

The researchers also observed regional differences in methane emission levels, with the lowest emissions per device measured in the Rocky Mountains and the highest emissions in the Gulf Coast, similar to the earlier 2013 study. At least some of the regional differences in emission rates can be attributed to the difference in controller type (continuous vent vs. intermittent vent) among regions.

Study and Findings on Liquid Unloadings

After observing variable emissions for liquid unloadings for a limited group of well types in the 2013 study, the research team made more extensive measurements and confirmed that a majority of emissions come from a small fraction of wells that vent frequently. Although it is not surprising to see some correlation between frequency of unloadings and higher annual emissions, the study’s findings indicate that wells with a high frequency of unloadings have annual emissions that are 10 or more times as great as wells that unload less frequently.

The team’s field study, which measured emissions from unloadings from wells at 107 natural gas production wells throughout the U.S., represents the most extensive measurement of emissions associated with liquid unloadings in scientific literature thus far.

A liquid unloading is one method used to clear wells of accumulated liquids to increase production. Because older wells typically produce less gas as they near the end of their life cycle, liquid unloadings happen more often in those wells than in newer wells. The team found a statistical correlation between the age of wells and the frequency of liquid unloadings. The researchers found that the key identifier for high-emitting wells is how many times the well unloads in a given year.

Because liquid unloadings can employ a variety of liquid lifting mechanisms, the study results also reflect differences in liquid unloadings emissions between wells that use two different mechanisms (wells with plunger lifts and wells without plunger lifts). Emissions for unloading events for wells without plunger lifts averaged 21,000 scf (standard cubic feet) to 35,000 scf. For wells with plunger lifts that vent to the atmosphere, emissions averaged 1,000 scf to 10,000 scf of methane per event. Although the emissions per event were higher for wells without plunger lifts, these wells had, on average, fewer events than wells with plunger lifts. Wells without plunger lifts averaged fewer than 10 unloading events per year, and wells with plunger lifts averaged more than 200 events per year.Overall, wells with plunger lifts were estimated to account for 70 percent of emissions from unloadings nationally.

Additionally, researchers found that the Rocky Mountain region, with its large number of wells with a high frequency of unloadings that vent to the atmosphere, accounts for about half of overall emissions from liquid unloadings.

The study team hopes its measurements of liquid unloadings and pneumatic devices will provide a clearer picture of methane emissions from natural gas well sites and about the relationship between well characteristics and emissions.

The study was a cooperative effort involving experts from the Environmental Defense Fund, Anadarko Petroleum Corporation, BG Group PLC, Chevron, ConocoPhillips, Encana Oil & Gas (USA) Inc., Pioneer Natural Resources Company, SWEPI LP (Shell), Statoil, Southwestern Energy and XTO Energy, a subsidiary of ExxonMobil.

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest of its researchers. Lead researcher David Allen serves as chair of the Environmental Protection Agency’s Science Advisory Board and in this role is a paid Special Governmental Employee. He is also a journal editor for the American Chemical Society and has served as a consultant for multiple companies, including Eastern Research Group, ExxonMobil and the Research Triangle Institute. He has worked on other research projects funded by a variety of governmental, nonprofit and private sector sources including the National Science Foundation, the Environmental Protection Agency, the Texas Commission on Environmental Quality, the American Petroleum Institute and an air monitoring and surveillance project that was ordered by the U.S. District Court for the Southern District of Texas. Adam Pacsi and Daniel Zavala-Araiza, who were graduate students at The University of Texas at the time this work was done, have accepted positions at Chevron Energy Technology Company and the Environmental Defense Fund, respectively.

Financial support for this work was provided by the Environmental Defense Fund (EDF), Anadarko Petroleum Corporation, BG Group PLC, Chevron, ConocoPhillips, Encana Oil & Gas (USA) Inc., Pioneer Natural Resources Company, SWEPI LP (Shell), Statoil, Southwestern Energy and XTO Energy, a subsidiary of ExxonMobil.

Major funding for the EDF’s 30-month methane research series, including their portion of the University of Texas study, is provided for by the following individuals and foundations: Fiona and Stan Druckenmiller, the Heising-Simons Foundation, Bill and Susan Oberndorf, Betsy and Sam Reeves, the Robertson Foundation, TomKat Charitable Trust and the Walton Family Foundation.

