Scientists observe the Earth grow a new layer under an Icelandic volcano

New research into an Icelandic eruption has shed light on how the Earth’s crust forms, according to a paper published today in Nature.

When the Bárðarbunga volcano, which is buried beneath Iceland’s Vatnajökull ice cap, reawakened in August 2014, scientists had a rare opportunity to monitor how the magma flowed through cracks in the rock away from the volcano. The molten rock forms vertical sheet-like features known as dykes, which force the surrounding rock apart.

Study co-author Professor Andy Hooper from the Centre for Observation and Modelling of Earthquakes, volcanoes and Tectonics (COMET) at the University of Leeds explained: “New crust forms where two tectonic plates are moving away from each other. Mostly this happens beneath the oceans, where it is difficult to observe.

“However, in Iceland this happens beneath dry land. The events leading to the eruption in August 2014 are the first time that such a rifting episode has occurred there and been observed with modern tools, like GPS and satellite radar.”

Although it has a long history of eruptions, Bárðarbunga has been increasingly restless since 2005. There was a particularly dynamic period in August and September this year, when more than 22,000 earthquakes were recorded in or around the volcano in just four weeks, due to stress being released as magma forced its way through the rock.

Using GPS and satellite measurements, the team were able to track the path of the magma for over 45km before it reached a point where it began to erupt, and continues to do so to this day. The rate of dyke propagation was variable and slowed as the magma reached natural barriers, which were overcome by the build-up of pressure, creating a new segment.

The dyke grows in segments, breaking through from one to the next by the build up of pressure. This explains how focused upwelling of magma under central volcanoes is effectively redistributed over large distances to create new upper crust at divergent plate boundaries, the authors conclude.

As well as the dyke, the team found ‘ice cauldrons’ – shallow depressions in the ice with circular crevasses, where the base of the glacier had been melted by magma. In addition, radar measurements showed that the ice inside Bárðarbunga’s crater had sunk by 16m, as the volcano floor collapsed.

COMET PhD student Karsten Spaans from the University of Leeds, a co-author of the study, added: “Using radar measurements from space, we can form an image of caldera movement occurring in one day. Usually we expect to see just noise in the image, but we were amazed to see up to 55cm of subsidence.”

Like other liquids, magma flows along the path of least resistance, which explains why the dyke at Bárðarbunga changed direction as it progressed. Magma flow was influenced mostly by the lie of the land to start with, but as it moved away from the steeper slopes, the influence of plate movements became more important.

Summarising the findings, Professor Hooper said: “Our observations of this event showed that the magma injected into the crust took an incredibly roundabout path and proceeded in fits and starts.

“Initially we were surprised at this complexity, but it turns out we can explain all the twists and turns with a relatively simple model, which considers just the pressure of rock and ice above, and the pull exerted by the plates moving apart.”

The paper ‘Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland’ is published in Nature on 15 December 2014.

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under Grant Agreement No. 308377 (Project FUTUREVOLC)

New study measures methane emissions from natural gas production and offers insights into 2 large sources

A team of researchers from the Cockrell School of Engineering at The University of Texas at Austin and environmental testing firm URS reports that a small subset of natural gas wells are responsible for the majority of methane emissions from two major sources — liquid unloadings and pneumatic controller equipment — at natural gas production sites.

With natural gas production in the United States expected to continue to increase during the next few decades, there is a need for a better understanding of methane emissions during natural gas production. The study team believes this research, published Dec. 9 in Environmental Science & Technology, will help to provide a clearer picture of methane emissions from natural gas production sites.

The UT Austin-led field study closely examined two major sources of methane emissions — liquid unloadings and pneumatic controller equipment — at well pad sites across the United States. Researchers found that 19 percent of the pneumatic devices accounted for 95 percent of the emissions from pneumatic devices, and 20 percent of the wells with unloading emissions that vent to the atmosphere accounted for 65 percent to 83 percent of those emissions.

“To put this in perspective, over the past several decades, 10 percent of the cars on the road have been responsible for the majority of automotive exhaust pollution,” said David Allen, chemical engineering professor at the Cockrell School and principal investigator for the study. “Similarly, a small group of sources within these two categories are responsible for the vast majority of pneumatic and unloading emissions at natural gas production sites.”

Additionally, for pneumatic devices, the study confirmed regional differences in methane emissions first reported by the study team in 2013. The researchers found that methane emissions from pneumatic devices were highest in the Gulf Coast and lowest in the Rocky Mountains.

The study is the second phase of the team’s 2013 study, which included some of the first measurements for methane emissions taken directly at hydraulically fractured well sites. Both phases of the study involved a partnership between the Environmental Defense Fund, participating energy companies, an independent Scientific Advisory Panel and the UT Austin study team.

