Snail shells show high-rise plateau is much lower than it used to be

This is the Zhada Basin on the southwest Tibetan Plateau, with the Himalayas to the south. -  Joel Saylor
This is the Zhada Basin on the southwest Tibetan Plateau, with the Himalayas to the south. – Joel Saylor

The Tibetan Plateau in south-central Asia, because of its size, elevation and impact on climate, is one of the world’s greatest geological oddities.

At about 960,000 square miles it covers slightly more land area than Alaska, Texas and California combined, and its elevation is on the same scale as Mount Rainier in the Cascade Range of Washington state. Because it rises so high into the atmosphere, it helps bring monsoons over India and other nations to the south while the plateau itself remains generally arid.

For decades, geologists have debated when and how the plateau reached such lofty heights, some 14,000 feet above sea level, about half the elevation of the highest Himalayan peaks just south of the plateau.

But new research led by a University of Washington scientist appears to confirm an earlier improbable finding – at least one large area in southwest Tibet, the plateau’s Zhada Basin, actually lost 3,000 to 5,000 feet of elevation sometime in the Pliocene epoch.

“This basin is really high right now but we think it was a kilometer or more higher just 3 million to 4 million years ago,” said Katharine Huntington, a UW associate professor of Earth and space sciences and the lead author of a paper describing the research.

Co-authors are Joel Saylor of the University of Houston and Jay Quade and Adam Hudson, both of the University of Arizona. The paper was published online in August and will appear in a future print edition of the Geological Society of America Bulletin.

The Zhada Basin has rugged terrain, with exposed deposits of ancient lake and river sediments that make fossil shells of gastropods such as snails easily accessible, and determining their age is relatively straightforward. The researchers studied shells dating from millions of years ago and from a variety of aquatic environments. They also collected modern shell and water samples from a variety of environments for comparison.

The work confirms results of a previous study involving Saylor and Quade that examined the ratio of heavy isotope oxygen-18 to light isotope oxygen-16 in ancient snail shells from the Zhada Basin. They found the ratios were very low, which suggested the basin had a higher elevation in the past.

Oxygen-18 levels decrease in precipitation at higher elevations in comparison with oxygen-16, so shells formed in lakes and rivers that collect precipitation at higher elevations should have a lower heavy-to-light oxygen ratio. However, those lower ratios depend on a number of other factors, including temperature, evaporation and precipitation source, which made it difficult to say with certainty whether the low ratios found in the ancient snail shells meant a loss of elevation in the Zhada Basin.

So the scientists also employed a technique called clumped isotope thermometry, which Huntington has used and worked to refine for several years, to determine the temperature of shell growth and get an independent estimate of elevation change in the basin.

Bonding, or “clumping” together, of heavy carbon-13 and oxygen-18 isotopes in the carbonate of snail shells happens more readily at colder temperatures, and is measured using a tool called a mass spectrometer that provides data on the temperature of the lake or river water in which the snails lived.

The scientists found markedly greater “clumping,” as well as lower ratios of oxygen-18 to oxygen-16 in the ancient shells, indicating the shells formed at temperatures as much as 11 degrees Celsius (20 F) colder than average temperatures today, the equivalent of as much as 5,000 feet of elevation loss.

Just why the elevation decline happened is open to speculation. One possibility is that as faults in the region spread, the Zhada Basin lowered, Huntington said. It is unknown yet whether other parts of the southern plateau also lowered at the same time, but if elevation loss was widespread it could be because of broader fault spreading. It also is possible the crust thickened and forced large rock formations even deeper into the Earth, where they heated until they reached a consistency at which they could ooze out from beneath the crust, like toothpaste squeezed from the tube.

She noted that climate records from deep-sea fossils indicate Earth was significantly warmer when the cold Zhada Basin snail shells were formed.

“Our findings are a conservative estimate,” Huntington said. “No one can say this result is due to a colder climate, because if anything it should have been warmer.”

Snail shells show high-rise plateau is much lower than it used to be

This is the Zhada Basin on the southwest Tibetan Plateau, with the Himalayas to the south. -  Joel Saylor
This is the Zhada Basin on the southwest Tibetan Plateau, with the Himalayas to the south. – Joel Saylor

The Tibetan Plateau in south-central Asia, because of its size, elevation and impact on climate, is one of the world’s greatest geological oddities.

At about 960,000 square miles it covers slightly more land area than Alaska, Texas and California combined, and its elevation is on the same scale as Mount Rainier in the Cascade Range of Washington state. Because it rises so high into the atmosphere, it helps bring monsoons over India and other nations to the south while the plateau itself remains generally arid.

For decades, geologists have debated when and how the plateau reached such lofty heights, some 14,000 feet above sea level, about half the elevation of the highest Himalayan peaks just south of the plateau.

