NASA study finds 1934 had worst drought of last thousand years

A new study using a reconstruction of North American drought history over the last 1,000 years found that the drought of 1934 was the driest and most widespread of the last millennium.

Using a tree-ring-based drought record from the years 1000 to 2005 and modern records, scientists from NASA and Lamont-Doherty Earth Observatory found the 1934 drought was 30 percent more severe than the runner-up drought (in 1580) and extended across 71.6 percent of western North America. For comparison, the average extent of the 2012 drought was 59.7 percent.

“It was the worst by a large margin, falling pretty far outside the normal range of variability that we see in the record,” said climate scientist Ben Cook at NASA’s Goddard Institute for Space Studies in New York. Cook is lead author of the study, which will publish in the Oct. 17 edition of Geophysical Research Letters.

Two sets of conditions led to the severity and extent of the 1934 drought. First, a high-pressure system in winter sat over the west coast of the United States and turned away wet weather – a pattern similar to that which occurred in the winter of 2013-14. Second, the spring of 1934 saw dust storms, caused by poor land management practices, suppress rainfall.

“In combination then, these two different phenomena managed to bring almost the entire nation into a drought at that time,” said co-author Richard Seager, professor at the Lamont-Doherty Earth Observatory of Columbia University in New York. “The fact that it was the worst of the millennium was probably in part because of the human role.”

According to the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change, or IPCC, climate change is likely to make droughts in North America worse, and the southwest in particular is expected to become significantly drier as are summers in the central plains. Looking back one thousand years in time is one way to get a handle on the natural variability of droughts so that scientists can tease out anthropogenic effects – such as the dust storms of 1934.

“We want to understand droughts of the past to understand to what extent climate change might make it more or less likely that those events occur in the future,” Cook said.

The abnormal high-pressure system is one lesson from the past that informs scientists’ understanding of the current severe drought in California and the western United States.

“What you saw during this last winter and during 1934, because of this high pressure in the atmosphere, is that all the wintertime storms that would normally come into places like California instead got steered much, much farther north,” Cook said. “It’s these wintertime storms that provide most of the moisture in California. So without getting that rainfall it led to a pretty severe drought.”

This type of high-pressure system is part of normal variation in the atmosphere, and whether or not it will appear in a given year is difficult to predict in computer models of the climate. Models are more attuned to droughts caused by La Niña’s colder sea surface temperatures in the Pacific Ocean, which likely triggered the multi-year Dust Bowl drought throughout the 1930s. In a normal La Niña year, the Pacific Northwest receives more rain than usual and the southwestern states typically dry out.

But a comparison of weather data to models looking at La Niña effects showed that the rain-blocking high-pressure system in the winter of 1933-34 overrode the effects of La Niña for the western states. This dried out areas from northern California to the Rockies that otherwise might have been wetter.

As winter ended, the high-pressure system shifted eastward, interfering with spring and summer rains that typically fall on the central plains. The dry conditions were exacerbated and spread even farther east by dust storms.

“We found that a lot of the drying that occurred in the spring time occurred downwind from where the dust storms originated,” Cook said, “suggesting that it’s actually the dust in the atmosphere that’s driving at least some of the drying in the spring and really allowing this drought event to spread upwards into the central plains.”

Dust clouds reflect sunlight and block solar energy from reaching the surface. That prevents evaporation that would otherwise help form rain clouds, meaning that the presence of the dust clouds themselves leads to less rain, Cook said.

“Previous work and this work offers some evidence that you need this dust feedback to explain the real anomalous nature of the Dust Bowl drought in 1934,” Cook said.

Dust storms like the ones in the 1930s aren’t a problem in North America today. The agricultural practices that gave rise to the Dust Bowl were replaced by those that minimize erosion. Still, agricultural producers need to pay attention to the changing climate and adapt accordingly, not forgetting the lessons of the past, said Seager. “The risk of severe mid-continental droughts is expected to go up over time, not down,” he said.

NASA study finds 1934 had worst drought of last thousand years

A new study using a reconstruction of North American drought history over the last 1,000 years found that the drought of 1934 was the driest and most widespread of the last millennium.

Using a tree-ring-based drought record from the years 1000 to 2005 and modern records, scientists from NASA and Lamont-Doherty Earth Observatory found the 1934 drought was 30 percent more severe than the runner-up drought (in 1580) and extended across 71.6 percent of western North America. For comparison, the average extent of the 2012 drought was 59.7 percent.

