Climate change was not to blame for the collapse of the Bronze Age

Scientists will have to find alternative explanations for a huge population collapse in Europe at the end of the Bronze Age as researchers prove definitively that climate change – commonly assumed to be responsible – could not have been the culprit.

Archaeologists and environmental scientists from the University of Bradford, University of Leeds, University College Cork, Ireland (UCC), and Queen’s University Belfast have shown that the changes in climate that scientists believed to coincide with the fall in population in fact occurred at least two generations later.

Their results, published this week in Proceedings of the National Academy of Sciences, show that human activity starts to decline after 900BC, and falls rapidly after 800BC, indicating a population collapse. But the climate records show that colder, wetter conditions didn’t occur until around two generations later.

Fluctuations in levels of human activity through time are reflected by the numbers of radiocarbon dates for a given period. The team used new statistical techniques to analyse more than 2000 radiocarbon dates, taken from hundreds of archaeological sites in Ireland, to pinpoint the precise dates that Europe’s Bronze Age population collapse occurred.

The team then analysed past climate records from peat bogs in Ireland and compared the archaeological data to these climate records to see if the dates tallied. That information was then compared with evidence of climate change across NW Europe between 1200 and 500 BC.

“Our evidence shows definitively that the population decline in this period cannot have been caused by climate change,” says Ian Armit, Professor of Archaeology at the University of Bradford, and lead author of the study.

Graeme Swindles, Associate Professor of Earth System Dynamics at the University of Leeds, added, “We found clear evidence for a rapid change in climate to much wetter conditions, which we were able to precisely pinpoint to 750BC using statistical methods.”

According to Professor Armit, social and economic stress is more likely to be the cause of the sudden and widespread fall in numbers. Communities producing bronze needed to trade over very large distances to obtain copper and tin. Control of these networks enabled the growth of complex, hierarchical societies dominated by a warrior elite. As iron production took over, these networks collapsed, leading to widespread conflict and social collapse. It may be these unstable social conditions, rather than climate change, that led to the population collapse at the end of the Bronze Age.

According to Katharina Becker, Lecturer in the Department of Archaeology at UCC, the Late Bronze Age is usually seen as a time of plenty, in contrast to an impoverished Early Iron Age. “Our results show that the rich Bronze Age artefact record does not provide the full picture and that crisis began earlier than previously thought,” she says.

“Although climate change was not directly responsible for the collapse it is likely that the poor climatic conditions would have affected farming,” adds Professor Armit. “This would have been particularly difficult for vulnerable communities, preventing population recovery for several centuries.”

The findings have significance for modern day climate change debates which, argues Professor Armit, are often too quick to link historical climate events with changes in population.

“The impact of climate change on humans is a huge concern today as we monitor rising temperatures globally,” says Professor Armit.

“Often, in examining the past, we are inclined to link evidence of climate change with evidence of population change. Actually, if you have high quality data and apply modern analytical techniques, you get a much clearer picture and start to see the real complexity of human/environment relationships in the past.”

How much magma is hiding beneath our feet?

Molten rock (or magma) has a strong influence on our planet and its inhabitants, causing destructive volcanic eruptions and generating some of the giant mineral deposits. Our understanding of these phenomena is, however, limited by the fact that most magma cools and solidifies several kilometres beneath our feet, only to be exposed at the surface, millions of years later, by erosion. Scientists have never been able to track the movements of magma at such great depths? that is, until a team from the University of Geneva (UNIGE) discovered an innovative technique, details of which will be published in the next issue of the journal Nature.

It is a story of three scientists: a modelling specialist, an expert in a tiny mineral known as “zircon”, and a volcanologist. Following a casual conversation, the researchers stumbled upon an idea, and eventually a new method to estimate the volume and flow of magma required for the construction of magma chambers was shaped. The technique they developed makes it possible to refine predictions of future volcanic eruptions as well as identifying areas of the planet that are rich in magma-related natural resources.