But new research led by a University of Washington scientist appears to confirm an earlier improbable finding – at least one large area in southwest Tibet, the plateau’s Zhada Basin, actually lost 3,000 to 5,000 feet of elevation sometime in the Pliocene epoch.

“This basin is really high right now but we think it was a kilometer or more higher just 3 million to 4 million years ago,” said Katharine Huntington, a UW associate professor of Earth and space sciences and the lead author of a paper describing the research.

Co-authors are Joel Saylor of the University of Houston and Jay Quade and Adam Hudson, both of the University of Arizona. The paper was published online in August and will appear in a future print edition of the Geological Society of America Bulletin.

The Zhada Basin has rugged terrain, with exposed deposits of ancient lake and river sediments that make fossil shells of gastropods such as snails easily accessible, and determining their age is relatively straightforward. The researchers studied shells dating from millions of years ago and from a variety of aquatic environments. They also collected modern shell and water samples from a variety of environments for comparison.

The work confirms results of a previous study involving Saylor and Quade that examined the ratio of heavy isotope oxygen-18 to light isotope oxygen-16 in ancient snail shells from the Zhada Basin. They found the ratios were very low, which suggested the basin had a higher elevation in the past.

Oxygen-18 levels decrease in precipitation at higher elevations in comparison with oxygen-16, so shells formed in lakes and rivers that collect precipitation at higher elevations should have a lower heavy-to-light oxygen ratio. However, those lower ratios depend on a number of other factors, including temperature, evaporation and precipitation source, which made it difficult to say with certainty whether the low ratios found in the ancient snail shells meant a loss of elevation in the Zhada Basin.

So the scientists also employed a technique called clumped isotope thermometry, which Huntington has used and worked to refine for several years, to determine the temperature of shell growth and get an independent estimate of elevation change in the basin.

Bonding, or “clumping” together, of heavy carbon-13 and oxygen-18 isotopes in the carbonate of snail shells happens more readily at colder temperatures, and is measured using a tool called a mass spectrometer that provides data on the temperature of the lake or river water in which the snails lived.

The scientists found markedly greater “clumping,” as well as lower ratios of oxygen-18 to oxygen-16 in the ancient shells, indicating the shells formed at temperatures as much as 11 degrees Celsius (20 F) colder than average temperatures today, the equivalent of as much as 5,000 feet of elevation loss.

Just why the elevation decline happened is open to speculation. One possibility is that as faults in the region spread, the Zhada Basin lowered, Huntington said. It is unknown yet whether other parts of the southern plateau also lowered at the same time, but if elevation loss was widespread it could be because of broader fault spreading. It also is possible the crust thickened and forced large rock formations even deeper into the Earth, where they heated until they reached a consistency at which they could ooze out from beneath the crust, like toothpaste squeezed from the tube.

She noted that climate records from deep-sea fossils indicate Earth was significantly warmer when the cold Zhada Basin snail shells were formed.

“Our findings are a conservative estimate,” Huntington said. “No one can say this result is due to a colder climate, because if anything it should have been warmer.”

Early Earth less hellish than previously thought

Calvin Miller is shown at the Kerlingarfjoll volcano in central Iceland. Some geologists have proposed that the early Earth may have resembled regions like this. -  Tamara Carley
Calvin Miller is shown at the Kerlingarfjoll volcano in central Iceland. Some geologists have proposed that the early Earth may have resembled regions like this. – Tamara Carley

Conditions on Earth for the first 500 million years after it formed may have been surprisingly similar to the present day, complete with oceans, continents and active crustal plates.

This alternate view of Earth’s first geologic eon, called the Hadean, has gained substantial new support from the first detailed comparison of zircon crystals that formed more than 4 billion years ago with those formed contemporaneously in Iceland, which has been proposed as a possible geological analog for early Earth.

The study was conducted by a team of geologists directed by Calvin Miller, the William R. Kenan Jr. Professor of Earth and Environmental Sciences at Vanderbilt University, and published online this weekend by the journal Earth and Planetary Science Letters in a paper titled, “Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record.”

From the early 20th century up through the 1980’s, geologists generally agreed that conditions during the Hadean period were utterly hostile to life. Inability to find rock formations from the period led them to conclude that early Earth was hellishly hot, either entirely molten or subject to such intense asteroid bombardment that any rocks that formed were rapidly remelted. As a result, they pictured the surface of the Earth as covered by a giant “magma ocean.”

This perception began to change about 30 years ago when geologists discovered zircon crystals (a mineral typically associated with granite) with ages exceeding 4 billion years old preserved in younger sandstones. These ancient zircons opened the door for exploration of the Earth’s earliest crust. In addition to the radiometric dating techniques that revealed the ages of these ancient zircons, geologists used other analytical techniques to extract information about the environment in which the crystals formed, including the temperature and whether water was present.

Since then zircon studies have revealed that the Hadean Earth was not the uniformly hellish place previously imagined, but during some periods possessed an established crust cool enough so that surface water could form – possibly on the scale of oceans.