The unprecedented access to natural gas production facilities and equipment allowed researchers to acquire direct measurements of methane emissions.

Study and Findings on Pneumatic Devices

Pneumatic devices, which use gas pressure to control the opening and closing of valves, emit gas as they operate. These emissions are estimated to be among the larger sources of methane emissions from the natural gas supply chain. The Environmental Protection Agency reports that 477,606 pneumatic (gas actuated) devices are in use at natural gas production sites throughout the U.S.

“Our team’s previous work established that pneumatics are a major contributor to emissions,” Allen said. “Our goal here was to measure a more diverse population of wells to characterize the features of high-emitting pneumatic controllers.”

The research team measured emissions from 377 gas actuated (pneumatic) controllers at natural gas production sites and a small number of oil production sites throughout the U.S.

The researchers sampled all identifiable pneumatic controller devices at each well site, a more comprehensive approach than the random sampling previously conducted. The average methane emissions per pneumatic controller reported in this study are 17 percent higher than the average emissions per pneumatic controller in the 2012 EPA greenhouse gas national emission inventory (released in 2014), but the average from the study is dominated by a small subpopulation of the controllers. Specifically, 19 percent of controllers, with measured emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95 percent of emissions.

The high-emitting pneumatic devices are a combination of devices that are not operating as designed, are used in applications that cause them to release gas frequently or are designed to emit continuously at a high rate.

The researchers also observed regional differences in methane emission levels, with the lowest emissions per device measured in the Rocky Mountains and the highest emissions in the Gulf Coast, similar to the earlier 2013 study. At least some of the regional differences in emission rates can be attributed to the difference in controller type (continuous vent vs. intermittent vent) among regions.

Study and Findings on Liquid Unloadings

After observing variable emissions for liquid unloadings for a limited group of well types in the 2013 study, the research team made more extensive measurements and confirmed that a majority of emissions come from a small fraction of wells that vent frequently. Although it is not surprising to see some correlation between frequency of unloadings and higher annual emissions, the study’s findings indicate that wells with a high frequency of unloadings have annual emissions that are 10 or more times as great as wells that unload less frequently.

The team’s field study, which measured emissions from unloadings from wells at 107 natural gas production wells throughout the U.S., represents the most extensive measurement of emissions associated with liquid unloadings in scientific literature thus far.

A liquid unloading is one method used to clear wells of accumulated liquids to increase production. Because older wells typically produce less gas as they near the end of their life cycle, liquid unloadings happen more often in those wells than in newer wells. The team found a statistical correlation between the age of wells and the frequency of liquid unloadings. The researchers found that the key identifier for high-emitting wells is how many times the well unloads in a given year.

Because liquid unloadings can employ a variety of liquid lifting mechanisms, the study results also reflect differences in liquid unloadings emissions between wells that use two different mechanisms (wells with plunger lifts and wells without plunger lifts). Emissions for unloading events for wells without plunger lifts averaged 21,000 scf (standard cubic feet) to 35,000 scf. For wells with plunger lifts that vent to the atmosphere, emissions averaged 1,000 scf to 10,000 scf of methane per event. Although the emissions per event were higher for wells without plunger lifts, these wells had, on average, fewer events than wells with plunger lifts. Wells without plunger lifts averaged fewer than 10 unloading events per year, and wells with plunger lifts averaged more than 200 events per year.Overall, wells with plunger lifts were estimated to account for 70 percent of emissions from unloadings nationally.

Additionally, researchers found that the Rocky Mountain region, with its large number of wells with a high frequency of unloadings that vent to the atmosphere, accounts for about half of overall emissions from liquid unloadings.

The study team hopes its measurements of liquid unloadings and pneumatic devices will provide a clearer picture of methane emissions from natural gas well sites and about the relationship between well characteristics and emissions.

The study was a cooperative effort involving experts from the Environmental Defense Fund, Anadarko Petroleum Corporation, BG Group PLC, Chevron, ConocoPhillips, Encana Oil & Gas (USA) Inc., Pioneer Natural Resources Company, SWEPI LP (Shell), Statoil, Southwestern Energy and XTO Energy, a subsidiary of ExxonMobil.

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest of its researchers. Lead researcher David Allen serves as chair of the Environmental Protection Agency’s Science Advisory Board and in this role is a paid Special Governmental Employee. He is also a journal editor for the American Chemical Society and has served as a consultant for multiple companies, including Eastern Research Group, ExxonMobil and the Research Triangle Institute. He has worked on other research projects funded by a variety of governmental, nonprofit and private sector sources including the National Science Foundation, the Environmental Protection Agency, the Texas Commission on Environmental Quality, the American Petroleum Institute and an air monitoring and surveillance project that was ordered by the U.S. District Court for the Southern District of Texas. Adam Pacsi and Daniel Zavala-Araiza, who were graduate students at The University of Texas at the time this work was done, have accepted positions at Chevron Energy Technology Company and the Environmental Defense Fund, respectively.