Zircon: a valuable mineral for scientists

Professor Urs Schaltegger has been studying zircon for more than ten years in his laboratory at UNIGE, one of the world’s few labs in this field. «The zircon crystals that are found in solidified magma hold key information about the injection of molten rock into a magma chamber before it freezes underground,» explains the professor. Zircon contains radioactive elements that enable researchers to determine its age. As part of the study, the team from the Section of Earth and Environmental Sciences of UNIGE paired data collected using natural samples and numerical simulation. As Guy Simpson, a researcher at UNIGE further explains: «Modelling meant that we could establish how the age of crystallised zircon in a cooled magma reservoir depends on the flow rate of injected magma and the size of the reservoir.»

Applications for society and industry


In the Nature article, the researchers propose a model that is capable of determining with unprecedented accuracy the age, volume and injection rate of magma that has accumulated at inaccessible depths. As a result, they have established that the formation of Earth’s crust, volcanic super eruptions and mineral deposits occur under very specific yet different conditions. Professor Luca Caricchi adds: «When we determine the age of a family of zircons from a small sample of solidified magmatic rock, using results from the mathematical model we have developed, we can tell what the size of the entire magma chamber was, as well as how fast the magma reservoir grew». The professor continues: «This information means that we can determine the probability of an explosive volcanic eruption of a certain size to occur. In addition, the model will be of interest to industry because we will be able to identify new areas of our planet that are home to large amounts of natural resources such as copper and gold.»

Maize and bacteria: A 1-2 punch knocks copper out of stamp sand

Maize plants grown in stamp sand inoculated with bacteria, left, were considerably more robust than those grown in stamp sand alone, right. Research led by Michigan Technological University's Ramakrishna Wusirika could lead to new remediation techniques for soils contaminated by copper and other heavy metals. -  Ramakrishna Wusirika
Maize plants grown in stamp sand inoculated with bacteria, left, were considerably more robust than those grown in stamp sand alone, right. Research led by Michigan Technological University’s Ramakrishna Wusirika could lead to new remediation techniques for soils contaminated by copper and other heavy metals. – Ramakrishna Wusirika

Scientists have known for years that together, bacteria and plants can remediate contaminated sites. Ramakrishna Wusirika, of Michigan Technological University, has determined that how you add bacteria to the mix can make a big difference.

He has also shed light on the biochemical pathways that allow plants and bacteria to clean up some of the worst soils on the planet while increasing their fertility.

Wusirika, an associate professor of biological sciences, first collected stamp sands near the village of Gay, in Michigan’s Upper Peninsula. For decades, copper mining companies crushed copper ore and dumped the remnants-an estimated 500 million tons of stamp sand-throughout the region. Almost nothing grows on these manmade deserts, which are laced with high concentrations of copper, arsenic and other plant-unfriendly chemicals.

Then, Wusirika and his team planted maize in the stamp sand, incorporating bacteria in four different ways:

  • mixing it in the stamp sand before planting seed;

  • coating seed with bacteria and planting it;

  • germinating seeds and planting them in soil to which bacteria were added; and

  • the conventional method, immersing the roots of maize seedlings in bacteria and planting them in stamp sand.

After 45 days, the team uprooted the plants and measured their dry weight. All maize grown with bacteria was significantly more vigorous-from two to five times larger-than the maize grown in stamp sand alone. The biggest were those planted as seedlings or as germinated seeds.

However, when the researchers analyzed the dried maize, they made a surprising discovery: the seed-planted maize took up far more copper as a percentage of dry weight. In other words, the smaller plants pulled more copper, ounce per ounce, out of the stamp sands than the bigger ones.

That has implications for land managers trying to remediate contaminated sites, or even for farmers working with marginal soils, Wusirika said. The usual technique-applying bacteria to seedlings’ roots before transplanting-works fine in the lab but would be impractical for large-scale projects. This could open the door to simple, practical remediation of copper-contaminated soils.