“It was the worst by a large margin, falling pretty far outside the normal range of variability that we see in the record,” said climate scientist Ben Cook at NASA’s Goddard Institute for Space Studies in New York. Cook is lead author of the study, which will publish in the Oct. 17 edition of Geophysical Research Letters.

Two sets of conditions led to the severity and extent of the 1934 drought. First, a high-pressure system in winter sat over the west coast of the United States and turned away wet weather – a pattern similar to that which occurred in the winter of 2013-14. Second, the spring of 1934 saw dust storms, caused by poor land management practices, suppress rainfall.

“In combination then, these two different phenomena managed to bring almost the entire nation into a drought at that time,” said co-author Richard Seager, professor at the Lamont-Doherty Earth Observatory of Columbia University in New York. “The fact that it was the worst of the millennium was probably in part because of the human role.”

According to the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change, or IPCC, climate change is likely to make droughts in North America worse, and the southwest in particular is expected to become significantly drier as are summers in the central plains. Looking back one thousand years in time is one way to get a handle on the natural variability of droughts so that scientists can tease out anthropogenic effects – such as the dust storms of 1934.

“We want to understand droughts of the past to understand to what extent climate change might make it more or less likely that those events occur in the future,” Cook said.

The abnormal high-pressure system is one lesson from the past that informs scientists’ understanding of the current severe drought in California and the western United States.

“What you saw during this last winter and during 1934, because of this high pressure in the atmosphere, is that all the wintertime storms that would normally come into places like California instead got steered much, much farther north,” Cook said. “It’s these wintertime storms that provide most of the moisture in California. So without getting that rainfall it led to a pretty severe drought.”

This type of high-pressure system is part of normal variation in the atmosphere, and whether or not it will appear in a given year is difficult to predict in computer models of the climate. Models are more attuned to droughts caused by La Niña’s colder sea surface temperatures in the Pacific Ocean, which likely triggered the multi-year Dust Bowl drought throughout the 1930s. In a normal La Niña year, the Pacific Northwest receives more rain than usual and the southwestern states typically dry out.

But a comparison of weather data to models looking at La Niña effects showed that the rain-blocking high-pressure system in the winter of 1933-34 overrode the effects of La Niña for the western states. This dried out areas from northern California to the Rockies that otherwise might have been wetter.

As winter ended, the high-pressure system shifted eastward, interfering with spring and summer rains that typically fall on the central plains. The dry conditions were exacerbated and spread even farther east by dust storms.

“We found that a lot of the drying that occurred in the spring time occurred downwind from where the dust storms originated,” Cook said, “suggesting that it’s actually the dust in the atmosphere that’s driving at least some of the drying in the spring and really allowing this drought event to spread upwards into the central plains.”

Dust clouds reflect sunlight and block solar energy from reaching the surface. That prevents evaporation that would otherwise help form rain clouds, meaning that the presence of the dust clouds themselves leads to less rain, Cook said.

“Previous work and this work offers some evidence that you need this dust feedback to explain the real anomalous nature of the Dust Bowl drought in 1934,” Cook said.

Dust storms like the ones in the 1930s aren’t a problem in North America today. The agricultural practices that gave rise to the Dust Bowl were replaced by those that minimize erosion. Still, agricultural producers need to pay attention to the changing climate and adapt accordingly, not forgetting the lessons of the past, said Seager. “The risk of severe mid-continental droughts is expected to go up over time, not down,” he said.

Rising mountains dried out Central Asia, scientists say

A record of ancient rainfall teased from long-buried sediments in Mongolia is challenging the popular idea that the arid conditions prevalent in Central Asia today were caused by the ancient uplift of the Himalayas and the Tibetan Plateau.

Instead, Stanford scientists say the formation of two lesser mountain ranges, the Hangay and the Altai, may have been the dominant drivers of climate in the region, leading to the expansion of Asia’s largest desert, the Gobi. The findings will be presented on Thursday, Dec. 12, at the annual meeting of the American Geophysical Union (AGU) in San Francisco.

“These results have major implications for understanding the dominant factors behind modern-day Central Asia’s extremely arid climate and the role of mountain ranges in altering regional climate,” said Page Chamberlain, a professor of environmental Earth system science at Stanford.