Financial support for this work was provided by the Environmental Defense Fund (EDF), Anadarko Petroleum Corporation, BG Group PLC, Chevron, ConocoPhillips, Encana Oil & Gas (USA) Inc., Pioneer Natural Resources Company, SWEPI LP (Shell), Statoil, Southwestern Energy and XTO Energy, a subsidiary of ExxonMobil.

Major funding for the EDF’s 30-month methane research series, including their portion of the University of Texas study, is provided for by the following individuals and foundations: Fiona and Stan Druckenmiller, the Heising-Simons Foundation, Bill and Susan Oberndorf, Betsy and Sam Reeves, the Robertson Foundation, TomKat Charitable Trust and the Walton Family Foundation.

Prehistoric landslide discovery rivals largest known on surface of Earth

David Hacker, Ph.D., points to pseudotachylyte layers and veins within the Markagunt gravity slide. -  Photo courtesy of David Hacker
David Hacker, Ph.D., points to pseudotachylyte layers and veins within the Markagunt gravity slide. – Photo courtesy of David Hacker

A catastrophic landslide, one of the largest known on the surface of the Earth, took place within minutes in southwestern Utah more than 21 million years ago, reports a Kent State University geologist in a paper being to be published in the November issue of the journal Geology.

The Markagunt gravity slide, the size of three Ohio counties, is one of the two largest known continental landslides (larger slides exist on the ocean floors). David Hacker, Ph.D., associate professor of geology at the Trumbull campus, and two colleagues discovered and mapped the scope of the Markagunt slide over the past two summers.

His colleagues and co-authors are Robert F. Biek of the Utah Geological Survey and Peter D. Rowley of Geologic Mapping, Inc. of New Harmony, Utah.

Geologists had known about smaller portions of the Markagunt slide before the recent mapping showed its enormous extent. Hiking through the wilderness areas of the Dixie National Forest and Bureau of Land Management land, Hacker identified features showing that the Markagunt landslide was much bigger than previously known.

The landslide took place in an area between what is now Bryce Canyon National Park and the town of Beaver, Utah. It covered about 1,300 square miles, an area as big as Ohio’s Cuyahoga, Portage and Summit counties combined.

Its rival in size, the “Heart Mountain slide,” which took place around 50 million years ago in northwest Wyoming, was discovered in the 1940s and is a classic feature in geology textbooks.

The Markagunt could prove to be much larger than the Heart Mountain slide, once it is mapped in greater detail.

“Large-scale catastrophic collapses of volcanic fields such as these are rare but represent the largest known landslides on the surface of the Earth,” the authors wrote.

The length of the landslide – over 55 miles – also shows that it was as fast moving as it was massive, Hacker said. Evidence showing that the slide was catastrophic – occurring within minutes – included the presence of pseudotachylytes, rocks that were melted into glass by the immense friction. Any animals living in its path would have been quickly overrun.

Evidence of the slide is not readily apparent to visitors today. “Looking at it, you wouldn’t even recognize it as a landslide,” he said. But internal features of the slide, exposed in outcrops, yielded evidence such as jigsaw puzzle rock fractures and shear zones, along with the pseudotachylytes.

Hacker, who studies catastrophic geological events, said the slide originated when a volcanic field consisting of many strato-volcanoes, a type similar to Mount St. Helens in the Cascade Mountains, which erupted in 1980, collapsed and produced the massive landslide.

The collapse may have been caused by the vertical inflation of deeper magma chambers that fed the volcanoes. Hacker has spent many summers in Utah mapping geologic features of the Pine Valley Mountains south of the Markagunt where he has found evidence of similar, but smaller slides from magma intrusions called laccoliths.

What is learned about the mega-landslide could help geologists better understand these extreme types of events. The Markagunt and the Heart Mountain slides document for the first time how large portions of ancient volcanic fields have collapsed, Hacker said, representing “a new class of hazards in volcanic fields.”

While the Markagunt landslide was a rare event, it shows the magnitude of what could happen in modern volcanic fields like the Cascades. “We study events from the geologic past to better understand what could happen in the future,” he said.

The next steps in the research, conducted with his co-authors on the Geology paper, will be to continue mapping the slide, collect samples from the base for structural analysis and date the pseudotachylytes.

Hacker, who earned his Ph.D. in geology at Kent State, joined the faculty in 2000 after working for an environmental consulting company. He is co-author of the book “Earth’s Natural Hazards: Understanding Natural Disasters and Catastrophes,” published in 2010.

View the abstract of the Geology paper, available online now.