But the mere fact that all the plants grown with bacteria did so well also piqued his curiosity. “When we saw this, we wondered what the bacteria were doing to the soil,” Wusirika said. “Based on our research, it looks like they are improving enzyme activity and increasing soil fertility,” in part by freeing up phosphorus that had been locked in the rock.

The bacteria are also changing copper into a form that the plants can take up. “With bacteria, the exchangeable copper is increased three times,” he said. “There’s still a lot of copper that’s not available, but it is moving in the right direction.”

By analyzing metabolic compounds, the team was able to show that the bacteria enhance photosynthesis and help the plants make growth hormones. Bacteria also appear to affect the amount phenolics produced by the maize. Phenolics are antioxidants similar to those in grapes and red wine.

Compared to plants grown in normal soil without bacteria, plants grown in stamp sand alone showed a five-fold increase in phenolics. However, phenolics in plants grown in stamp sand with bacteria showed a lesser increase.

“Growing in stamp sand is very stressful for plants, and they respond by increasing their antioxidant production,” Wusirika said. “Adding the metal-resistant bacteria enables the plants to cope with stress better, resulting in reduced levels of phenolics.”

“There’s still a lot to understand here,” he added. “We’d like to do a study on stamp sands in the field, and we’d also like to work with plants besides maize. We think this work has applications in organic agriculture as well as remediation.”

Mega-landslide in giant Utah copper mine may have triggered earthquakes

This is Figure 1 from K.L. Pankow et al. of megalandslide at the Bingham Canyon Mine, Utah. Landslide image copyright Kennecott Utah Copper. -  Seismic/Infrasound image by K.L. Pankow et al. Landslide image copyright Kennecott Utah Copper.
This is Figure 1 from K.L. Pankow et al. of megalandslide at the Bingham Canyon Mine, Utah. Landslide image copyright Kennecott Utah Copper. – Seismic/Infrasound image by K.L. Pankow et al. Landslide image copyright Kennecott Utah Copper.

Landslides are one of the most hazardous aspects of our planet, causing billions of dollars in damage and thousands of deaths each year. Most large landslides strike with little warning — and thus geologists do not often have the ability to collect important data that can be used to better understand the behavior of these dangerous events. The 10 April 2013 collapse at Kennecott’s Bingham Canyon open-pit copper mine in Utah is an important exception.

Careful and constant monitoring of the conditions of the Bingham Canyon mine identified slow ground displacement prior to the landslide. This allowed the successful evacuation of the mine area prior to the landslide and also alerted geologists at the University of Utah to enable them to successfully monitor and study this unique event.

The landslide — the largest non-volcanic landslide in the recorded history of North America — took place during two episodes of collapse, each lasting less than two minutes. During these events about 65 million cubic meters of rock — with a total mass of 165 million tons — collapsed and slid nearly 3 km (1.8 miles) into the open pit floor.

In the January 2014 issue of GSA Today, University of Utah geologists, led by Dr. Kristine Pankow, report the initial findings of their study of the seismic and sound-waves generated by this massive mega-landslide. Pankow and her colleagues found that the landslide generated seismic waves that were recorded by both nearby seismic instruments, but also instruments located over 400 km from the mine. Examining the details of these seismic signals, they found that each of the two landslide events produced seismic waves equivalent to a magnitude 2 to 3 earthquake.

Interestingly, while there were no measurable seismic events prior to the start of the landslide, the team did measure up to 16 different seismic events with characteristics very much like normal “tectonic” earthquakes beneath the mine. These small (magnitude less than 2) earthquakes happened over a span of 10 days following the massive landslide and appear to be a rare case of seismic activity triggered by a landslide, rather than the more common case where an earthquake serves as the trigger to the landslide.

Later studies of both the seismic and sound waves produced by this landslide will allow Pankow and her team to characterize the failure and displacement of the landslide material in much more detail.