Accepting that the early Earth had a solid crust and liquid water (at least at times), scientists have continued to debate the nature of that crust and the processes that were active at that time: How similar was the Hadean Earth to what we see today?

Two schools of thought have emerged: One argues that Hadean Earth was surprisingly similar to the present day. The other maintains that, although it was less hostile than formerly believed, early Earth was nonetheless a foreign-seeming and formidable place, similar to the hottest, most extreme, geologic environments of today. A popular analog is Iceland, where substantial amounts of crust are forming from basaltic magma that is much hotter than the magmas that built most of Earth’s current continental crust.

“We reasoned that the only concrete evidence for what the Hadean was like came from the only known survivors: zircon crystals – and yet no one had investigated Icelandic zircon to compare their telltale compositions to those that are more than 4 billion years old, or with zircon from other modern environments,” said Miller.

In 2009, Vanderbilt doctoral student Tamara Carley, who has just accepted the position of assistant professor at Layfayette College, began collecting samples from volcanoes and sands derived from erosion of Icelandic volcanoes. She separated thousands of zircon crystals from the samples, which cover the island’s regional diversity and represent its 18 million year history.

Working with Miller and doctoral student Abraham Padilla at Vanderbilt, Joe Wooden at Stanford University, Axel Schmitt and Rita Economos from UCLA, Ilya Bindeman at the University of Oregon and Brennan Jordan at the University of South Dakota, Carley analyzed about 1,000 zircon crystals for their age and elemental and isotopic compositions. She then searched the literature for all comparable analyses of Hadean zircon and for representative analyses of zircon from other modern environments.

“We discovered that Icelandic zircons are quite distinctive from crystals formed in other locations on modern Earth. We also found that they formed in magmas that are remarkably different from those in which the Hadean zircons grew,” said Carley.

Most importantly, their analysis found that Icelandic zircons grew from much hotter magmas than Hadean zircons. Although surface water played an important role in the generation of both Icelandic and Hadean crystals, in the Icelandic case the water was extremely hot when it interacted with the source rocks while the Hadean water-rock interactions were at significantly lower temperatures.

“Our conclusion is counterintuitive,” said Miller. “Hadean zircons grew from magmas rather similar to those formed in modern subduction zones, but apparently even ‘cooler’ and ‘wetter’ than those being produced today.”

Early Earth less hellish than previously thought

Calvin Miller is shown at the Kerlingarfjoll volcano in central Iceland. Some geologists have proposed that the early Earth may have resembled regions like this. -  Tamara Carley
Calvin Miller is shown at the Kerlingarfjoll volcano in central Iceland. Some geologists have proposed that the early Earth may have resembled regions like this. – Tamara Carley

Conditions on Earth for the first 500 million years after it formed may have been surprisingly similar to the present day, complete with oceans, continents and active crustal plates.

This alternate view of Earth’s first geologic eon, called the Hadean, has gained substantial new support from the first detailed comparison of zircon crystals that formed more than 4 billion years ago with those formed contemporaneously in Iceland, which has been proposed as a possible geological analog for early Earth.

The study was conducted by a team of geologists directed by Calvin Miller, the William R. Kenan Jr. Professor of Earth and Environmental Sciences at Vanderbilt University, and published online this weekend by the journal Earth and Planetary Science Letters in a paper titled, “Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record.”

From the early 20th century up through the 1980’s, geologists generally agreed that conditions during the Hadean period were utterly hostile to life. Inability to find rock formations from the period led them to conclude that early Earth was hellishly hot, either entirely molten or subject to such intense asteroid bombardment that any rocks that formed were rapidly remelted. As a result, they pictured the surface of the Earth as covered by a giant “magma ocean.”

This perception began to change about 30 years ago when geologists discovered zircon crystals (a mineral typically associated with granite) with ages exceeding 4 billion years old preserved in younger sandstones. These ancient zircons opened the door for exploration of the Earth’s earliest crust. In addition to the radiometric dating techniques that revealed the ages of these ancient zircons, geologists used other analytical techniques to extract information about the environment in which the crystals formed, including the temperature and whether water was present.

Since then zircon studies have revealed that the Hadean Earth was not the uniformly hellish place previously imagined, but during some periods possessed an established crust cool enough so that surface water could form – possibly on the scale of oceans.

Accepting that the early Earth had a solid crust and liquid water (at least at times), scientists have continued to debate the nature of that crust and the processes that were active at that time: How similar was the Hadean Earth to what we see today?

Two schools of thought have emerged: One argues that Hadean Earth was surprisingly similar to the present day. The other maintains that, although it was less hostile than formerly believed, early Earth was nonetheless a foreign-seeming and formidable place, similar to the hottest, most extreme, geologic environments of today. A popular analog is Iceland, where substantial amounts of crust are forming from basaltic magma that is much hotter than the magmas that built most of Earth’s current continental crust.