No laughing matter: Nitrous oxide rose at end of last ice age

Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. -  Adrian Schilt
Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. – Adrian Schilt

Nitrous oxide (N2O) is an important greenhouse gas that doesn’t receive as much notoriety as carbon dioxide or methane, but a new study confirms that atmospheric levels of N2O rose significantly as the Earth came out of the last ice age and addresses the cause.

An international team of scientists analyzed air extracted from bubbles enclosed in ancient polar ice from Taylor Glacier in Antarctica, allowing for the reconstruction of the past atmospheric composition. The analysis documented a 30 percent increase in atmospheric nitrous oxide concentrations from 16,000 years ago to 10,000 years ago. This rise in N2O was caused by changes in environmental conditions in the ocean and on land, scientists say, and contributed to the warming at the end of the ice age and the melting of large ice sheets that then existed.

The findings add an important new element to studies of how Earth may respond to a warming climate in the future. Results of the study, which was funded by the U.S. National Science Foundation and the Swiss National Science Foundation, are being published this week in the journal Nature.

“We found that marine and terrestrial sources contributed about equally to the overall increase of nitrous oxide concentrations and generally evolved in parallel at the end of the last ice age,” said lead author Adrian Schilt, who did much of the work as a post-doctoral researcher at Oregon State University. Schilt then continued to work on the study at the Oeschger Centre for Climate Change Research at the University of Bern in Switzerland.

“The end of the last ice age represents a partial analog to modern warming and allows us to study the response of natural nitrous oxide emissions to changing environmental conditions,” Schilt added. “This will allow us to better understand what might happen in the future.”

Nitrous oxide is perhaps best known as laughing gas, but it is also produced by microbes on land and in the ocean in processes that occur naturally, but can be enhanced by human activity. Marine nitrous oxide production is linked closely to low oxygen conditions in the upper ocean and global warming is predicted to intensify the low-oxygen zones in many of the world’s ocean basins. N2O also destroys ozone in the stratosphere.

“Warming makes terrestrial microbes produce more nitrous oxide,” noted co-author Edward Brook, an Oregon State paleoclimatologist whose research team included Schilt. “Greenhouse gases go up and down over time, and we’d like to know more about why that happens and how it affects climate.”

Nitrous oxide is among the most difficult greenhouse gases to study in attempting to reconstruct the Earth’s climate history through ice core analysis. The specific technique that the Oregon State research team used requires large samples of pristine ice that date back to the desired time of study – in this case, between about 16,000 and 10,000 years ago.

The unusual way in which Taylor Glacier is configured allowed the scientists to extract ice samples from the surface of the glacier instead of drilling deep in the polar ice cap because older ice is transported upward near the glacier margins, said Brook, a professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The scientists were able to discern the contributions of marine and terrestrial nitrous oxide through analysis of isotopic ratios, which fingerprint the different sources of N2O in the atmosphere.

“The scientific community knew roughly what the N2O concentration trends were prior to this study,” Brook said, “but these findings confirm that and provide more exact details about changes in sources. As nitrous oxide in the atmosphere continues to increase – along with carbon dioxide and methane – we now will be able to more accurately assess where those contributions are coming from and the rate of the increase.”

Atmospheric N2O was roughly 200 parts per billion at the peak of the ice age about 20,000 years ago then rose to 260 ppb by 10,000 years ago. As of 2014, atmospheric N2Owas measured at about 327 ppb, an increase attributed primarily to agricultural influences.

Although the N2O increase at the end of the last ice age was almost equally attributable to marine and terrestrial sources, the scientists say, there were some differences.

“Our data showed that terrestrial emissions changed faster than marine emissions, which was highlighted by a fast increase of emissions on land that preceded the increase in marine emissions,” Schilt pointed out. “It appears to be a direct response to a rapid temperature change between 15,000 and 14,000 years ago.”

That finding underscores the complexity of analyzing how Earth responds to changing conditions that have to account for marine and terrestrial influences; natural variability; the influence of different greenhouse gases; and a host of other factors, Brook said.

“Natural sources of N2O are predicted to increase in the future and this study will help up test predictions on how the Earth will respond,” Brook said.

No laughing matter: Nitrous oxide rose at end of last ice age

Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. -  Adrian Schilt
Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. – Adrian Schilt

Nitrous oxide (N2O) is an important greenhouse gas that doesn’t receive as much notoriety as carbon dioxide or methane, but a new study confirms that atmospheric levels of N2O rose significantly as the Earth came out of the last ice age and addresses the cause.