Learn more about research at Kent State: http://www.kent.edu/research

Climate change was not to blame for the collapse of the Bronze Age

Scientists will have to find alternative explanations for a huge population collapse in Europe at the end of the Bronze Age as researchers prove definitively that climate change – commonly assumed to be responsible – could not have been the culprit.

Archaeologists and environmental scientists from the University of Bradford, University of Leeds, University College Cork, Ireland (UCC), and Queen’s University Belfast have shown that the changes in climate that scientists believed to coincide with the fall in population in fact occurred at least two generations later.

Their results, published this week in Proceedings of the National Academy of Sciences, show that human activity starts to decline after 900BC, and falls rapidly after 800BC, indicating a population collapse. But the climate records show that colder, wetter conditions didn’t occur until around two generations later.

Fluctuations in levels of human activity through time are reflected by the numbers of radiocarbon dates for a given period. The team used new statistical techniques to analyse more than 2000 radiocarbon dates, taken from hundreds of archaeological sites in Ireland, to pinpoint the precise dates that Europe’s Bronze Age population collapse occurred.

The team then analysed past climate records from peat bogs in Ireland and compared the archaeological data to these climate records to see if the dates tallied. That information was then compared with evidence of climate change across NW Europe between 1200 and 500 BC.

“Our evidence shows definitively that the population decline in this period cannot have been caused by climate change,” says Ian Armit, Professor of Archaeology at the University of Bradford, and lead author of the study.

Graeme Swindles, Associate Professor of Earth System Dynamics at the University of Leeds, added, “We found clear evidence for a rapid change in climate to much wetter conditions, which we were able to precisely pinpoint to 750BC using statistical methods.”

According to Professor Armit, social and economic stress is more likely to be the cause of the sudden and widespread fall in numbers. Communities producing bronze needed to trade over very large distances to obtain copper and tin. Control of these networks enabled the growth of complex, hierarchical societies dominated by a warrior elite. As iron production took over, these networks collapsed, leading to widespread conflict and social collapse. It may be these unstable social conditions, rather than climate change, that led to the population collapse at the end of the Bronze Age.

According to Katharina Becker, Lecturer in the Department of Archaeology at UCC, the Late Bronze Age is usually seen as a time of plenty, in contrast to an impoverished Early Iron Age. “Our results show that the rich Bronze Age artefact record does not provide the full picture and that crisis began earlier than previously thought,” she says.

“Although climate change was not directly responsible for the collapse it is likely that the poor climatic conditions would have affected farming,” adds Professor Armit. “This would have been particularly difficult for vulnerable communities, preventing population recovery for several centuries.”

The findings have significance for modern day climate change debates which, argues Professor Armit, are often too quick to link historical climate events with changes in population.

“The impact of climate change on humans is a huge concern today as we monitor rising temperatures globally,” says Professor Armit.

“Often, in examining the past, we are inclined to link evidence of climate change with evidence of population change. Actually, if you have high quality data and apply modern analytical techniques, you get a much clearer picture and start to see the real complexity of human/environment relationships in the past.”

Climate capers of the past 600,000 years

The researchers remove samples from a core segment taken from Lake Van at the center for Marine environmental sciences MARUM in Bremen, where all of the cores from the PALEOVAN project are stored. -  Photo: Nadine Pickarski/Uni Bonn
The researchers remove samples from a core segment taken from Lake Van at the center for Marine environmental sciences MARUM in Bremen, where all of the cores from the PALEOVAN project are stored. – Photo: Nadine Pickarski/Uni Bonn

If you want to see into the future, you have to understand the past. An international consortium of researchers under the auspices of the University of Bonn has drilled deposits on the bed of Lake Van (Eastern Turkey) which provide unique insights into the last 600,000 years. The samples reveal that the climate has done its fair share of mischief-making in the past. Furthermore, there have been numerous earthquakes and volcanic eruptions. The results of the drilling project also provide a basis for assessing the risk of how dangerous natural hazards are for today’s population. In a special edition of the highly regarded publication Quaternary Science Reviews, the scientists have now published their findings in a number of journal articles.

In the sediments of Lake Van, the lighter-colored, lime-containing summer layers are clearly distinguishable from the darker, clay-rich winter layers — also called varves. In 2010, from a floating platform an international consortium of researchers drilled a 220 m deep sediment profile from the lake floor at a water depth of 360 m and analyzed the varves. The samples they recovered are a unique scientific treasure because the climate conditions, earthquakes and volcanic eruptions of the past 600,000 years can be read in outstanding quality from the cores.