“We reasoned that the only concrete evidence for what the Hadean was like came from the only known survivors: zircon crystals – and yet no one had investigated Icelandic zircon to compare their telltale compositions to those that are more than 4 billion years old, or with zircon from other modern environments,” said Miller.

In 2009, Vanderbilt doctoral student Tamara Carley, who has just accepted the position of assistant professor at Layfayette College, began collecting samples from volcanoes and sands derived from erosion of Icelandic volcanoes. She separated thousands of zircon crystals from the samples, which cover the island’s regional diversity and represent its 18 million year history.

Working with Miller and doctoral student Abraham Padilla at Vanderbilt, Joe Wooden at Stanford University, Axel Schmitt and Rita Economos from UCLA, Ilya Bindeman at the University of Oregon and Brennan Jordan at the University of South Dakota, Carley analyzed about 1,000 zircon crystals for their age and elemental and isotopic compositions. She then searched the literature for all comparable analyses of Hadean zircon and for representative analyses of zircon from other modern environments.

“We discovered that Icelandic zircons are quite distinctive from crystals formed in other locations on modern Earth. We also found that they formed in magmas that are remarkably different from those in which the Hadean zircons grew,” said Carley.

Most importantly, their analysis found that Icelandic zircons grew from much hotter magmas than Hadean zircons. Although surface water played an important role in the generation of both Icelandic and Hadean crystals, in the Icelandic case the water was extremely hot when it interacted with the source rocks while the Hadean water-rock interactions were at significantly lower temperatures.

“Our conclusion is counterintuitive,” said Miller. “Hadean zircons grew from magmas rather similar to those formed in modern subduction zones, but apparently even ‘cooler’ and ‘wetter’ than those being produced today.”

Asian monsoon much older than previously thought

University of Arizona geoscientist Alexis Licht (bottom left) and his colleagues from the French-Burmese Paleontological Team led by Jean-Jacques Jaeger of the University of Poitiers, France (center with hiking staff) used fossils they collected in Myanmar to figure out that the Asian monsoon started at least 40 million years ago. -  French-Burmese Paleontological Team 2012
University of Arizona geoscientist Alexis Licht (bottom left) and his colleagues from the French-Burmese Paleontological Team led by Jean-Jacques Jaeger of the University of Poitiers, France (center with hiking staff) used fossils they collected in Myanmar to figure out that the Asian monsoon started at least 40 million years ago. – French-Burmese Paleontological Team 2012

The Asian monsoon already existed 40 million years ago during a period of high atmospheric carbon dioxide and warmer temperatures, reports an international research team led by a University of Arizona geoscientist.

Scientists thought the climate pattern known as the Asian monsoon began 22-25 million years ago as a result of the uplift of the Tibetan Plateau and the Himalaya Mountains.

“It is surprising,” said lead author Alexis Licht, now a research associate in the UA department of geosciences. “People thought the monsoon started much later.”

The monsoon, the largest climate system in the world, governs the climate in much of mainland Asia, bringing torrential summer rains and dry winters.

Co-author Jay Quade, a UA professor of geosciences, said, “This research compellingly shows that a strong Asian monsoon system was in place at least by 35-40 million years ago.”

The research by Licht and his colleagues shows the earlier start of the monsoon occurred at a time when atmospheric CO2 was three to four times greater than it is now. The monsoon then weakened 34 million years ago when atmospheric CO2 then decreased by 50 percent and an ice age occurred.

Licht said the study is the first to show the rise of the monsoon is as much a result of global climate as it is a result of topography. The team’s paper is scheduled for early online publication in the journal Nature on Sept. 14.

“This finding has major consequences for the ongoing global warming,” he said. “It suggests increasing the atmospheric CO2 will increase the monsoonal precipitation significantly.”

Unraveling the monsoon’s origins required contributions from three different teams of scientists that were independently studying the environment of 40 million years ago.

All three investigations showed the monsoon climate pattern occurred 15 million years earlier than previously thought. Combining different lines of evidence from different places strengthened the group’s confidence in the finding, Licht said. The climate modeling team also linked the development of the monsoon to the increased CO2 of the time.

Licht and his colleagues at Poitiers and Nancy universities in France examined snail and mammal fossils in Myanmar. The group led by G. Dupont-Nivet and colleagues at Utrecht University in the Netherlands studied lake deposits in Xining Basin in central China. J.-B. Ladant and Y. Donnadieu of the Laboratory of Sciences of the Climate and Environment (LSCE) in Gif-sur-Yvette, France, created climate simulations of the Asian climate 40 million years ago.

A complete list of authors of the group’s publication, “Asian monsoons in a late Eocene greenhouse world,” is at the bottom of this release, as is a list of funding sources.

Licht didn’t set out to study the origin of the monsoon.

