Scientist finds topography of Eastern Seaboard muddles ancient sea level changes

The distortion of the ancient shoreline and flooding surface of the U.S. Atlantic Coastal Plain are the direct result of fluctuations in topography in the region and could have implications on understanding long-term climate change, according to a new study.

Sedimentary rocks from Virginia through Florida show marine flooding during the mid-Pliocene Epoch, which correlates to approximately 4 million years ago. Several wave-cut scarps, (rock exposures) which originally would have been horizontal, are now draped over a warped surface with up to 60 meters variation.

Nathan Simmons of Lawrence Livermore National Laboratory and colleagues from the University of Chicago, Université du Québec à Montréal, Syracuse University, Harvard University and the University of Texas at Austin modeled the active topography using mantle convection simulations that predict the amplitude and broad spatial distribution of this distortion. The results imply that dynamic topography and, to a lesser extent, glacial adjustment, account for the current architecture of the coastal plain and nearby shelf.

The results appear in the May 16 edition of Science Express, and will appear at a later date in Science Magazine,

“Our simulations of dynamic topography of the Eastern Seaboard have implications for inferences of global long-term sea-level change,” Simmons said.

The eastern coast of the United States is considered an archetypal Atlantic-type or passive-type continental margin.

“The highlight is that mantle flow is a major component in distorting the Earth’s surface over geologic time, even in so-called ‘passive’ continental margins,” Simmons said. “Reconstructing long-term global sea-level change based on stratigraphic relations must account for this effect. In other words, did the water level change or did the ground move? This could have implications on understanding very long-term climate change.”

The mantle is not a passive player in determining long-term sea level changes. Mantle flow influences surface topography, through perturbations of the dynamic topography, in a manner that varies both spatially and temporally. As a result, it is it difficult to invert for the global long-term sea level signal and, in turn, the size of the Antarctic Ice Sheet, using east coast shoreline data.

Simmons said the new results provide another powerful piece of evidence that mantle flow is intimately involved in shaping the Earth’s surface and must be considered when attempting to unravel numerous long-term Earth processes such as sea-level variations over millions of years.

Turbulence around heat transport

This is a high pressure convection facility under construction. -  Image: Max Planck Institute for Dynamics and Self-Organization
This is a high pressure convection facility under construction. – Image: Max Planck Institute for Dynamics and Self-Organization

Not only in the Earth’s mantle, in the atmosphere and in the outer layers of the Sun, but also in a chemical reactor, the exchange of heat may not be as effective as originally thought. There, because warm fluid rises and hence induces movement, the turbulent convection can be 100 billion times stronger than in the typical cooking pot. Hot fluids mix turbulently with warm fluids. As the temperature difference between the cold and warm sides increases, the heat transport increases exponentially. When the turbulence is very strong, the exponential growth decreases twofold. Physicists from the Max Planck Institute for Dynamics and Self-Organization, University of California at Santa Barbara, and the French Centre National de la Recherche Scientifique in Nancy report this discovery in the current issule of New Journal of Physics. The long standing theory for turbulent convective heat transport from 1962 had predicted that the exponential growth would increase. Now, the theory will need to be reconsidered. (New Journal of Physics, December 1st, 2009).

In some respects the experimental apparatus of Eberhard Bodenschatz and colleagues is similar to a gigantic pressure cooker – even if the Director at the Max Planck Institute for Dynamics and Self-Organization calls it (due to its shape) the “Göttingen submarine”. In the hermetically sealed submarine, a two-metre high container of one-metre in diameter is heated from below and cooled from above. In-between, a pressurized gas is mixed by turbulent convection, where hot water rises from the hot plate and sinks from the cool one. The main difference is that the convection in the “Göttingen submarine” is a million times stronger than in a cooking pot. With this, the scientists want to learn about turbulence in the Earth mantle, in the atmosphere and in the outer layers of the Sun, where the convection is yet another 100,000 times stronger.

“We have measured the heat transport of very strong convection and found that it is completely different from what we expect on the basis of previously established theory”, says Eberhard Bodenschatz. The stronger the turbulence mixes the hot and cold gas, the stronger the heat transport from the hot bottom to the cold top will be – in essence the heat transport increases exponentially. The team measured this increase and found, surprisingly, that the exponent in the law decreases by the power of two. For a given temperature difference, not only one but two states were observed; once where the exponent falls from 0.308 to 0.253, and, sometimes, for a second time to 0.17. In 1962, the American physicist Robert Kraichnan predicted that the exponent should increase from 0.3 to 0.4 and then should be almost constant in this ultimate regime of thermal turbulence. “In the meantime we have conducted more measurements at the highest turbulence levels and found yet another state with possibly another exponent” says Eberhard Bodenschatz: “This time it may be the predicted Kraichnan regime. The multiplicity of states and the exponents baffles us, as the physical processes are yet to be understood”.