The team of scientists under the auspices of the University of Bonn has analyzed some 5,000 samples in total. “The results show that the climate over the past hundred thousand years has been a roller coaster. Within just a few decades, the climate could tip from an ice age into a warm period,” says Doctor Thomas Litt of the University of Bonn’s Steinmann Institute and spokesman for the PALEOVAN international consortium of researchers. Unbroken continental climate archives from the ice age which encompass several hundred thousand years are extremely rare on a global scale. “There has never before in all of the Middle East and Central Asia been a continental drilling operation going so far back into the past,” says Doctor Litt. In the northern hemisphere, climate data from ice-cores drilled in Greenland encompass the last 120,000 years. The Lake Van project closes a gap in the scientific climate record.

The sediments reveal six cycles of cold and warm periods


Scientists found evidence for a total of six cycles of warm and cold periods in the sediments of Lake Van. The University of Bonn paleoecologist and his colleagues analyzed the pollen preserved in the sediments. Under a microscope they were able to determine which plants around the eastern Anatolian Lake the pollen came from. “Pollen is amazingly durable and is preserved over very long periods when protected in the sediments,” Doctor Litt explained. Insight into the age of the individual layers was gleaned through radiometric age measurements that use the decay of radioactive elements as a geologic clock. Based on the type of pollen and the age, the scientists were able to determine when oak forests typical of warm periods grew around Lake Van and when ice-age steppe made up of grasses, mugwort and goosefoot surrounded the lake.

Once they determine the composition of the vegetation present and the requirements of the plants, the scientists can reconstruct with a high degree of accuracy the temperature and amount of rainfall during different epochs. These analyses enable the team of researchers to read the varves of Lake Van like thousands of pages of an archive. With these data, the team was able to demonstrate that fluctuations in climate were due in large part to periodic changes in the Earth’s orbit parameters and the commensurate changes in solar insolation levels. However, the influence of North Atlantic currents was also evident. “The analysis of the Lake Van sediments has presented us with an image of how an ecosystem reacts to abrupt changes in climate. This fundamental data will help us to develop potential scenarios of future climate effects,” says Doctor Litt.

Risks of earthquakes and volcanic eruptions in the region of Van

Such risk assessments can also be made for other natural forces. “Deposits of volcanic ash with thicknesses of up to 10 m in the Lake Van sediments show us that approximately 270,000 years ago there was a massive eruption,” the University of Bonn paleoecologist said. The team struck some 300 different volcanic events in its drillings. Statistically, that corresponds to one explosive volcanic eruption in the region every 2000 years. Deformations in the sediment layers show that the area is subject to frequent, strong earthquakes. “The area around Lake Van is very densely populated. The data from the core samples show that volcanic activity and earthquakes present a relatively high risk for the region,” Doctor Litt says. According to media reports, in 2011 a 7.2 magnitude earthquake in the Van province claimed the lives of more than 500 people and injured more than 2,500.

Publication: “Results from the PALEOVAN drilling project: A 600,000 year long continental archive in the Near East”, Quaternary Science Reviews, Volume 104, online publication: (http://dx.doi.org/10.1016/j.quascirev.2014.09.026)

Subtle shifts in the Earth could forecast earthquakes, tsunamis

University of South Florida graduate student Jacob Richardson stands beside a completed installation.  The large white disc is the dual frequency antenna.  A portable solar panel that powers the system is visible in the foreground. -  Photo by Denis Voytenko
University of South Florida graduate student Jacob Richardson stands beside a completed installation. The large white disc is the dual frequency antenna. A portable solar panel that powers the system is visible in the foreground. – Photo by Denis Voytenko

Earthquakes and tsunamis can be giant disasters no one sees coming, but now an international team of scientists led by a University of South Florida professor have found that subtle shifts in the earth’s offshore plates can be a harbinger of the size of the disaster.

In a new paper published today in the Proceedings of the National Academies of Sciences, USF geologist Tim Dixon and the team report that a geological phenomenon called “slow slip events” identified just 15 years ago is a useful tool in identifying the precursors to major earthquakes and the resulting tsunamis. The scientists used high precision GPS to measure the slight shifts on a fault line in Costa Rica, and say better monitoring of these small events can lead to better understanding of maximum earthquake size and tsunami risk.

“Giant earthquakes and tsunamis in the last decade – Sumatra in 2004 and Japan in 2011 – are a reminder that our ability to forecast these destructive events is painfully weak,” Dixon said.

Dixon was involved in the development of high precision GPS for geophysical applications, and has been making GPS measurements in Costa Rica since 1988, in collaboration with scientists at Observatorio Vulcanológico y Sismológico de Costa Rica, the University of California-Santa Cruz, and Georgia Tech. The project is funded by the National Science Foundation.