An international team of scientists analyzed air extracted from bubbles enclosed in ancient polar ice from Taylor Glacier in Antarctica, allowing for the reconstruction of the past atmospheric composition. The analysis documented a 30 percent increase in atmospheric nitrous oxide concentrations from 16,000 years ago to 10,000 years ago. This rise in N2O was caused by changes in environmental conditions in the ocean and on land, scientists say, and contributed to the warming at the end of the ice age and the melting of large ice sheets that then existed.

The findings add an important new element to studies of how Earth may respond to a warming climate in the future. Results of the study, which was funded by the U.S. National Science Foundation and the Swiss National Science Foundation, are being published this week in the journal Nature.

“We found that marine and terrestrial sources contributed about equally to the overall increase of nitrous oxide concentrations and generally evolved in parallel at the end of the last ice age,” said lead author Adrian Schilt, who did much of the work as a post-doctoral researcher at Oregon State University. Schilt then continued to work on the study at the Oeschger Centre for Climate Change Research at the University of Bern in Switzerland.

“The end of the last ice age represents a partial analog to modern warming and allows us to study the response of natural nitrous oxide emissions to changing environmental conditions,” Schilt added. “This will allow us to better understand what might happen in the future.”

Nitrous oxide is perhaps best known as laughing gas, but it is also produced by microbes on land and in the ocean in processes that occur naturally, but can be enhanced by human activity. Marine nitrous oxide production is linked closely to low oxygen conditions in the upper ocean and global warming is predicted to intensify the low-oxygen zones in many of the world’s ocean basins. N2O also destroys ozone in the stratosphere.

“Warming makes terrestrial microbes produce more nitrous oxide,” noted co-author Edward Brook, an Oregon State paleoclimatologist whose research team included Schilt. “Greenhouse gases go up and down over time, and we’d like to know more about why that happens and how it affects climate.”

Nitrous oxide is among the most difficult greenhouse gases to study in attempting to reconstruct the Earth’s climate history through ice core analysis. The specific technique that the Oregon State research team used requires large samples of pristine ice that date back to the desired time of study – in this case, between about 16,000 and 10,000 years ago.

The unusual way in which Taylor Glacier is configured allowed the scientists to extract ice samples from the surface of the glacier instead of drilling deep in the polar ice cap because older ice is transported upward near the glacier margins, said Brook, a professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The scientists were able to discern the contributions of marine and terrestrial nitrous oxide through analysis of isotopic ratios, which fingerprint the different sources of N2O in the atmosphere.

“The scientific community knew roughly what the N2O concentration trends were prior to this study,” Brook said, “but these findings confirm that and provide more exact details about changes in sources. As nitrous oxide in the atmosphere continues to increase – along with carbon dioxide and methane – we now will be able to more accurately assess where those contributions are coming from and the rate of the increase.”

Atmospheric N2O was roughly 200 parts per billion at the peak of the ice age about 20,000 years ago then rose to 260 ppb by 10,000 years ago. As of 2014, atmospheric N2Owas measured at about 327 ppb, an increase attributed primarily to agricultural influences.

Although the N2O increase at the end of the last ice age was almost equally attributable to marine and terrestrial sources, the scientists say, there were some differences.

“Our data showed that terrestrial emissions changed faster than marine emissions, which was highlighted by a fast increase of emissions on land that preceded the increase in marine emissions,” Schilt pointed out. “It appears to be a direct response to a rapid temperature change between 15,000 and 14,000 years ago.”

That finding underscores the complexity of analyzing how Earth responds to changing conditions that have to account for marine and terrestrial influences; natural variability; the influence of different greenhouse gases; and a host of other factors, Brook said.

“Natural sources of N2O are predicted to increase in the future and this study will help up test predictions on how the Earth will respond,” Brook said.

Abandoned wells can be ‘super-emitters’ of greenhouse gas

One of the wells the researchers tested; this one in the Allegheny National Forest. -  Princeton University
One of the wells the researchers tested; this one in the Allegheny National Forest. – Princeton University

Princeton University researchers have uncovered a previously unknown, and possibly substantial, source of the greenhouse gas methane to the Earth’s atmosphere.