To understand this better let’s take a closer look at the “cooking pot” in the submarine. At the bottom and top plates, the heat is conducted through a few hundred micron thick thermal boundary layer into the gas. Here, a thermal plume develops which carries hot or cold gas into the interior of the vessel. It is well known that plumes of this type form a lava lamp – for yet unknown reasons however, rising and falling plumes merge to create one large circulation that flows up one side and falls on the other. According to Kraichnan’s theory, this circulation should lead the boundary layer to become turbulent. From this point on, the heat conduction should increase more rapidly. “Instead the efficiency decreases and we find two states instead of one” says Eberhard Bodenschatz: “Somehow the boundary layers are changing, but we do not know how”.

To investigate the heat transport in a planet like Earth or a star like the Sun is ultimately difficult. Even if scientists only want to investigate the turbulence itself, the conditions are difficult to achieve in the laboratory. Therefore the known experimental data are very limited. “Recently, with the submarine we were able to reach very high turbulence levels by using a two metre high container and sulfur hexafluoride (SF6) at 20 times atmospheric pressure” says Eberhard Bodenschatz.

The experimental data from Guenter Ahlers, Denis Funfschilling, and Eberhard Bodenschatz poses a riddle that will challenge theorists and experimentalist alike. The international team is already on its way to designing an experiment that can resolve the fine scales of the boundary layer. Results will give deeper insights into convective processes in the Earth, the atmosphere and the Sun, as well as the potential to optimize heat transfer in industrial reactors.

Magma And Volcanoes: Physicists Explain Dance Marathon Of Wispy Feature In Roiling Fluids





University of Chicago physicists Wendy Zhang (left) and Laura Schmidt explain a feature of convecting fluids that colleagues have observed in laboratory experiments. The feature may help explain how hotspot volcanism created the Hawaiian Islands and other such landforms. (Credit: Dan Dry)
University of Chicago physicists Wendy Zhang (left) and Laura Schmidt explain a feature of convecting fluids that colleagues have observed in laboratory experiments. The feature may help explain how hotspot volcanism created the Hawaiian Islands and other such landforms. (Credit: Dan Dry)

Theoretical physicists at the University of Chicago are suggesting how thin spouts of magma in the Earth’s mantle can persist long enough to form hotspot volcanism of the type that might have created the Hawaiian Islands.



Their calculations also apply to tendrils only a few inches long that form in convecting fluids under laboratory conditions. University of Chicago graduate student Laura Schmidt and Wendy Zhang, an Assistant Professor in Physics, will detail their findings in the Feb. 1 issue of the journal Physical Review Letters.



The work was inspired by laboratory experiments conducted by Anne Davaille in France that mimic, in a simplified way, convecting bubbles of magma as they might look deep beneath the Earth’s surface. “This is one robust feature of thermal convection,” Zhang said.



“It’s a useful thing to know because it’s the kind of thing that happens in all sorts of different industries, in all sorts of different contexts.” These include oil extraction, the chemical industry and in certain biotechnological applications.



Earth scientists also have theorized that mantle plumes form on a regional scale in the Earth’s interior, sometimes breaking the surface to form small landmasses, including Hawaii and Iceland. Nevertheless, debate swirls around how, or even if, mantle plumes can account for such surface features.



Geophysicists often liken a pot of boiling water as a smaller, more rapid version of the convection that takes place in the mantle, the layer of Earth that lies between the surface crust and its core. But unlike a pot of water, the Earth’s interior consists of layers with different properties.



In laboratory experiments, Anne Davaille, a geophysicist at the University of Paris 7, studies convection in a small tank by heating two layers of colored liquids of differing densities. She observed the formation and persistence of thin tendrils between the layers, which correspond to subsurface plumes measuring scores of miles across.


“It seems so thin and tenuous, how could it possibly manage to hold itself in place over time as everything else is going on around it?” Zhang asked. “Somehow, they manage to hold themselves together.”



The tendrils persist for hours, even as experimental conditions change. “These tendrils have fluid flowing through them, and it starts to mix the two layers,” Schmidt said. “When the two layers mix, then the viscosity of the layers changes as well.”



Following a series of visits to Davaille’s lab, Schmidt and Zhang sought to mathematically explain the phenomenon.



“When you look at the shape of these very thin tendrils, there’s something very striking that Anne noticed right away,” Zhang said. The tendrils seem to emerge from flow lines that resemble the flared-out end of a trumpet. This trumpet shape marked the location of a stagnation point. Both Davaille’s experiments and Schmidt’s calculations agree: The thinnest tendrils that persist have a stagnation point.



Schmidt had seen a similar stagnation point in experiments she conducted in the laboratory of Sidney Nagel, the Stein-Freiler Distinguished Service Professor in Physics at the University of Chicago. Those experiments involved unmixable fluids, such as water and oil, instead of the fresh water and salt water mixing in Davaille’s laboratory.



Nevertheless, the experimental similarities provided Schmidt and Zhang insights that helped solve the problem. In previous studies, other theoreticians suggested how large flows might rise through the tendrils from the base of the hot spots, Schmidt said. She and Zhang approached the problem differently.



“We include the effect of the stagnation point,” Schmidt explained. “Our tendrils are really a thin skin or thin layer of the surface between the fluids that is drawn up. It’s not a bulk flow going up through the tendril.”