Scientists previously thought that the formation of the Himalayan mountain range and the Tibetan plateau around 45 million years ago shaped Asia’s driest environments.

“The traditional explanation has been that the uplift of the Himalayas blocked air from the Indian Ocean from reaching central Asia,” said Jeremy Caves, a doctoral student in Chamberlain’s terrestrial paleoclimate research group who was involved in the study.

This process was thought to have created a distinct rain shadow that led to wetter climates in India and Nepal and drier climates in Central Asia. Similarly, the elevation of the Tibetan Plateau was thought to have triggered an atmospheric process called subsidence, in which a mass of air heated by a high elevation slowly sinks into Central Asia.

“The falling air suppresses convective systems such as thunderstorms, and the result is you get really dry environments,” Caves said.

This long-accepted model of how Central Asia’s arid environments were created mostly ignores, however, the existence of the Altai and Hangay, two northern mountain ranges.

Searching for answers


To investigate the effects of the smaller ranges on the regional climate, Caves and his colleagues from Stanford and Rocky Mountain College in Montana traveled to Mongolia in 2011 and 2012 and collected samples of ancient soil, as well as stream and lake sediments from remote sites in the central, southwestern and western parts of the country.

The team carefully chose its sites by scouring the scientific literature for studies of the region conducted by pioneering researchers in past decades.

“A lot of the papers were by Polish and Russian scientists who went there to look for dinosaur fossils,” said Hari Mix, a doctoral student at Stanford who also participated in the research. “Indeed, at many of the sites we visited, there were dinosaur fossils just lying around.”

The earlier researchers recorded the ages and locations of the rocks they excavated as part of their own investigations; Caves and his team used those age estimates to select the most promising sites for their own study.

At each site, the team bagged sediment samples that were later analyzed to determine their carbon isotope content. The relative level of carbon isotopes present in a soil sample is related to the productivity of plants growing in the soil, which is itself dependent on the annual rainfall. Thus, by measuring carbon isotope amounts from different sediment samples of different ages, the team was able to reconstruct past precipitation levels.

An ancient wet period


The new data suggest that rainfall in central and southwestern Mongolia had decreased by 50 to 90 percent in the last several tens of million of years.

“Right now, precipitation in Mongolia is about 5 inches annually,” Caves said. “To explain our data, rainfall had to decrease from 10 inches a year or more to its current value over the last 10 to 30 million years.”

That means that much of Mongolia and Central Asia were still relatively wet even after the formation of the Himalayas and the Tibetan Plateau 45 million years ago. The data show that it wasn’t until about 30 million years ago, when the Hangay Mountains first formed, that rainfall started to decrease. The region began drying out even faster about 5 million to 10 million years ago, when the Altai Mountains began to rise.

The scientists hypothesize that once they formed, the Hangay and Altai ranges created rain shadows of their own that blocked moisture from entering Central Asia.

“As a result, the northern and western sides of these ranges are wet, while the southern and eastern sides are dry,” Caves said.

The team is not discounting the effect of the Himalayas and the Tibetan Plateau entirely, because portions of the Gobi Desert likely already existed before the Hangay or Altai began forming.

“What these smaller mountains did was expand the Gobi north and west into Mongolia,” Caves said.

The uplift of the Hangay and Altai may have had other, more far-reaching implications as well, Caves said. For example, westerly winds in Asia slam up against the Altai today, creating strong cyclonic winds in the process. Under the right conditions, the cyclones pick up large amounts of dust as they snake across the Gobi Desert. That dust can be lofted across the Pacific Ocean and even reach California, where it serves as microscopic seeds for developing raindrops.

The origins of these cyclonic winds, as well as substantial dust storms in China today, may correlate with uplift of the Altai, Caves said. His team plans to return to Mongolia and Kazakhstan next summer to collect more samples and to use climate models to test whether the Altai are responsible for the start of the large dust storms.

“If the Altai are a key part of regulating Central Asia’s climate, we can go and look for evidence of it in the past,” Caves said.

Rising mountains dried out Central Asia, scientists say

A record of ancient rainfall teased from long-buried sediments in Mongolia is challenging the popular idea that the arid conditions prevalent in Central Asia today were caused by the ancient uplift of the Himalayas and the Tibetan Plateau.