He chose his study site in Myanmar because the area was rich in mammal fossils, including some of the earliest ancestors of modern monkeys and apes. The research, part of his doctoral work at the University of Poitiers, focused on understanding the environments those early primates inhabited. Scientists thought those primates had a habitat like the current evergreen tropical rain forests of Borneo, which do not have pronounced differences between wet and dry seasons.

To learn about the past environment, Licht analyzed 40-million-year-old freshwater snail shells and teeth of mammals to see what types of oxygen they contained. The ratio of two different forms of oxygen, oxygen-18 and oxygen-16, shows whether the animal lived in a relatively wet climate or an arid one.

“One of the goals of the study was to document the pre-monsoonal conditions, but what we found were monsoonal conditions,” he said.

To his surprise, the oxygen ratios told an unexpected story: The region had a seasonal pattern very much like the current monsoon – dry winters and very rainy summers.

“The early primates of Myanmar lived under intense seasonal stress – aridity and then monsoons,” he said. “That was completely unexpected.”

The team of researchers working in China found another line of evidence pointing to the existence of the monsoon about 40 million years ago. The monsoon climate pattern generates winter winds that blow dust from central Asia and deposits it in thick piles in China. The researchers found deposits of such dust dating back 41 million years ago, indicating the monsoon had occurred that long ago.

The third team’s climate simulations indicated strong Asian monsoons 40 million years ago. The simulations showed the level of atmospheric CO2 was connected to the strength of the monsoon, which was stronger 40 million years ago when CO2 levels were higher and weakened 34 million years ago when CO2 levels dropped.

Licht’s next step is to investigate how geologically short-term increases of atmospheric CO2 known as hyperthermals affected the monsoon’s behavior 40 million years ago.

“The response of the monsoon to those hyperthermals could provide interesting analogs to the ongoing global warming,” he said.

Asian monsoon much older than previously thought

University of Arizona geoscientist Alexis Licht (bottom left) and his colleagues from the French-Burmese Paleontological Team led by Jean-Jacques Jaeger of the University of Poitiers, France (center with hiking staff) used fossils they collected in Myanmar to figure out that the Asian monsoon started at least 40 million years ago. -  French-Burmese Paleontological Team 2012
University of Arizona geoscientist Alexis Licht (bottom left) and his colleagues from the French-Burmese Paleontological Team led by Jean-Jacques Jaeger of the University of Poitiers, France (center with hiking staff) used fossils they collected in Myanmar to figure out that the Asian monsoon started at least 40 million years ago. – French-Burmese Paleontological Team 2012

The Asian monsoon already existed 40 million years ago during a period of high atmospheric carbon dioxide and warmer temperatures, reports an international research team led by a University of Arizona geoscientist.

Scientists thought the climate pattern known as the Asian monsoon began 22-25 million years ago as a result of the uplift of the Tibetan Plateau and the Himalaya Mountains.

“It is surprising,” said lead author Alexis Licht, now a research associate in the UA department of geosciences. “People thought the monsoon started much later.”

The monsoon, the largest climate system in the world, governs the climate in much of mainland Asia, bringing torrential summer rains and dry winters.

Co-author Jay Quade, a UA professor of geosciences, said, “This research compellingly shows that a strong Asian monsoon system was in place at least by 35-40 million years ago.”

The research by Licht and his colleagues shows the earlier start of the monsoon occurred at a time when atmospheric CO2 was three to four times greater than it is now. The monsoon then weakened 34 million years ago when atmospheric CO2 then decreased by 50 percent and an ice age occurred.

Licht said the study is the first to show the rise of the monsoon is as much a result of global climate as it is a result of topography. The team’s paper is scheduled for early online publication in the journal Nature on Sept. 14.

“This finding has major consequences for the ongoing global warming,” he said. “It suggests increasing the atmospheric CO2 will increase the monsoonal precipitation significantly.”

Unraveling the monsoon’s origins required contributions from three different teams of scientists that were independently studying the environment of 40 million years ago.

All three investigations showed the monsoon climate pattern occurred 15 million years earlier than previously thought. Combining different lines of evidence from different places strengthened the group’s confidence in the finding, Licht said. The climate modeling team also linked the development of the monsoon to the increased CO2 of the time.

Licht and his colleagues at Poitiers and Nancy universities in France examined snail and mammal fossils in Myanmar. The group led by G. Dupont-Nivet and colleagues at Utrecht University in the Netherlands studied lake deposits in Xining Basin in central China. J.-B. Ladant and Y. Donnadieu of the Laboratory of Sciences of the Climate and Environment (LSCE) in Gif-sur-Yvette, France, created climate simulations of the Asian climate 40 million years ago.

A complete list of authors of the group’s publication, “Asian monsoons in a late Eocene greenhouse world,” is at the bottom of this release, as is a list of funding sources.

Licht didn’t set out to study the origin of the monsoon.