After testing a sample of abandoned oil and natural gas wells in northwestern Pennsylvania, the researchers found that many of the old wells leaked substantial quantities of methane. Because there are so many abandoned wells nationwide (a recent study from Stanford University concluded there were roughly 3 million abandoned wells in the United States) the researchers believe the overall contribution of leaking wells could be significant.

The researchers said their findings identify a need to make measurements across a wide variety of regions in Pennsylvania but also in other states with a long history of oil and gas development such as California and Texas.

“The research indicates that this is a source of methane that should not be ignored,” said Michael Celia, the Theodore Shelton Pitney Professor of Environmental Studies and professor of civil and environmental engineering at Princeton. “We need to determine how significant it is on a wider basis.”

Methane is the unprocessed form of natural gas. Scientists say that after carbon dioxide, methane is the most important contributor to the greenhouse effect, in which gases in the atmosphere trap heat that would otherwise radiate from the Earth. Pound for pound, methane has about 20 times the heat-trapping effect as carbon dioxide. Methane is produced naturally, by processes including decomposition, and by human activity such as landfills and oil and gas production.

While oil and gas companies work to minimize the amount of methane emitted by their operations, almost no attention has been paid to wells that were drilled decades ago. These wells, some of which date back to the 19th century, are typically abandoned and not recorded on official records.

Mary Kang, then a doctoral candidate at Princeton, originally began looking into methane emissions from old wells after researching techniques to store carbon dioxide by injecting it deep underground. While examining ways that carbon dioxide could escape underground storage, Kang wondered about the effect of old wells on methane emissions.

“I was looking for data, but it didn’t exist,” said Kang, now a postdoctoral researcher at Stanford.

In a paper published Dec. 8 in the Proceedings of the National Academy of Sciences, the researchers describe how they chose 19 wells in the adjacent McKean and Potter counties in northwestern Pennsylvania. The wells chosen were all abandoned, and records about the origin of the wells and their conditions did not exist. Only one of the wells was on the state’s list of abandoned wells. Some of the wells, which can look like a pipe emerging from the ground, are located in forests and others in people’s yards. Kang said the lack of documentation made it hard to tell when the wells were originally drilled or whether any attempt had been made to plug them.

“What surprised me was that every well we measured had some methane coming out,” said Celia.

To conduct the research, the team placed enclosures called flux chambers over the tops of the wells. They also placed flux chambers nearby to measure the background emissions from the terrain and make sure the methane was emitted from the wells and not the surrounding area.

Although all the wells registered some level of methane, about 15 percent emitted the gas at a markedly higher level — thousands of times greater than the lower-level wells. Denise Mauzerall, a Princeton professor and a member of the research team, said a critical task is to discover the characteristics of these super-emitting wells.

Mauzerall said the relatively low number of high-emitting wells could offer a workable solution: while trying to plug every abandoned well in the country might be too costly to be realistic, dealing with the smaller number of high emitters could be possible.

“The fact that most of the methane is coming out of a small number of wells should make it easier to address if we can identify the high-emitting wells,” said Mauzerall, who has a joint appointment as a professor of civil and environmental engineering and as a professor of public and international affairs at the Woodrow Wilson School.

The researchers have used their results to extrapolate total methane emissions from abandoned wells in Pennsylvania, although they stress that the results are preliminary because of the relatively small sample. But based on that data, they estimate that emissions from abandoned wells represents as much as 10 percent of methane from human activities in Pennsylvania — about the same amount as caused by current oil and gas production. Also, unlike working wells, which have productive lifetimes of 10 to 15 years, abandoned wells can continue to leak methane for decades.

“This may be a significant source,” Mauzerall said. “There is no single silver bullet but if it turns out that we can cap or capture the methane coming off these really big emitters, that would make a substantial difference.”


Besides Kang, who is the paper’s lead author, Celia and Mauzerall, the paper’s co-authors include: Tullis Onstott, a professor of geosciences at Princeton; Cynthia Kanno, who was a Princeton undergraduate and who is a graduate student at the Colorado School of Mines; Matthew Reid, who was a graduate student at Princeton and is a postdoctoral researcher at EPFL in Luzerne, Switzerland; Xin Zhang, a postdoctoral researcher in the Woodrow Wilson School at Princeton; and Yuheng Chen, an associate research scholar in geosciences at Princeton.