Mine landslide triggered quakes

The April 10, 2013, landslide at Rio Tinto-Kennecott Utah Copper's Bingham Canyon mine contains enough debris to bury New York City's Central Park 66 feet deep, according to a new University of Utah study. The slide happened in the form of two rock avalanches 95 minutes apart. The first rock avalanche included grayer bedrock material seen around the margins of the lower half of the slide. The second rock avalanche is orange in color, both from bedrock and from waste rock from mining. The new study found the landslide triggered 16 small quakes. Such triggering has not been noted previously. The slide likely was the largest nonvolcanic landslide in North America's modern history. -  Kennecott Utah Copper.
The April 10, 2013, landslide at Rio Tinto-Kennecott Utah Copper’s Bingham Canyon mine contains enough debris to bury New York City’s Central Park 66 feet deep, according to a new University of Utah study. The slide happened in the form of two rock avalanches 95 minutes apart. The first rock avalanche included grayer bedrock material seen around the margins of the lower half of the slide. The second rock avalanche is orange in color, both from bedrock and from waste rock from mining. The new study found the landslide triggered 16 small quakes. Such triggering has not been noted previously. The slide likely was the largest nonvolcanic landslide in North America’s modern history. – Kennecott Utah Copper.

Last year’s gigantic landslide at a Utah copper mine probably was the biggest nonvolcanic slide in North America’s modern history, and included two rock avalanches that happened 90 minutes apart and surprisingly triggered 16 small earthquakes, University of Utah scientists discovered.

The landslide – which moved at an average of almost 70 mph and reached estimated speeds of at least 100 mph – left a deposit so large it “would cover New York’s Central Park with about 20 meters (66 feet) of debris,” the researchers report in the January 2014 cover study in the Geological Society of America magazine GSA Today.

While earthquakes regularly trigger landslides, the gigantic landslide the night of April 10, 2013, is the first known to have triggered quakes. The slide occurred in the form of two huge rock avalanches at 9:30 p.m. and 11:05 p.m. MDT at Rio Tinto-Kennecott Utah Copper’s open-pit Bingham Canyon Mine, 20 miles southwest of downtown Salt Lake City. Each rock avalanche lasted about 90 seconds.

While the slides were not quakes, they were measured by seismic scales as having magnitudes up to 5.1 and 4.9, respectively. The subsequent real quakes were smaller.

Kennecott officials closely monitor movements in the 107-year-old mine – which produces 25 percent of the copper used in the United States – and they recognized signs of increasing instability in the months before the slide, closing and removing a visitor center on the south edge of the 2.8-mile-wide, 3,182-foot-deep open pit, which the company claims is the world’s largest manmade excavation.

Landslides – including those at open-pit mines but excluding quake-triggered slides – killed more than 32,000 people during 2004-2011, the researchers say. But no one was hurt or died in the Bingham Canyon slide. The slide damaged or destroyed 14 haul trucks and three shovels and closed the mine’s main access ramp until November.

“This is really a geotechnical monitoring success story,” says the new study’s first author, Kris Pankow, associate director of the University of Utah Seismograph Stations and a research associate professor of geology and geophysics. “No one was killed, and yet now we have this rich dataset to learn more about landslides.”

There have been much bigger human-caused landslides on other continents, and much bigger prehistoric slides in North America, including one about five times larger than Bingham Canyon some 8,000 years ago at the mouth of Utah’s Zion Canyon.

But the Bingham Canyon Mine slide “is probably the largest nonvolcanic landslide in modern North American history,” said study co-author Jeff Moore, an assistant professor of geology and geophysics at the University of Utah.

There have been numerous larger, mostly prehistoric slides – some hundreds of times larger. Even the landslide portion of the 1980 Mount St. Helens eruption was 57 times larger than the Bingham Canyon slide.

News reports initially put the landslide cost at close to $1 billion, but that may end up lower because Kennecott has gotten the mine back in operation faster than expected.

Until now, the most expensive U.S. landslide was the 1983 Thistle slide in Utah, which cost an estimated $460 million to $940 million because the town of Thistle was abandoned, train tracks and highways were relocated and a drainage tunnel built.