He chose his study site in Myanmar because the area was rich in mammal fossils, including some of the earliest ancestors of modern monkeys and apes. The research, part of his doctoral work at the University of Poitiers, focused on understanding the environments those early primates inhabited. Scientists thought those primates had a habitat like the current evergreen tropical rain forests of Borneo, which do not have pronounced differences between wet and dry seasons.

To learn about the past environment, Licht analyzed 40-million-year-old freshwater snail shells and teeth of mammals to see what types of oxygen they contained. The ratio of two different forms of oxygen, oxygen-18 and oxygen-16, shows whether the animal lived in a relatively wet climate or an arid one.

“One of the goals of the study was to document the pre-monsoonal conditions, but what we found were monsoonal conditions,” he said.

To his surprise, the oxygen ratios told an unexpected story: The region had a seasonal pattern very much like the current monsoon – dry winters and very rainy summers.

“The early primates of Myanmar lived under intense seasonal stress – aridity and then monsoons,” he said. “That was completely unexpected.”

The team of researchers working in China found another line of evidence pointing to the existence of the monsoon about 40 million years ago. The monsoon climate pattern generates winter winds that blow dust from central Asia and deposits it in thick piles in China. The researchers found deposits of such dust dating back 41 million years ago, indicating the monsoon had occurred that long ago.

The third team’s climate simulations indicated strong Asian monsoons 40 million years ago. The simulations showed the level of atmospheric CO2 was connected to the strength of the monsoon, which was stronger 40 million years ago when CO2 levels were higher and weakened 34 million years ago when CO2 levels dropped.

Licht’s next step is to investigate how geologically short-term increases of atmospheric CO2 known as hyperthermals affected the monsoon’s behavior 40 million years ago.

“The response of the monsoon to those hyperthermals could provide interesting analogs to the ongoing global warming,” he said.

Ancient shellfish remains rewrite 10,000-year history of El Nino cycles

The middens are ancient dumping sites that typically contain a mix of mollusk shells, fish and bird bones, ceramics, cloth, charcoal, maize and other plants. -  M. Carré / Univ. of Montpellier
The middens are ancient dumping sites that typically contain a mix of mollusk shells, fish and bird bones, ceramics, cloth, charcoal, maize and other plants. – M. Carré / Univ. of Montpellier

The planet’s largest and most powerful driver of climate changes from one year to the next, the El Niño Southern Oscillation in the tropical Pacific Ocean, was widely thought to have been weaker in ancient times because of a different configuration of the Earth’s orbit. But scientists analyzing 25-foot piles of ancient shells have found that the El Niños 10,000 years ago were as strong and frequent as the ones we experience today.

The results, from the University of Washington and University of Montpellier, question how well computer models can reproduce historical El Niño cycles, or predict how they could change under future climates. The paper is now online and will appear in an upcoming issue of Science.

“We thought we understood what influences the El Niño mode of climate variation, and we’ve been able to show that we actually don’t understand it very well,” said Julian Sachs, a UW professor of oceanography.

The ancient shellfish feasts also upend a widely held interpretation of past climate.

“Our data contradicts the hypothesis that El Niño activity was very reduced 10,000 years ago, and then slowly increased since then,” said first author Matthieu Carré, who did the research as a UW postdoctoral researcher and now holds a faculty position at the University of Montpellier in France.

In 2007, while at the UW-based Joint Institute for the Study of the Atmosphere and Ocean, Carré accompanied archaeologists to seven sites in coastal Peru. Together they sampled 25-foot-tall piles of shells from Mesodesma donacium clams eaten and then discarded over centuries into piles that archaeologists call middens.

While in graduate school, Carré had developed a technique to analyze shell layers to get ocean temperatures, using carbon dating of charcoal from fires to get the year, and the ratio of oxygen isotopes in the growth layers to get the water temperatures as the shell was forming.

The shells provide 1- to 3-year-long records of monthly temperature of the Pacific Ocean along the coast of Peru. Combining layers of shells from each site gives water temperatures for intervals spanning 100 to 1,000 years during the past 10,000 years.

The new record shows that 10,000 years ago the El Niño cycles were strong, contradicting the current leading interpretations. Roughly 7,000 years ago the shells show a shift to the central Pacific of the most severe El Niño impacts, followed by a lull in the strength and occurrence of El Niño from about 6,000 to 4,000 years ago.

One possible explanation for the surprising finding of a strong El Niño 10,000 years ago was that some other factor was compensating for the dampening effect expected from cyclical changes in Earth’s orbit around the sun during that period.

“The best candidate is the polar ice sheet, which was melting very fast in this period and may have increased El Niño activity by changing ocean currents,” Carré said.

Around 6,000 years ago most of the ice age floes would have finished melting, so the effect of Earth’s orbital geometry might have taken over then to cause the period of weak El Niños.

In previous studies, warm-water shells and evidence of flooding in Andean lakes had been interpreted as signs of a much weaker El Niño around 10,000 years ago.