Abandoned wells can be ‘super-emitters’ of greenhouse gas

One of the wells the researchers tested; this one in the Allegheny National Forest. -  Princeton University
One of the wells the researchers tested; this one in the Allegheny National Forest. – Princeton University

Princeton University researchers have uncovered a previously unknown, and possibly substantial, source of the greenhouse gas methane to the Earth’s atmosphere.

After testing a sample of abandoned oil and natural gas wells in northwestern Pennsylvania, the researchers found that many of the old wells leaked substantial quantities of methane. Because there are so many abandoned wells nationwide (a recent study from Stanford University concluded there were roughly 3 million abandoned wells in the United States) the researchers believe the overall contribution of leaking wells could be significant.

The researchers said their findings identify a need to make measurements across a wide variety of regions in Pennsylvania but also in other states with a long history of oil and gas development such as California and Texas.

“The research indicates that this is a source of methane that should not be ignored,” said Michael Celia, the Theodore Shelton Pitney Professor of Environmental Studies and professor of civil and environmental engineering at Princeton. “We need to determine how significant it is on a wider basis.”

Methane is the unprocessed form of natural gas. Scientists say that after carbon dioxide, methane is the most important contributor to the greenhouse effect, in which gases in the atmosphere trap heat that would otherwise radiate from the Earth. Pound for pound, methane has about 20 times the heat-trapping effect as carbon dioxide. Methane is produced naturally, by processes including decomposition, and by human activity such as landfills and oil and gas production.

While oil and gas companies work to minimize the amount of methane emitted by their operations, almost no attention has been paid to wells that were drilled decades ago. These wells, some of which date back to the 19th century, are typically abandoned and not recorded on official records.

Mary Kang, then a doctoral candidate at Princeton, originally began looking into methane emissions from old wells after researching techniques to store carbon dioxide by injecting it deep underground. While examining ways that carbon dioxide could escape underground storage, Kang wondered about the effect of old wells on methane emissions.

“I was looking for data, but it didn’t exist,” said Kang, now a postdoctoral researcher at Stanford.

In a paper published Dec. 8 in the Proceedings of the National Academy of Sciences, the researchers describe how they chose 19 wells in the adjacent McKean and Potter counties in northwestern Pennsylvania. The wells chosen were all abandoned, and records about the origin of the wells and their conditions did not exist. Only one of the wells was on the state’s list of abandoned wells. Some of the wells, which can look like a pipe emerging from the ground, are located in forests and others in people’s yards. Kang said the lack of documentation made it hard to tell when the wells were originally drilled or whether any attempt had been made to plug them.

“What surprised me was that every well we measured had some methane coming out,” said Celia.

To conduct the research, the team placed enclosures called flux chambers over the tops of the wells. They also placed flux chambers nearby to measure the background emissions from the terrain and make sure the methane was emitted from the wells and not the surrounding area.

Although all the wells registered some level of methane, about 15 percent emitted the gas at a markedly higher level — thousands of times greater than the lower-level wells. Denise Mauzerall, a Princeton professor and a member of the research team, said a critical task is to discover the characteristics of these super-emitting wells.

Mauzerall said the relatively low number of high-emitting wells could offer a workable solution: while trying to plug every abandoned well in the country might be too costly to be realistic, dealing with the smaller number of high emitters could be possible.

“The fact that most of the methane is coming out of a small number of wells should make it easier to address if we can identify the high-emitting wells,” said Mauzerall, who has a joint appointment as a professor of civil and environmental engineering and as a professor of public and international affairs at the Woodrow Wilson School.

The researchers have used their results to extrapolate total methane emissions from abandoned wells in Pennsylvania, although they stress that the results are preliminary because of the relatively small sample. But based on that data, they estimate that emissions from abandoned wells represents as much as 10 percent of methane from human activities in Pennsylvania — about the same amount as caused by current oil and gas production. Also, unlike working wells, which have productive lifetimes of 10 to 15 years, abandoned wells can continue to leak methane for decades.

“This may be a significant source,” Mauzerall said. “There is no single silver bullet but if it turns out that we can cap or capture the methane coming off these really big emitters, that would make a substantial difference.”


Besides Kang, who is the paper’s lead author, Celia and Mauzerall, the paper’s co-authors include: Tullis Onstott, a professor of geosciences at Princeton; Cynthia Kanno, who was a Princeton undergraduate and who is a graduate student at the Colorado School of Mines; Matthew Reid, who was a graduate student at Princeton and is a postdoctoral researcher at EPFL in Luzerne, Switzerland; Xin Zhang, a postdoctoral researcher in the Woodrow Wilson School at Princeton; and Yuheng Chen, an associate research scholar in geosciences at Princeton.