Slow slip events have some similarities to earthquakes (caused by motion on faults) but release their energy slowly, over weeks or months, and cannot be felt or even recorded by conventional seismographs, Dixon said. Their discovery in 2001 by Canadian scientist Herb Dragert at the Pacific Geoscience Center had to await the development of high precision GPS, which is capable of measuring subtle movements of the Earth.

The scientists studied the Sept. 5, 2012 earthquake on the Costa Rica subduction plate boundary, as well as motions of the Earth in the previous decade. High precision GPS recorded numerous slow slip events in the decade leading up to the 2012 earthquake. The scientists made their measurements from a peninsula overlying the shallow portion of a megathrust fault in northwest Costa Rica.

The 7.6-magnitude quake was one of the strongest earthquakes ever to hit the Central American nation and unleased more than 1,600 aftershocks. Marino Protti, one of the authors of the paper and a resident of Costa Rica, has spent more than two decades warning local populations of the likelihood of a major earthquake in their area and recommending enhanced building codes.

A tsunami warning was issued after the quake, but only a small tsunami occurred. The group’s finding shed some light on why: slow slip events in the offshore region in the decade leading up to the earthquake may have released much of the stress and strain that would normally occur on the offshore fault.

While the group’s findings suggest that slow slip events have limited value in knowing exactly when an earthquake and tsunami will strike, they suggest that these events provide critical hazard assessment information by delineating rupture area and the magnitude and tsunami potential of future earthquakes.

The scientists recommend monitoring slow slip events in order to provide accurate forecasts of earthquake magnitude and tsunami potential.

###

The authors on the paper are Dixon; his former graduate student Yan Jiang, now at the Pacific Geoscience Centre in British Columba, Canada; USF Assistant Professor of Geosciences Rocco Malservisi; Robert McCaffrey of Portland State University; USF doctoral candidate Nicholas Voss; and Protti and Victor Gonzalez of the Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional.

The University of South Florida is a high-impact, global research university dedicated to student success. USF is a Top 50 research university among both public and private institutions nationwide in total research expenditures, according to the National Science Foundation. Serving nearly 48,000 students, the USF System has an annual budget of $1.5 billion and an annual economic impact of $4.4 billion. USF is a member of the American Athletic Conference.

Volcano hazards and the role of westerly wind bursts in El Niño

On June 27, lava from Kīlauea, an active volcano on the island of Hawai'i, began flowing to the northeast, threatening the residents in a community in the District of Puna. -  USGS
On June 27, lava from Kīlauea, an active volcano on the island of Hawai’i, began flowing to the northeast, threatening the residents in a community in the District of Puna. – USGS

On 27 June, lava from Kīlauea, an active volcano on the island of Hawai’i, began flowing to the northeast, threatening the residents in Pāhoa, a community in the District of Puna, as well as the only highway accessible to this area. Scientists from the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) and the Hawai’i County Civil Defense have been monitoring the volcano’s lava flow and communicating with affected residents through public meetings since 24 August. Eos recently spoke with Michael Poland, a geophysicist at HVO and a member of the Eos Editorial Advisory Board, to discuss how he and his colleagues communicated this threat to the public.

Drilling a Small Basaltic Volcano to Reveal Potential Hazards


Drilling into the Rangitoto Island Volcano in the Auckland Volcanic Field in New Zealand offers insight into a small monogenetic volcano, and may improve understanding of future hazards.

From AGU’s journals: El Niño fades without westerly wind bursts

The warm and wet winter of 1997 brought California floods, Florida tornadoes, and an ice storm in the American northeast, prompting climatologists to dub it the El Niño of the century. Earlier this year, climate scientists thought the coming winter might bring similar extremes, as equatorial Pacific Ocean conditions resembled those seen in early 1997. But the signals weakened by summer, and the El Niño predictions were downgraded. Menkes et al. used simulations to examine the differences between the two years.

The El Niño-Southern Oscillation is defined by abnormally warm sea surface temperatures in the eastern Pacific Ocean and weaker than usual trade winds. In a typical year, southeast trade winds push surface water toward the western Pacific “warm pool”–a region essential to Earth’s climate. The trade winds dramatically weaken or even reverse in El Niño years, and the warm pool extends its reach east.

Scientists have struggled to predict El Niño due to irregularities in the shape, amplitude, and timing of the surges of warm water. Previous studies suggested that short-lived westerly wind pulses (i.e. one to two weeks long) could contribute to this irregularity by triggering and sustaining El Niño events.

To understand the vanishing 2014 El Niño, the authors used computer simulations and examined the wind’s role. The researchers find pronounced differences between 1997 and 2014. Both years saw strong westerly wind events between January and March, but those disappeared this year as spring approached. In contrast, the westerly winds persisted through summer in 1997.

In the past, it was thought that westerly wind pulses were three times as likely to form if the warm pool extended east of the dateline. That did not occur this year. The team says their analysis shows that El Niño’s strength might depend on these short-lived and possibly unpredictable pulses.