The new data is more reliable, Carré said, for three reasons: the Peruvian coast is strongly affected by El Niño; the shells record ocean temperature, which is the most important parameter for the El Niño cycles; and the ability to record seasonal changes, the timescale at which El Niño can be observed.

“Climate models and a variety of datasets had concluded that El Niños were essentially nonexistent, did not occur, before 6,000 to 8,000 years ago,” Sachs said. “Our results very clearly show that this is not the case, and suggest that current understanding of the El Niño system is incomplete.

Ancient shellfish remains rewrite 10,000-year history of El Nino cycles

The middens are ancient dumping sites that typically contain a mix of mollusk shells, fish and bird bones, ceramics, cloth, charcoal, maize and other plants. -  M. Carré / Univ. of Montpellier
The middens are ancient dumping sites that typically contain a mix of mollusk shells, fish and bird bones, ceramics, cloth, charcoal, maize and other plants. – M. Carré / Univ. of Montpellier

The planet’s largest and most powerful driver of climate changes from one year to the next, the El Niño Southern Oscillation in the tropical Pacific Ocean, was widely thought to have been weaker in ancient times because of a different configuration of the Earth’s orbit. But scientists analyzing 25-foot piles of ancient shells have found that the El Niños 10,000 years ago were as strong and frequent as the ones we experience today.

The results, from the University of Washington and University of Montpellier, question how well computer models can reproduce historical El Niño cycles, or predict how they could change under future climates. The paper is now online and will appear in an upcoming issue of Science.

“We thought we understood what influences the El Niño mode of climate variation, and we’ve been able to show that we actually don’t understand it very well,” said Julian Sachs, a UW professor of oceanography.

The ancient shellfish feasts also upend a widely held interpretation of past climate.

“Our data contradicts the hypothesis that El Niño activity was very reduced 10,000 years ago, and then slowly increased since then,” said first author Matthieu Carré, who did the research as a UW postdoctoral researcher and now holds a faculty position at the University of Montpellier in France.

In 2007, while at the UW-based Joint Institute for the Study of the Atmosphere and Ocean, Carré accompanied archaeologists to seven sites in coastal Peru. Together they sampled 25-foot-tall piles of shells from Mesodesma donacium clams eaten and then discarded over centuries into piles that archaeologists call middens.

While in graduate school, Carré had developed a technique to analyze shell layers to get ocean temperatures, using carbon dating of charcoal from fires to get the year, and the ratio of oxygen isotopes in the growth layers to get the water temperatures as the shell was forming.

The shells provide 1- to 3-year-long records of monthly temperature of the Pacific Ocean along the coast of Peru. Combining layers of shells from each site gives water temperatures for intervals spanning 100 to 1,000 years during the past 10,000 years.

The new record shows that 10,000 years ago the El Niño cycles were strong, contradicting the current leading interpretations. Roughly 7,000 years ago the shells show a shift to the central Pacific of the most severe El Niño impacts, followed by a lull in the strength and occurrence of El Niño from about 6,000 to 4,000 years ago.

One possible explanation for the surprising finding of a strong El Niño 10,000 years ago was that some other factor was compensating for the dampening effect expected from cyclical changes in Earth’s orbit around the sun during that period.

“The best candidate is the polar ice sheet, which was melting very fast in this period and may have increased El Niño activity by changing ocean currents,” Carré said.

Around 6,000 years ago most of the ice age floes would have finished melting, so the effect of Earth’s orbital geometry might have taken over then to cause the period of weak El Niños.

In previous studies, warm-water shells and evidence of flooding in Andean lakes had been interpreted as signs of a much weaker El Niño around 10,000 years ago.

The new data is more reliable, Carré said, for three reasons: the Peruvian coast is strongly affected by El Niño; the shells record ocean temperature, which is the most important parameter for the El Niño cycles; and the ability to record seasonal changes, the timescale at which El Niño can be observed.

“Climate models and a variety of datasets had concluded that El Niños were essentially nonexistent, did not occur, before 6,000 to 8,000 years ago,” Sachs said. “Our results very clearly show that this is not the case, and suggest that current understanding of the El Niño system is incomplete.

Jeju Island is a live volcano

These are pictures of the sedimentary layer containing charcoal found on a stony mountain developing site in Sangchang-ri, and the carbonized wood sample used for the radiocarbon dating. Thick lava covers the upper gravel layer. -  KIGAM
These are pictures of the sedimentary layer containing charcoal found on a stony mountain developing site in Sangchang-ri, and the carbonized wood sample used for the radiocarbon dating. Thick lava covers the upper gravel layer. – KIGAM

In Jeju, a place emerging as a world-famous vacation spot with natural tourism resources, a recent study revealed a volcanic eruption occurred on the island. The Korea Institute of Geoscience and Mineral Resources (KIGAM) indicated that there are the traces that indicated that a recent volcanic eruption was evident 5,000 years ago. That is the first time to actually find out the date when lava spewed out of a volcano 5,000 years ago in the inland part of the island as well as the one the whole peninsula.

