Glacier beds can get slipperier at higher sliding speeds

Neal Iverson developed the Iowa State University Sliding Simulator to test how glaciers slide over their beds. -  Bob Elbert/Iowa State University
Neal Iverson developed the Iowa State University Sliding Simulator to test how glaciers slide over their beds. – Bob Elbert/Iowa State University

As a glacier’s sliding speed increases, the bed beneath the glacier can grow slipperier, according to laboratory experiments conducted by Iowa State University glaciologists.

They say including this effect in efforts to calculate future increases in glacier speeds could improve predictions of ice volume lost to the oceans and the rate of sea-level rise.

The glaciologists – Lucas Zoet, a postdoctoral research associate, and Neal Iverson, a professor of geological and atmospheric sciences – describe the results of their experiments in the Journal of Glaciology. The paper uses data collected from a newly constructed laboratory tool, the Iowa State University Sliding Simulator, to investigate glacier sliding. The device was used to explore the relationship between drag and sliding speed for comparison with the predictions of theoretical models.

“We really have a unique opportunity to study the base of glaciers with these experiments,” said Zoet, the lead author of the paper. “The other tactic you might take is studying these relationships with field observations, but with field data so many different processes are mixed together that it becomes hard to untangle the relevant data from the noise.”

Data collected by the researchers show that resistance to glacier sliding – the drag that the bed exerts on the ice – can decrease in response to increasing sliding speed. This decrease in drag with increasing speed, although predicted by some theoreticians a long as 45 years ago, is the opposite of what is usually assumed in mathematical models of the flow of ice sheets.

These are the first empirical results demonstrating that as ice slides at an increasing speed – perhaps in response to changing weather or climate – the bed can become slipperier, which could promote still faster glacier flow.

The response of glaciers to changing climate is one of the largest potential contributors to sea-level rise. Predicting glacier response to climate change depends on properly characterizing the way a glacier slides over its bed. There has been a half-century debate among theoreticians as to how to do that.

The simulator features a ring of ice about 8 inches thick and about 3 feet across that is rotated over a model glacier bed. Below the ice is a hydraulic press that can simulate the weight of a glacier several hundred yards thick. Above are motors that can rotate the ice ring over the bed at either a constant speed or a constant stress. A circulating, temperature-regulated fluid keeps the ice at its melting temperature – a necessary condition for significant sliding.

“About six years were required to design, construct, and work the bugs out of the new apparatus,” Iverson said, “but it is performing well now and allowing hypothesis tests that were formerly not possible.”

Hidden movements of Greenland Ice Sheet, runoff revealed

For years NASA has tracked changes in the massive Greenland Ice Sheet. This week scientists using NASA data released the most detailed picture ever of how the ice sheet moves toward the sea and new insights into the hidden plumbing of melt water flowing under the snowy surface.

The results of these studies are expected to improve predictions of the future of the entire Greenland ice sheet and its contribution to sea level rise as researchers revamp their computer models of how the ice sheet reacts to a warming climate.

“With the help of NASA satellite and airborne remote sensing instruments, the Greenland Ice Sheet is finally yielding its secrets,” said Tom Wagner, program scientist for NASA’s cryosphere program in Washington. “These studies represent new leaps in our knowledge of how the ice sheet is losing ice. It turns out the ice sheet is a lot more complex than we ever thought.”

University at Buffalo geophysicist Beata Csatho led an international team that produced the first comprehensive study of how the ice sheet is losing mass based on NASA satellite and airborne data at nearly 100,000 locations across Greenland. The study found that the ice sheet shed about 243 gigatons of ice per year from 2003-09, which agrees with other studies using different techniques. The study was published today in the Proceedings of the National Academy of Sciences.

The study suggests that current ice sheet modeling is too simplistic to accurately predict the future contribution of the Greenland ice sheet to sea level rise, and that current models may underestimate ice loss in the near future.

The project was a massive undertaking, using satellite and aerial data from NASA’s ICESat spacecraft, which measured the elevation of the ice sheet starting in 2003, and the Operation IceBridge field campaign that has flown annually since 2009. Additional airborne data from 1993-2008, collected by NASA’s Program for Arctic Regional Climate Assessment, were also included to extend the timeline of the study.