###

The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on Facebook, Twitter, YouTube, and other social media channels.

Massive geographic change may have triggered explosion of animal life

A new analysis from The University of Texas at Austin's Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. -  Ian Dalziel
A new analysis from The University of Texas at Austin’s Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. – Ian Dalziel

A new analysis of geologic history may help solve the riddle of the “Cambrian explosion,” the rapid diversification of animal life in the fossil record 530 million years ago that has puzzled scientists since the time of Charles Darwin.

A paper by Ian Dalziel of The University of Texas at Austin’s Jackson School of Geosciences, published in the November issue of Geology, a journal of the Geological Society of America, suggests a major tectonic event may have triggered the rise in sea level and other environmental changes that accompanied the apparent burst of life.

The Cambrian explosion is one of the most significant events in Earth’s 4.5-billion-year history. The surge of evolution led to the sudden appearance of almost all modern animal groups. Fossils from the Cambrian explosion document the rapid evolution of life on Earth, but its cause has been a mystery.

The sudden burst of new life is also called “Darwin’s dilemma” because it appears to contradict Charles Darwin’s hypothesis of gradual evolution by natural selection.

“At the boundary between the Precambrian and Cambrian periods, something big happened tectonically that triggered the spreading of shallow ocean water across the continents, which is clearly tied in time and space to the sudden explosion of multicellular, hard-shelled life on the planet,” said Dalziel, a research professor at the Institute for Geophysics and a professor in the Department of Geological Sciences.

Beyond the sea level rise itself, the ancient geologic and geographic changes probably led to a buildup of oxygen in the atmosphere and a change in ocean chemistry, allowing more complex life-forms to evolve, he said.

The paper is the first to integrate geological evidence from five present-day continents — North America, South America, Africa, Australia and Antarctica — in addressing paleogeography at that critical time.

Dalziel proposes that present-day North America was still attached to the southern continents until sometime into the Cambrian period. Current reconstructions of the globe’s geography during the early Cambrian show the ancient continent of Laurentia — the ancestral core of North America — as already having separated from the supercontinent Gondwanaland.

In contrast, Dalziel suggests the development of a deep oceanic gateway between the Pacific and Iapetus (ancestral Atlantic) oceans isolated Laurentia in the early Cambrian, a geographic makeover that immediately preceded the global sea level rise and apparent explosion of life.

“The reason people didn’t make this connection before was because they hadn’t looked at all the rock records on the different present-day continents,” he said.

The rock record in Antarctica, for example, comes from the very remote Ellsworth Mountains.

“People have wondered for a long time what rifted off there, and I think it was probably North America, opening up this deep seaway,” Dalziel said. “It appears ancient North America was initially attached to Antarctica and part of South America, not to Europe and Africa, as has been widely believed.”

Although the new analysis adds to evidence suggesting a massive tectonic shift caused the seas to rise more than half a billion years ago, Dalziel said more research is needed to determine whether this new chain of paleogeographic events can truly explain the sudden rise of multicellular life in the fossil record.

“I’m not claiming this is the ultimate explanation of the Cambrian explosion,” Dalziel said. “But it may help to explain what was happening at that time.”

###

To read the paper go to http://geology.gsapubs.org/content/early/2014/09/25/G35886.1.abstract

New study shows 3 abrupt pulse of CO2 during last deglaciation

A new study shows that the rise of atmospheric carbon dioxide that contributed to the end of the last ice age more than 10,000 years ago did not occur gradually, but was characterized by three “pulses” in which C02 rose abruptly.

Scientists are not sure what caused these abrupt increases, during which C02 levels rose about 10-15 parts per million – or about 5 percent per episode – over a period of 1-2 centuries. It likely was a combination of factors, they say, including ocean circulation, changing wind patterns, and terrestrial processes.

The finding is important, however, because it casts new light on the mechanisms that take the Earth in and out of ice age regimes. Results of the study, which was funded by the National Science Foundation, appear this week in the journal Nature.

“We used to think that naturally occurring changes in carbon dioxide took place relatively slowly over the 10,000 years it took to move out of the last ice age,” said Shaun Marcott, lead author on the article who conducted his study as a post-doctoral researcher at Oregon State University. “This abrupt, centennial-scale variability of CO2 appears to be a fundamental part of the global carbon cycle.”

Some previous research has hinted at the possibility that spikes in atmospheric carbon dioxide may have accelerated the last deglaciation, but that hypothesis had not been resolved, the researchers say. The key to the new finding is the analysis of an ice core from the West Antarctic that provided the scientists with an unprecedented glimpse into the past.