Pankow and Moore conducted the study with several colleagues from the university’s College of Mines and Earth Sciences: J. Mark Hale, an information specialist at the Seismograph Stations; Keith Koper, director of the Seismograph Stations; Tex Kubacki, a graduate student in mining engineering; Katherine Whidden, a research seismologist; and Michael K. McCarter, professor of mining engineering.

The study was funded by state of Utah support of the University of Utah Seismograph Stations and by the U.S. Geological Survey.

Rockslides Measured up to 5.1 and 4.9 in Magnitude, but Felt Smaller

The University of Utah researchers say the Bingham Canyon slide was among the best-recorded in history, making it a treasure trove of data for studying slides.

Kennecott has estimated the landslide weighed 165 million tons. The new study estimated the slide came from a volume of rock roughly 55 million cubic meters (1.9 billion cubic feet). Rock in a landslide breaks up and expands, so Moore estimated the landslide deposit had a volume of 65 million cubic meters (2.3 billion cubic feet).

Moore calculated that not only would bury Central Park 66 feet deep, but also is equivalent to the amount of material in 21 of Egypt’s great pyramids of Giza.

The landslide’s two rock avalanches were not earthquakes but, like mine collapses and nuclear explosions, they were recorded on seismographs and had magnitudes that were calculated on three different scales:

  • The first slide at 9:30 p.m. MDT measured 5.1 in surface-wave magnitude, 2.5 in local or Richter magnitude, and 4.2 in duration or “coda” magnitude.

  • The second slide at 11:05 p.m. MDT measured 4.9 in surface-wave magnitude, 2.4 in Richter magnitude and 3.5 in coda magnitude.

Pankow says the larger magnitudes more accurately reflect the energy released by the rock avalanches, but the smaller Richter magnitudes better reflect what people felt – or didn’t feel, since the Seismograph Stations didn’t receive any such reports. That’s because the larger surface-wave magnitudes record low-frequency energy, while Richter and coda magnitudes are based on high-frequency seismic waves that people usually feel during real quakes.

So in terms of ground movements people might feel, the rock avalanches “felt like 2.5,” Pankow says. “If this was a normal tectonic earthquake of magnitude 5, all three magnitude scales would give us similar answers.”

The slides were detected throughout the Utah seismic network, including its most distant station some 250 miles south on the Utah-Arizona border, Pankow says.

The Landslide Triggered 16 Tremors

The second rock avalanche was followed immediately by a real earthquake measuring 2.5 in Richter magnitude and 3.0 in coda magnitude, then three smaller quakes – all less than one-half mile below the bottom of the mine pit.

The Utah researchers sped up recorded seismic data by 30 times to create an audio file in which the second part of the slide is heard as a deep rumbling, followed by sharp gunshot-like bangs from three of the subsequent quakes.

Later analysis revealed another 12 tiny quakes – measuring from 0.5 to minus 0.8 Richter magnitude. (A minus 1 magnitude has one-tenth the power of a hand grenade.) Six of these tiny tremors occurred between the two parts of the landslide, five happened during the two days after the slide, and one was detected 10 days later, on April 20. No quakes were detected during the 10 days before the double landslide.

“We don’t know of any case until now where landslides have been shown to trigger earthquakes,” Moore says. “It’s quite commonly the reverse.”

A Long, Fast Landslide Runout

The landslide, from top to bottom, fell 2,790 vertical feet, but its runout – the distance the slide traveled – was almost 10,072 feet, or just less than two miles.

“It was a bedrock landslide that had a characteristically fast and long runout – much longer than we would see for smaller rockfalls and rockslides,” Moore says.

While no one was present to measure the speed, rock avalanches typically move about 70 mph to 110 mph, while the fastest moved a quickly as 220 mph.

So at Bingham Canyon, “we can safely say the material was probably traveling at least 100 mph as it fell down the steepest part of the slope,” Moore says.

The researchers don’t know why the slide happened as two rock avalanches instead of one, but Moore says, “A huge volume like this can fail in one episode or in 10 episodes over hours.”

