Star Trekish, rafting scientists make bold discovery on Fraser River

SFU geographer Jeremy Venditti (orange jacket; black hat) is among several scientists aboard a Fraser River Rafting Expeditions measuring boat passing through a Fraser River canyon. -  SFU PAMR
SFU geographer Jeremy Venditti (orange jacket; black hat) is among several scientists aboard a Fraser River Rafting Expeditions measuring boat passing through a Fraser River canyon. – SFU PAMR

A Simon Fraser University-led team behind a new discovery has “?had the vision to go, like Star Trek, where no one has gone before: to a steep and violent bedrock canyon, with surprising results.”

That comment comes from a reviewer about a truly groundbreaking study just published in the journal Nature.
Scientists studying river flow in bedrock canyons for the first time have discovered that previous conceptions of flow and incision in bedrock-rivers are wrong.

SFU geography professor Jeremy Venditti led the team of SFU, University of Ottawa and University of British Columbia researchers on a scientific expedition on the Fraser River.

“For the first time, we used oceanographic instruments, commonly used to measure three-dimensional river flow velocity in low land rivers, to examine flow through steep bedrock canyons,” says Venditti. “The 3-D instruments capture downstream, cross-stream and vertical flow velocity.”

To carry out their Star Trek-like expedition, the researchers put their lives into the experienced hands of Fraser River Rafting Expeditions, which took them into 42 bedrock canyons. Equipped with acoustic Doppler current profilers to measure velocity fields, they rafted 486 kilometres of the Fraser River from Quesnel to Chilliwack. Their raft navigated turbulent waters normally only accessed by thrill-seeking river rafters.

“Current models of bedrock-rivers assume flow velocity is uniform, without changes in the downstream direction. Our results show this is not the case,” says Colin Rennie, an Ottawa U civil engineering professor.

“We observed a complicated flow field in which high velocity flow plunges down the bottom of the canyon forming a velocity inversion and then rises along the canyon walls. This has important implications for canyon erosion because the plunging flow patterns result in greater flow force applied to the bed.”

The scientists conclude that river flow in bedrock canyons is far more complex than first thought and the way scientists have linked climate, bedrock incision and the uplift of mountains needs to be rethought. They say the complexity of river flow plays an important role in deciding bedrock canyon morphology and river width.

“The links between the uplift of mountain ranges, bedrock incision by rivers and climate is one of the most important open questions in science,” notes Venditti. “The incision that occurs in bedrock canyons is driven by climate because the climate system controls precipitation and the amount of water carried in rivers. River flow drives the erosional mechanisms that cut valleys and allow the uplift of majestic mountain peaks.”

Venditti adds that river flow velocity in bedrock canyons also influences the delivery of sediment from mountain-rivers to lowland rivers.

“Sediment delivery controls water levels and stability of lowland rivers, which has important implications for lowland river management, flooding impacts to infrastructure, availability of fish habitat and more.

“Lowland river floodplains and deltas are the most densely populated places on earth, so understanding what is happening in mountain rivers is important because our continued development of these areas is significantly affected by what is happening upstream.”

Star Trekish, rafting scientists make bold discovery on Fraser River

SFU geographer Jeremy Venditti (orange jacket; black hat) is among several scientists aboard a Fraser River Rafting Expeditions measuring boat passing through a Fraser River canyon. -  SFU PAMR
SFU geographer Jeremy Venditti (orange jacket; black hat) is among several scientists aboard a Fraser River Rafting Expeditions measuring boat passing through a Fraser River canyon. – SFU PAMR

A Simon Fraser University-led team behind a new discovery has “?had the vision to go, like Star Trek, where no one has gone before: to a steep and violent bedrock canyon, with surprising results.”

That comment comes from a reviewer about a truly groundbreaking study just published in the journal Nature.
Scientists studying river flow in bedrock canyons for the first time have discovered that previous conceptions of flow and incision in bedrock-rivers are wrong.

SFU geography professor Jeremy Venditti led the team of SFU, University of Ottawa and University of British Columbia researchers on a scientific expedition on the Fraser River.

“For the first time, we used oceanographic instruments, commonly used to measure three-dimensional river flow velocity in low land rivers, to examine flow through steep bedrock canyons,” says Venditti. “The 3-D instruments capture downstream, cross-stream and vertical flow velocity.”