The research team led by Dr. Jin-Young Lee confirmed in results from radiocarbon dating for carbonized wood (charcoal) found below the basaltic layer located in Sangchang-ri, Seogwipo-si, Jeju-do it dated back to 5,000 years ago; which means the time when the basalt on the upper layer was formed took place relatively recently, i.e. 5,000 years ago, and which demonstrates that the island has experienced a volcanic eruption fairly recently.

The latest volcanic eruption occurring on Jeju Island was volcanic activity known to have spewed around 7,000 years ago at Mt. Songak. The basaltic layer in Sangchang-ri is known to be formed due to the eruption in the vicinity of Byeongak Oreum 35,000 years ago; though, this study revealed that the layer is a product of the most recent volcanic activity among those known ever. Volcanic activity at Mt. Songak was limited hydro volcanic activity out of which a great deal of volcanic ash was released while it is evident that Sangchang-ri was a dynamic active volcano out of which lava was spewed and then flowed down in all directions along the inland slope.

It is also remarkable that the research team enhanced the accuracy of the findings in the radiocarbon dating technique using carbonized wood, consequently raising the reliability of the findings. Until now, previous research used the dating method for rocks covering the upper sedimentary layer, in which such dating method with the relatively longer half-life period shows limitations in determining the time the basalt was formed about 10,000 years ago.


In order to overcome the limitations of the dating method for the rocks covering the upper sedimentary layer, the research team led by Dr. Jin-Young Lee concurrently used radiocarbon dating and optically stimulated luminescence dating (OSL), using such cross-validation of which raised the accuracy of tracing the past volcanic activities.

Judging from the findings, Jeju Island is not an extinct volcano, but seems to rather be a potentially live volcano because a volcano that has erupted within 10,000 years is defined to be a live volcano on a geological basis.

Not remaining complacent for the findings, the research team plans to continuously conduct the studies on the time the volcanic rocks were formed in several regions on the island in order to identify the latest volcanic activity.

Jeju Island is a live volcano

These are pictures of the sedimentary layer containing charcoal found on a stony mountain developing site in Sangchang-ri, and the carbonized wood sample used for the radiocarbon dating. Thick lava covers the upper gravel layer. -  KIGAM
These are pictures of the sedimentary layer containing charcoal found on a stony mountain developing site in Sangchang-ri, and the carbonized wood sample used for the radiocarbon dating. Thick lava covers the upper gravel layer. – KIGAM

In Jeju, a place emerging as a world-famous vacation spot with natural tourism resources, a recent study revealed a volcanic eruption occurred on the island. The Korea Institute of Geoscience and Mineral Resources (KIGAM) indicated that there are the traces that indicated that a recent volcanic eruption was evident 5,000 years ago. That is the first time to actually find out the date when lava spewed out of a volcano 5,000 years ago in the inland part of the island as well as the one the whole peninsula.

The research team led by Dr. Jin-Young Lee confirmed in results from radiocarbon dating for carbonized wood (charcoal) found below the basaltic layer located in Sangchang-ri, Seogwipo-si, Jeju-do it dated back to 5,000 years ago; which means the time when the basalt on the upper layer was formed took place relatively recently, i.e. 5,000 years ago, and which demonstrates that the island has experienced a volcanic eruption fairly recently.

The latest volcanic eruption occurring on Jeju Island was volcanic activity known to have spewed around 7,000 years ago at Mt. Songak. The basaltic layer in Sangchang-ri is known to be formed due to the eruption in the vicinity of Byeongak Oreum 35,000 years ago; though, this study revealed that the layer is a product of the most recent volcanic activity among those known ever. Volcanic activity at Mt. Songak was limited hydro volcanic activity out of which a great deal of volcanic ash was released while it is evident that Sangchang-ri was a dynamic active volcano out of which lava was spewed and then flowed down in all directions along the inland slope.

It is also remarkable that the research team enhanced the accuracy of the findings in the radiocarbon dating technique using carbonized wood, consequently raising the reliability of the findings. Until now, previous research used the dating method for rocks covering the upper sedimentary layer, in which such dating method with the relatively longer half-life period shows limitations in determining the time the basalt was formed about 10,000 years ago.


In order to overcome the limitations of the dating method for the rocks covering the upper sedimentary layer, the research team led by Dr. Jin-Young Lee concurrently used radiocarbon dating and optically stimulated luminescence dating (OSL), using such cross-validation of which raised the accuracy of tracing the past volcanic activities.

Judging from the findings, Jeju Island is not an extinct volcano, but seems to rather be a potentially live volcano because a volcano that has erupted within 10,000 years is defined to be a live volcano on a geological basis.

Not remaining complacent for the findings, the research team plans to continuously conduct the studies on the time the volcanic rocks were formed in several regions on the island in order to identify the latest volcanic activity.