The Seismograph Stations also recorded infrasound waves from the landslide, which Pankow says are “sound waves traveling through the atmosphere that we don’t hear” because their frequencies are so low.

Both seismic and infrasound recordings detected differences between the landslide’s two rock avalanches. For example, the first avalanche had stronger peak energy at the end that was lacking in the second slide, Pankow says.

“We’d like to be able to use data like this to understand the physics of these large landslides,” Moore says.

The seismic and infrasound recordings suggest the two rock avalanches were similar in volume, but photos indicate the first slide contained more bedrock, while the second slide contained a higher proportion of mined waste rock – although both avalanches were predominantly bedrock.

X-ray vision to detect unseen gold

Powerful x-rays can now be used to rapidly and accurately detect gold in ore samples, thanks to a new technique developed by CSIRO – a move that could save Australia’s minerals industry hundreds of millions of dollars each year.

CSIRO has conducted a pilot study that shows that gamma-activation analysis (GAA) offers a much faster, more accurate way to detect gold than traditional chemical analysis methods.

This will mean mining companies can measure what’s coming in and out of their processing plants with greater accuracy, allowing them to monitor process performance and recover small traces of gold – worth millions of dollars – that would otherwise be discarded.

GAA works by scanning mineral samples – typically weighing around half a kilogram – using high-energy x-rays similar to those used to treat patients in hospitals. The x-rays activate any gold in the sample, and the activation is then picked up using a sensitive detector.

According to project leader Dr James Tickner, CSIRO’s study showed that this method is two-to-three times more accurate than the standard industry technique ‘fire assay’, which requires samples to be heated up to 1200°C.

“The big challenge for this project was to push the sensitivity of GAA to detect gold at much lower levels – well below a threshold of one gram per tonne,” he says.

Dr Tickner explains that a gold processing plant may only recover between 65 and 85 per cent of gold present in mined rock. Given a typical plant produces around A$1 billion of gold each year, this means hundreds of millions of dollars worth of gold is going to waste.

“Our experience suggests that better process monitoring can help reduce this loss by about a third,” he says.

Last year, Australia produced over A$10 billion worth of gold. Even if GAA only led to a modest 5 per cent improvement in recovery, that would be worth half a billion dollars annually to the industry.

Dr Tickner says that the other major benefit of GAA is that it is easily automated, allowing for much quicker analysis of ore samples.

“Fire assay usually involves sending samples off to a central lab and waiting several days for the results. Using GAA we can do the analysis in a matter of minutes, allowing companies to respond much more quickly to the data they’re collecting.”

“A compact GAA facility could even be trucked out to remote sites for rapid, on-the-spot analysis.”

Another great advantage of GAA is that it is more sustainable – unlike fire assay it doesn’t require the use of heavy metals such as lead.

It is also very adaptable. “While most of the work we’ve done has been based on the gold industry, the technique can be modified for other valuable commodities such as silver, lead, zinc, tin, copper and the platinum group metals.”

Now that the research team has proved the effectiveness of the technique, their next goal is to partner with local and international companies in order to get a full-scale analysis facility up and running in Australia. They hope to achieve this within the next two years.

After millennia of mining, copper nowhere near ‘peak’

New research shows that existing copper resources can sustain increasing world-wide demand for at least a century, meaning social and environmental concerns could be the most important restrictions on future copper production.

Researchers from Monash University have conducted the most systematic and robust compilation and analysis of worldwide copper resources to date. Contrary to predictions estimating that supplies of this important metal would run out in around 30 years, the research has found there are plenty of resources within the reach of current technologies.

The database, published in two peer-reviewed papers, was compiled by Dr Gavin Mudd and Zhehan Weng from Environmental Engineering and Dr Simon Jowitt from the School of Geosciences. It is based on mineral resource estimates from mining companies and includes information vital for carbon and energy-use modelling, such as the ore grade of the deposits.