Instead, Stanford scientists say the formation of two lesser mountain ranges, the Hangay and the Altai, may have been the dominant drivers of climate in the region, leading to the expansion of Asia’s largest desert, the Gobi. The findings will be presented on Thursday, Dec. 12, at the annual meeting of the American Geophysical Union (AGU) in San Francisco.

“These results have major implications for understanding the dominant factors behind modern-day Central Asia’s extremely arid climate and the role of mountain ranges in altering regional climate,” said Page Chamberlain, a professor of environmental Earth system science at Stanford.

Scientists previously thought that the formation of the Himalayan mountain range and the Tibetan plateau around 45 million years ago shaped Asia’s driest environments.

“The traditional explanation has been that the uplift of the Himalayas blocked air from the Indian Ocean from reaching central Asia,” said Jeremy Caves, a doctoral student in Chamberlain’s terrestrial paleoclimate research group who was involved in the study.

This process was thought to have created a distinct rain shadow that led to wetter climates in India and Nepal and drier climates in Central Asia. Similarly, the elevation of the Tibetan Plateau was thought to have triggered an atmospheric process called subsidence, in which a mass of air heated by a high elevation slowly sinks into Central Asia.

“The falling air suppresses convective systems such as thunderstorms, and the result is you get really dry environments,” Caves said.

This long-accepted model of how Central Asia’s arid environments were created mostly ignores, however, the existence of the Altai and Hangay, two northern mountain ranges.

Searching for answers


To investigate the effects of the smaller ranges on the regional climate, Caves and his colleagues from Stanford and Rocky Mountain College in Montana traveled to Mongolia in 2011 and 2012 and collected samples of ancient soil, as well as stream and lake sediments from remote sites in the central, southwestern and western parts of the country.

The team carefully chose its sites by scouring the scientific literature for studies of the region conducted by pioneering researchers in past decades.

“A lot of the papers were by Polish and Russian scientists who went there to look for dinosaur fossils,” said Hari Mix, a doctoral student at Stanford who also participated in the research. “Indeed, at many of the sites we visited, there were dinosaur fossils just lying around.”

The earlier researchers recorded the ages and locations of the rocks they excavated as part of their own investigations; Caves and his team used those age estimates to select the most promising sites for their own study.

At each site, the team bagged sediment samples that were later analyzed to determine their carbon isotope content. The relative level of carbon isotopes present in a soil sample is related to the productivity of plants growing in the soil, which is itself dependent on the annual rainfall. Thus, by measuring carbon isotope amounts from different sediment samples of different ages, the team was able to reconstruct past precipitation levels.

An ancient wet period


The new data suggest that rainfall in central and southwestern Mongolia had decreased by 50 to 90 percent in the last several tens of million of years.

“Right now, precipitation in Mongolia is about 5 inches annually,” Caves said. “To explain our data, rainfall had to decrease from 10 inches a year or more to its current value over the last 10 to 30 million years.”

That means that much of Mongolia and Central Asia were still relatively wet even after the formation of the Himalayas and the Tibetan Plateau 45 million years ago. The data show that it wasn’t until about 30 million years ago, when the Hangay Mountains first formed, that rainfall started to decrease. The region began drying out even faster about 5 million to 10 million years ago, when the Altai Mountains began to rise.

The scientists hypothesize that once they formed, the Hangay and Altai ranges created rain shadows of their own that blocked moisture from entering Central Asia.

“As a result, the northern and western sides of these ranges are wet, while the southern and eastern sides are dry,” Caves said.

The team is not discounting the effect of the Himalayas and the Tibetan Plateau entirely, because portions of the Gobi Desert likely already existed before the Hangay or Altai began forming.

“What these smaller mountains did was expand the Gobi north and west into Mongolia,” Caves said.

The uplift of the Hangay and Altai may have had other, more far-reaching implications as well, Caves said. For example, westerly winds in Asia slam up against the Altai today, creating strong cyclonic winds in the process. Under the right conditions, the cyclones pick up large amounts of dust as they snake across the Gobi Desert. That dust can be lofted across the Pacific Ocean and even reach California, where it serves as microscopic seeds for developing raindrops.

The origins of these cyclonic winds, as well as substantial dust storms in China today, may correlate with uplift of the Altai, Caves said. His team plans to return to Mongolia and Kazakhstan next summer to collect more samples and to use climate models to test whether the Altai are responsible for the start of the large dust storms.