Scientists studying past climate have been hampered by the limitations of previous ice cores. Cores from Greenland, for example, provide unique records of rapid climate events going back 120,000 years – but high concentrations of impurities don’t allow researchers to accurately determine atmospheric carbon dioxide records. Antarctic ice cores have fewer impurities, but generally have had lower “temporal resolution,” providing less detailed information about atmospheric CO2.

However, a new core from West Antarctica, drilled to a depth of 3,405 meters in 2011 and spanning the last 68,000 years, has “extraordinary detail,” said Oregon State paleoclimatologist Edward Brook, a co-author on the Nature study and an internationally recognized ice core expert. Because the area where the core was taken gets high annual snowfall, he said, the new ice core provides one of the most detailed records of atmospheric CO2.

“It is a remarkable ice core and it clearly shows distinct pulses of carbon dioxide increase that can be very reliably dated,” Brook said. “These are some of the fastest natural changes in CO2 we have observed, and were probably big enough on their own to impact the Earth’s climate.

“The abrupt events did not end the ice age by themselves,” Brook added. “That might be jumping the gun a bit. But it is fair to say that the natural carbon cycle can change a lot faster than was previously thought – and we don’t know all of the mechanisms that caused that rapid change.”

The researchers say that the increase in atmospheric CO2 from the peak of the last ice age to complete deglaciation was about 80 parts per million, taking place over 10,000 years. Thus, the finding that 30-45 ppm of the increase happened in just a few centuries was significant.

The overall rise of atmospheric carbon dioxide during the last deglaciation was thought to have been triggered by the release of CO2 from the deep ocean – especially the Southern Ocean. However, the researchers say that no obvious ocean mechanism is known that would trigger rises of 10-15 ppm over a time span as short as one to two centuries.

“The oceans are simply not thought to respond that fast,” Brook said. “Either the cause of these pulses is at least part terrestrial, or there is some mechanism in the ocean system we don’t yet know about.”

One reason the researchers are reluctant to pin the end of the last ice age solely on CO2 increases is that other processes were taking place, according to Marcott, who recently joined the faculty of the University of Wisconsin-Madison.

“At the same time CO2 was increasing, the rate of methane in the atmosphere was also increasing at the same or a slightly higher rate,” Marcott said. “We also know that during at least two of these pulses, the Atlantic Meridional Overturning Circulation changed as well. Changes in the ocean circulation would have affected CO2 – and indirectly methane, by impacting global rainfall patterns.”

“The Earth is a big coupled system,” he added, “and there are many pieces to the puzzle. The discovery of these strong, rapid pulses of CO2 is an important piece.”

Icelandic volcano sits on massive magma hot spot

This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. -  Morten S. Riishuus, Nordic Volcanological Institute
This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. – Morten S. Riishuus, Nordic Volcanological Institute

Spectacular eruptions at Bárðarbunga volcano in central Iceland have been spewing lava continuously since Aug. 31. Massive amounts of erupting lava are connected to the destruction of supercontinents and dramatic changes in climate and ecosystems.

New research from UC Davis and Aarhus University in Denmark shows that high mantle temperatures miles beneath the Earth’s surface are essential for generating such large amounts of magma. In fact, the scientists found that the Bárðarbunga volcano lies directly above the hottest portion of the North Atlantic mantle plume.

The study, published online Oct. 5 and appearing in the November issue of Nature Geoscience, comes from Charles Lesher, professor of Earth and Planetary Science at UC Davis and a visiting professor at Aarhus University, and his former PhD student, Eric Brown, now a post-doctoral scholar at Aarhus University.

“From time to time the Earth’s mantle belches out huge quantities of magma on a scale unlike anything witnessed in historic times,” Lesher said. “These events provide unique windows into the internal working of our planet.”

Such fiery events have produced large igneous provinces throughout Earth’s history. They are often attributed to upwelling of hot, deeply sourced mantle material, or “mantle plumes.”

Recent models have dismissed the role of mantle plumes in the formation of large igneous provinces, ascribing their origin instead to chemical anomalies in the shallow mantle.

Based on the volcanic record in and around Iceland over the last 56 million years and numerical modeling, Brown and Lesher show that high mantle temperatures are essential for generating the large magma volumes that gave rise to the North Atlantic large igneous provinces bordering Greenland and northern Europe.

Their findings further substantiate the critical role of mantle plumes in forming large igneous provinces.

“Our work offers new tools to constrain the physical and chemical conditions in the mantle responsible for large igneous provinces,” Brown said. “There’s little doubt that the mantle is composed of different types of chemical compounds, but this is not the dominant factor. Rather, locally high mantle temperatures are the key ingredient.”

The research was supported by grants from the US National Science Foundation and by the Niels Bohr Professorship funded by Danish National Research Foundation.

Read the full study at http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2264.html.