Dr Jowitt said the database could change the industry’s understanding of copper availability.

“Although our estimates are much larger than any previously available, they’re a minimum. In fact, figures for resources at some mining projects have already doubled or more since we completed the database,” Dr Jowitt said.

“Further, the unprecedented level of detail we’ve presented will likely improve industry practice with respect to mineral resource reporting and allow more informed geological exploration.”

Dr Mudd said the vast volumes of available copper meant the mining picture was far more complex than merely stating there were ‘x’ years of supply left.

“Workers’ rights, mining impacts on cultural lands, issues of benefit sharing and the potential for environmental degradation are already affecting the viability of copper production and will increasingly come into play,” Dr Mudd said.

Despite examples like the Ok Tedi mine in Papua New Guinea, where mining has continued despite widespread environmental degradation that has affected thousands of residents, non-economic factors have constrained some mining operations and the researchers believe this will become increasingly important in the near future. An example is the Pebble copper-gold project in Alaska, which after more than a decade still doesn’t have the necessary approvals due to the environmental and cultural concerns of nearby residents.

“Pressingly, we need to acknowledge that with existing copper resources we’re not just going to be dealing with the production of a few million tonnes of tailings from mining a century ago; we are now dealing with a few billion tonnes or tens of billions of tonnes of mine waste produced during modern mining,” Dr Mudd said.

The researchers will now undertake detailed modelling of the life cycles and greenhouse gas impacts of potential copper production, and better assessment of future environmental impacts of mining.

They will also create similar databases for other metals, such as nickel, uranium, rare earths, cobalt and others, in order to paint a comprehensive picture of worldwide mineral availability.

Copper chains: Study reveals Earth’s deep-seated hold on copper

Earth is clingy when it comes to copper. A new Rice University study this week in the journal Science finds that nature conspires at scales both large and small — from the realms of tectonic plates down to molecular bonds — to keep most of Earth’s copper buried dozens of miles below ground.

“Everything throughout history shows us that Earth does not want to give up its copper to the continental crust,” said Rice geochemist Cin-Ty Lee, the lead author of the study. “Both the building blocks for continents and the continental crust itself, dating back as much as 3 billion years, are highly depleted in copper.”

Finding copper is more than an academic exercise. With global demand for electronics growing rapidly, some studies have estimated the world’s demand for copper could exceed supply in as little as six years. The new study could help, because it suggests where undiscovered caches of copper might lie.

But the copper clues were just a happy accident.

“We didn’t go into this looking for copper,” Lee said. “We were originally interested in how continents form and more specifically in the oxidation state of volcanoes.”

Earth scientists have long debated whether an oxygen-rich atmosphere might be required for continent formation. The idea stems from the fact that Earth may not have had many continents for at least the first billion years of its existence and that Earth’s continents may have begun forming around the time that oxygen became a significant component of the atmosphere.

In their search for answers, Lee and colleagues set out to examine Earth’s arc magmas — the molten building blocks for continents. Arc magmas get their start deep in the planet in areas called subduction zones, where one of Earth’s tectonic plates slides beneath another. When plates subduct, two things happen. First, they bring oxidized crust and sediments from Earth’s surface into the mantle. Second, the subducting plate drives a return flow of hot mantle upwards from Earth’s deep interior. During this return flow, the hot mantle not only melts itself but may also cause melting of the recycled sediments. Arc magmas are thought to form under these conditions, so if oxygen were required for continental crust formation, it would mostly likely come from these recycled segments.

“If oxidized materials are necessary for generating such melts, we should see evidence of it all the way from where the arc magmas form to the point where the new continent-building material is released from arc volcanoes,” Lee said.

Lee and colleagues examined xenoliths, rocks that formed deep inside Earth and were carried up to the surface in volcanic eruptions. Specifically, they studied garnet pyroxenite xenoliths thought to represent the first crystallized products of arc magmas from the deep roots of an arc some 50 kilometers below Earth’s surface. Rather than finding evidence of oxidation, they found sulfides — minerals that contain reduced forms of sulfur bonded to metals like copper, nickel and iron. If conditions were highly oxidizing, Lee said, these sulfide minerals would be destabilized and allow these elements, particularly copper, to bond with oxygen.