“If the Altai are a key part of regulating Central Asia’s climate, we can go and look for evidence of it in the past,” Caves said.

EARTH: Return of the dust bowl: Geoscientists predict a dry, dusty future for the American West

Haboobs, giant dust storms, walloped Arizona last summer – some close to 2 kilometers high and 160 kilometers wide – knocking out electricity, creating traffic jams and grounding airplanes. Even old-timers say they can’t remember anything quite like this year’s aerial assaults. Meanwhile Texas is experiencing one of the most extreme droughts in recent history, with almost 90 percent of the state in the most extreme level of drought. Arizona, California, Colorado, New Mexico, Oklahoma, Utah and other states are also experiencing drought conditions. The worry is that this might just be the start of a trend, as EARTH reports in the November issue: Over the next couple of decades, researchers say, the American West will transition to an environment that may make the 1930s Dust Bowl seem mild and brief.

The problem, researchers told EARTH in “Return of the Dust Bowl,” is that rising temperatures will contribute directly and indirectly to there being more dust in the air. Then, persistent droughts, increasingly violent and variable weather patterns, urban and suburban development and even off-road recreational vehicle usage compound the problem. So, is the West doomed? Or is there any reason to believe that this forecast may not come true?

Read more about the havoc that dust has been wreaking in the West in the November issue of EARTH now available digitally. Also featured are other stories, such as how one geoscientist took a road trip to find out if the U.S. is ready for vehicles running on natural gas; how subducting seamounts are not to blame for producing megathrust earthquakes like the Japan quake last March; and, you won’t want to miss the news story about La Niña formation, as NOAA just announced that the pattern has formed again in the Pacific and will affect us this winter.

Study to investigate giant Saharan dust storms

Dust plume off the Sahara desert over the northeast Atlantic Ocean. The Azores are visible at the northwest edge of the dust plume in this SeaWiFS image. The Cape Verde Islands can be seen through the dust near the bottom of the image. Sensor: OrbView-2/SeaWiFS
Dust plume off the Sahara desert over the northeast Atlantic Ocean. The Azores are visible at the northwest edge of the dust plume in this SeaWiFS image. The Cape Verde Islands can be seen through the dust near the bottom of the image. Sensor: OrbView-2/SeaWiFS

The University of Leeds is to lead a £1m project to study the giant desert storms of the Sahara which will help improve climate and weather prediction models.

Extreme sandstorms like the fast-moving ‘walls of dust’ seen in Hollywood film The Mummy may look spectacular, but their effects on weather systems and climate change are even more dramatic.

These storms – known as ‘haboobs’ – sweep large quantities of mineral dust off the sands of the Sahara into the atmosphere, where it exerts a wide range of effects on the environment.

Project leader Dr Peter Knippertz, of the University of Leeds, said: “Dust is a really important player in the climate system – for example, dust from the Sahara provides most of the nutrients needed to fertilise the Amazon rainforest. But the harsh desert environment of the Sahara means very few measurements have ever been made there.”

Dust is one of the main sources of iron to the oceans where it is important in the formation of CO2-guzzling phytoplankton. In the atmosphere, dust particles affect how much energy from the sun enters and leaves the planet, which has a longer-term impact on climate, and dust also deteriorates overall air quality and therefore has direct implications for human health.

The haboob storms of the Sahara are one of the main sources of atmospheric dust. They are caused by downdrafts at the end of a thunderstorm, which can whip up a solid wall of dust up to 1,000 metres high that travels at speeds of up to 50mph. As dramatic as haboobs are, however, their role in the global dust cycle is still unclear and they are therefore not routinely included in climate models.

Dr Knippertz said: “We don’t know for sure how much of the dust within these storms ends up in the atmosphere and how much returns to earth once the winds have died down. This project will help us to answer this question and to produce a comprehensive representation of the global dust cycle with the view to developing more accurate models.

“Ultimately the study will help to eliminate some of the uncertainties in predicting climate, weather and the impacts on human health.”

The team will examine data on these storms from recent and future international field campaigns to the Sahara and its surroundings. They will study haboobs, smaller storms known as ‘dust-devils’ and fast moving ribbons of air known as low-level jets, all of which contribute to atmospheric dust.

The study is funded by a ? 1.36 m Starting Grant from the European Research Council and will commence in October 2010 and will run for five years.