Technology-dependent emissions of gas extraction in the US

The KIT measurement instrument on board of a minivan directly measures atmospheric emissions on site with a high temporal resolution. -  Photo: F. Geiger/KIT
The KIT measurement instrument on board of a minivan directly measures atmospheric emissions on site with a high temporal resolution. – Photo: F. Geiger/KIT

Not all boreholes are the same. Scientists of the Karlsruhe Institute of Technology (KIT) used mobile measurement equipment to analyze gaseous compounds emitted by the extraction of oil and natural gas in the USA. For the first time, organic pollutants emitted during a fracking process were measured at a high temporal resolution. The highest values measured exceeded typical mean values in urban air by a factor of one thousand, as was reported in ACP journal. (DOI 10.5194/acp-14-10977-2014)

Emission of trace gases by oil and gas fields was studied by the KIT researchers in the USA (Utah and Colorado) together with US institutes. Background concentrations and the waste gas plumes of single extraction plants and fracking facilities were analyzed. The air quality measurements of several weeks duration took place under the “Uintah Basin Winter Ozone Study” coordinated by the National Oceanic and Atmospheric Administration (NOAA).

The KIT measurements focused on health-damaging aromatic hydrocarbons in air, such as carcinogenic benzene. Maximum concentrations were determined in the waste gas plumes of boreholes. Some extraction plants emitted up to about a hundred times more benzene than others. The highest values of some milligrams of benzene per cubic meter air were measured downstream of an open fracking facility, where returning drilling fluid is stored in open tanks and basins. Much better results were reached by oil and gas extraction plants and plants with closed production processes. In Germany, benzene concentration at the workplace is subject to strict limits: The Federal Emission Control Ordinance gives an annual benzene limit of five micrograms per cubic meter for the protection of human health, which is smaller than the values now measured at the open fracking facility in the US by a factor of about one thousand. The researchers published the results measured in the journal Atmospheric Chemistry and Physics ACP.

“Characteristic emissions of trace gases are encountered everywhere. These are symptomatic of gas and gas extraction. But the values measured for different technologies differ considerably,” Felix Geiger of the Institute of Meteorology and Climate Research (IMK) of KIT explains. He is one of the first authors of the study. By means of closed collection tanks and so-called vapor capture systems, for instance, the gases released during operation can be collected and reduced significantly.

“The gas fields in the sparsely populated areas of North America are a good showcase for estimating the range of impacts of different extraction and fracking technologies,” explains Professor Johannes Orphal, Head of IMK. “In the densely populated Germany, framework conditions are much stricter and much more attention is paid to reducing and monitoring emissions.”

Fracking is increasingly discussed as a technology to extract fossil resources from unconventional deposits. Hydraulic breaking of suitable shale stone layers opens up the fossil fuels stored there and makes them accessible for economically efficient use. For this purpose, boreholes are drilled into these rock formations. Then, they are subjected to high pressure using large amounts of water and auxiliary materials, such as sand, cement, and chemicals. The oil or gas can flow to the surface through the opened microstructures in the rock. Typically, the return flow of the aqueous fracking liquid with the dissolved oil and gas constituents to the surface lasts several days until the production phase proper of purer oil or natural gas. This return flow is collected and then reused until it finally has to be disposed of. Air pollution mainly depends on the treatment of this return flow at the extraction plant. In this respect, currently practiced fracking technologies differ considerably. For the first time now, the resulting local atmospheric emissions were studied at a high temporary resolution. Based on the results, emissions can be assigned directly to the different plant sections of an extraction plant. For measurement, the newly developed, compact, and highly sensitive instrument, a so-called proton transfer reaction mass spectrometer (PTR-MS), of KIT was installed on board of a minivan and driven closer to the different extraction points, the distances being a few tens of meters. In this way, the waste gas plumes of individual extraction sources and fracking processes were studied in detail.

Warneke, C., Geiger, F., Edwards, P. M., Dube, W., Pétron, G., Kofler, J., Zahn, A., Brown, S. S., Graus, M., Gilman, J. B., Lerner, B. M., Peischl, J., Ryerson, T. B., de Gouw, J. A., and Roberts, J. M.: Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition, Atmos. Chem. Phys., 14, 10977-10988, doi:10.5194/acp-14-10977-2014, 2014.