To carry out their Star Trek-like expedition, the researchers put their lives into the experienced hands of Fraser River Rafting Expeditions, which took them into 42 bedrock canyons. Equipped with acoustic Doppler current profilers to measure velocity fields, they rafted 486 kilometres of the Fraser River from Quesnel to Chilliwack. Their raft navigated turbulent waters normally only accessed by thrill-seeking river rafters.

“Current models of bedrock-rivers assume flow velocity is uniform, without changes in the downstream direction. Our results show this is not the case,” says Colin Rennie, an Ottawa U civil engineering professor.

“We observed a complicated flow field in which high velocity flow plunges down the bottom of the canyon forming a velocity inversion and then rises along the canyon walls. This has important implications for canyon erosion because the plunging flow patterns result in greater flow force applied to the bed.”

The scientists conclude that river flow in bedrock canyons is far more complex than first thought and the way scientists have linked climate, bedrock incision and the uplift of mountains needs to be rethought. They say the complexity of river flow plays an important role in deciding bedrock canyon morphology and river width.

“The links between the uplift of mountain ranges, bedrock incision by rivers and climate is one of the most important open questions in science,” notes Venditti. “The incision that occurs in bedrock canyons is driven by climate because the climate system controls precipitation and the amount of water carried in rivers. River flow drives the erosional mechanisms that cut valleys and allow the uplift of majestic mountain peaks.”

Venditti adds that river flow velocity in bedrock canyons also influences the delivery of sediment from mountain-rivers to lowland rivers.

“Sediment delivery controls water levels and stability of lowland rivers, which has important implications for lowland river management, flooding impacts to infrastructure, availability of fish habitat and more.

“Lowland river floodplains and deltas are the most densely populated places on earth, so understanding what is happening in mountain rivers is important because our continued development of these areas is significantly affected by what is happening upstream.”

A clearer picture of how rivers and deltas develop

This is a schematic model of a river-coast system. -  Geleynse et al
This is a schematic model of a river-coast system. – Geleynse et al

By adding information about the subsoil to an existing sedimentation and erosion model, researchers at Delft University of Technology (TU Delft, The Netherlands) have obtained a clearer picture of how rivers and deltas develop over time. A better understanding of the interaction between the subsoil and flow processes in a river-delta system can play a key role in civil engineering (delta management), but also in geology (especially in the work of reservoir geologists). Nathanaƫl Geleynse et al. recently published in the journals Geophysical Research Letters and Earth and Planetary Science Letters.

Model

Many factors are involved in how a river behaves and the creation of a river delta. Firstly, of course, there is the river itself. What kind of material does it transport to the delta? Does this material consist of small particles (clay) or larger particles (sand)? But other important factors include the extent of the tidal differences at the coast and the height of the waves whipped up by the wind. In this study, researchers at TU Delft are working together with Deltares and making use of the institute’s computer models (Delft3D software). These models already take a large number of variables into account. Geleynse et al. have now supplemented them with information on the subsoil. It transpires that this variable also exerts a significant influence on how the river behaves and the closely related process of delta formation.

Room for the River

The extra dimension that Geleynse et al. have added to the model is important to delta management, among other things. If – as the Delta Commission recommends – we should be creating “Room for the River”, it is important to know what a river will do with that space. NathanaĆ«l Geleynse explains: “Existing data do not enable us to give ready-made answers to specific management questions … nature is not so easily tamed … but they do offer plausible explanations for the patterns and shapes we see on the surface. The flow system carries the signature of the subsoil, something we were relatively unaware of until now. Our model provides ample scope for further development and for studying various scenarios in the current structure.”

Geological information


River management is all about short-term and possible future scenarios. But the model developed by Geleynse et al. also offers greater insight into how a river/delta has developed over thousands of years. What might the subsoil have looked like and – a key factor for the oil industry – where might you expect to find oil reserves and what might their geometrical characteristics be? In combination with data from a limited number of core samples and other local measurements, the model can give a more detailed picture of the area in question than was possible until now.

The link between the creation of the delta and the structure of the delta subsoil is also of interest to engineers who wish to build there. Hundreds of millions of people across the globe live in deltas and these urban deltas are only expected to grow in the decades to come.