Because sulfides are also heavy and dense, they tend to sink and get left behind in the deep parts of arc systems, like a blob of dense material that stays at the bottom of a lava lamp while less dense material rises to the top.

“This explains why copper deposits, in general, are so rare,” Lee said. “The Earth wants to hold it deep and not give it up.”

Lee said deciding where to look for undiscovered copper deposits requires an understanding of the conditions needed to overcome the forces that conspire to keep it deep inside the planet.

“As a continental arc matures, the copper-rich sulfides are trapped deep and accumulate,” he said. “But if the continental arc grows thicker over time, the accumulated copper-bearing sulfides are driven to deeper depths where the higher temperatures can re-melt these copper-rich dregs, releasing them to rejoin arc magmas.”

These conditions were met in the Andes Mountains and in western North America. He said other potential sources of undiscovered copper include Siberia, northern China, Mongolia and parts of Australia.

Lee noted that a high school intern played a role in the research paper. Daphne Jin, now a freshman at the University of Chicago, made her contribution to the research as a high school intern from Clements High School in the Houston suburb of Sugarland.

“The paper really wouldn’t have been as broad without Daphne’s contribution,” Lee said. “I originally struggled with an assignment for her because I didn’t and still don’t have large projects where a student can just fit in. I try to make sure every student has a chance to do something new, but often I just run out of ideas.”

Lee eventually asked Jin to compile information from published studies about the average concentration of all the first-row of transition elements in the periodic table in various samples of continental crust and mantle collected the world over.

“She came back and showed me the results, and we could see that the average continental crust itself, which has been built over 3 billion years of Earth’s history in Africa, Siberia, North America, South America, etc., was all depleted in copper,” Lee said. “Up to that point we’d been looking at the building blocks of continents, but this showed us that the continents themselves followed the same pattern. It was all internally consistent.”

New translation reveals ancient metals and minerals

New GSA Special Paper 467, 'Mining and Metallurgy in Ancient Peru,' is a translation of a 1970 publication by Georg Petersen. Translator William E. Brooks notes that many of the ancient Andean mining and metallurgical techniques described in this book precede those known in Europe. -  The Geological Society of America
New GSA Special Paper 467, ‘Mining and Metallurgy in Ancient Peru,’ is a translation of a 1970 publication by Georg Petersen. Translator William E. Brooks notes that many of the ancient Andean mining and metallurgical techniques described in this book precede those known in Europe. – The Geological Society of America

In 2009, Perú was the world’s leading producer of silver, the second leading producer of copper, and the leading producer of gold in Latin America. But this isn’t something new. Perú’s leadership in mining and metallurgy extends for centuries into the past. This Special Paper from The Geological Society of America documents the use in ancient Perú of minerals, metals, and mineral resources for pigments, industrial stone, aesthetics, and art.

The GSA volume is a translation of a 1970 publication by the Instituto de Investigaciones Antropológicas, in Lima, Perú, written by Georg Petersen. Translator William E. Brooks notes that many of the ancient Andean mining and metallurgical techniques described in this book precede those known in Europe.

The volume also provides forward-thinking analytical data on metals, artifacts, and alloys. A detailed pyrite mirror, featured on book’s cover, symbolizes the spectacular workmanship and blending of utilitarian craft and mineral resources in ancient Perú.

Chapters cover minerals, gems, and pigments; ornamental and industrial stone; specific occurrences of gold, silver, copper, iron, mercury, tin, lead, and platinum in Perú, Bolivia, and Colombia; gold, silver, copper, and mercury metallurgy; Inca mining from 1533 to 1534 in the Altiplano, as documented by the Spanish explorers; and even a forensic description of the Chuquicamata Mummy, the remains of an ancient copper miner killed during an earthquake.