Technology-dependent emissions of gas extraction in the US

The KIT measurement instrument on board of a minivan directly measures atmospheric emissions on site with a high temporal resolution. -  Photo: F. Geiger/KIT
The KIT measurement instrument on board of a minivan directly measures atmospheric emissions on site with a high temporal resolution. – Photo: F. Geiger/KIT

Not all boreholes are the same. Scientists of the Karlsruhe Institute of Technology (KIT) used mobile measurement equipment to analyze gaseous compounds emitted by the extraction of oil and natural gas in the USA. For the first time, organic pollutants emitted during a fracking process were measured at a high temporal resolution. The highest values measured exceeded typical mean values in urban air by a factor of one thousand, as was reported in ACP journal. (DOI 10.5194/acp-14-10977-2014)

Emission of trace gases by oil and gas fields was studied by the KIT researchers in the USA (Utah and Colorado) together with US institutes. Background concentrations and the waste gas plumes of single extraction plants and fracking facilities were analyzed. The air quality measurements of several weeks duration took place under the “Uintah Basin Winter Ozone Study” coordinated by the National Oceanic and Atmospheric Administration (NOAA).

The KIT measurements focused on health-damaging aromatic hydrocarbons in air, such as carcinogenic benzene. Maximum concentrations were determined in the waste gas plumes of boreholes. Some extraction plants emitted up to about a hundred times more benzene than others. The highest values of some milligrams of benzene per cubic meter air were measured downstream of an open fracking facility, where returning drilling fluid is stored in open tanks and basins. Much better results were reached by oil and gas extraction plants and plants with closed production processes. In Germany, benzene concentration at the workplace is subject to strict limits: The Federal Emission Control Ordinance gives an annual benzene limit of five micrograms per cubic meter for the protection of human health, which is smaller than the values now measured at the open fracking facility in the US by a factor of about one thousand. The researchers published the results measured in the journal Atmospheric Chemistry and Physics ACP.

“Characteristic emissions of trace gases are encountered everywhere. These are symptomatic of gas and gas extraction. But the values measured for different technologies differ considerably,” Felix Geiger of the Institute of Meteorology and Climate Research (IMK) of KIT explains. He is one of the first authors of the study. By means of closed collection tanks and so-called vapor capture systems, for instance, the gases released during operation can be collected and reduced significantly.

“The gas fields in the sparsely populated areas of North America are a good showcase for estimating the range of impacts of different extraction and fracking technologies,” explains Professor Johannes Orphal, Head of IMK. “In the densely populated Germany, framework conditions are much stricter and much more attention is paid to reducing and monitoring emissions.”

Fracking is increasingly discussed as a technology to extract fossil resources from unconventional deposits. Hydraulic breaking of suitable shale stone layers opens up the fossil fuels stored there and makes them accessible for economically efficient use. For this purpose, boreholes are drilled into these rock formations. Then, they are subjected to high pressure using large amounts of water and auxiliary materials, such as sand, cement, and chemicals. The oil or gas can flow to the surface through the opened microstructures in the rock. Typically, the return flow of the aqueous fracking liquid with the dissolved oil and gas constituents to the surface lasts several days until the production phase proper of purer oil or natural gas. This return flow is collected and then reused until it finally has to be disposed of. Air pollution mainly depends on the treatment of this return flow at the extraction plant. In this respect, currently practiced fracking technologies differ considerably. For the first time now, the resulting local atmospheric emissions were studied at a high temporary resolution. Based on the results, emissions can be assigned directly to the different plant sections of an extraction plant. For measurement, the newly developed, compact, and highly sensitive instrument, a so-called proton transfer reaction mass spectrometer (PTR-MS), of KIT was installed on board of a minivan and driven closer to the different extraction points, the distances being a few tens of meters. In this way, the waste gas plumes of individual extraction sources and fracking processes were studied in detail.

Warneke, C., Geiger, F., Edwards, P. M., Dube, W., Pétron, G., Kofler, J., Zahn, A., Brown, S. S., Graus, M., Gilman, J. B., Lerner, B. M., Peischl, J., Ryerson, T. B., de Gouw, J. A., and Roberts, J. M.: Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition, Atmos. Chem. Phys., 14, 10977-10988, doi:10.5194/acp-14-10977-2014, 2014.