Current computer simulations of the Greenland Ice Sheet use the activity of four well-studied glaciers — Jakobshavn, Helheim, Kangerlussuaq and Petermann — to forecast how the entire ice sheet will dump ice into the oceans. The new research shows that activity at these four locations may not be representative of what is happening with glaciers across the ice sheet. In fact, glaciers undergo patterns of thinning and thickening that current climate change simulations fail to address, Csatho says.

As a step toward building better models of sea level rise, the research team divided Greenland’s 242 glaciers into 7 major groups based on their behavior from 2003-09.

“Understanding the groupings will help us pick out examples of glaciers that are representative of the whole,” Csatho says. “We can then use data from these representative glaciers in models to provide a more complete picture of what is happening.”

The team also identified areas of rapid shrinkage in southeast Greenland that today’s models don’t acknowledge. This leads Csatho to believe that the ice sheet could lose ice faster in the future than today’s simulations would suggest.

In separate studies presented today at the American Geophysical Union annual meeting in San Francisco, scientists using data from Operation IceBridge found permanent bodies of liquid water in the porous, partially compacted firn layer just below the surface of the ice sheet. Lora Koenig at the National Snow and Ice Data Center in Boulder, Colorado, and Rick Forster at the University of Utah in Salt Lake City, found signatures of near-surface liquid water using ice-penetrating radar.

Across wide areas of Greenland, water can remain liquid, hiding in layers of snow just below the surface, even through cold, harsh winters, researchers are finding. The discoveries by the teams led by Koenig and Forster mean that scientists seeking to understand the future of the Greenland ice sheet need to account for relatively warm liquid water retained in the ice.

Although the total volume of water is small compared to overall melting in Greenland, the presence of liquid water throughout the year could help kick off melt in the spring and summer. “More year-round water means more heat is available to warm the ice,” Koenig said.

Koenig and her colleagues found that sub-surface liquid water are common on the western edges of the Greenland Ice Sheet. At roughly the same time, Forster used similar ground-based radars to find a large aquifer in southeastern Greenland. These studies show that liquid water can persist near the surface around the perimeter of the ice sheet year round.

Another researcher participating in the briefing found that near-surface layers can also contain masses of solid ice that can lead to flooding events. Michael MacFerrin, a scientist at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder, and colleagues studying radar data from IceBridge and surface based instruments found near surface patches of ice known as ice lenses more than 25 miles farther inland than previously recorded.

Ice lenses form when firn collects surface meltwater like a sponge. When this shallow ice melts, as was seen during July 2012, they can release large amounts of water that can lead to flooding. Warm summers and resulting increased surface melt in recent years have likely caused ice lenses to grow thicker and spread farther inland. “This represents a rapid feedback mechanism. If current trends continue, the flooding will get worse,” MacFerrin said.

Click on this image to view the .mp4 video
This animation (from March 2014) portrays the changes occurring in the surface elevation of the Greenland Ice Sheet since 2003 in three drainage areas: the southeast, the northeast and the Jakobshavn regions. In each region, the time advances to show the accumulated change in elevation, 2003-2012.

Downloadable video: – NASA SVS NASA’s Goddard Space Flight Center

Massive study provides first detailed look at how Greenland’s ice is vanishing

The surface of the Greenland Ice Sheet. A new study uses NASA data to provide the first detailed reconstruction of how the ice sheet and its many glaciers are changing. The research was led by University at Buffalo geologist Beata Csatho. -  Beata Csatho
The surface of the Greenland Ice Sheet. A new study uses NASA data to provide the first detailed reconstruction of how the ice sheet and its many glaciers are changing. The research was led by University at Buffalo geologist Beata Csatho. – Beata Csatho

The Greenland Ice Sheet is the second-largest body of ice on Earth. It covers an area about five times the size of New York State and Kansas combined, and if it melts completely, oceans could rise by 20 feet. Coastal communities from Florida to Bangladesh would suffer extensive damage.

Now, a new study is revealing just how little we understand this northern behemoth.

Led by geophysicist Beata Csatho, PhD, an associate professor of geology at the University at Buffalo, the research provides what the authors think is the first comprehensive picture of how Greenland’s ice is vanishing. It suggests that current ice sheet modeling studies are too simplistic to accurately predict the future contributions of the entire Greenland Ice Sheet to sea level rise, and that Greenland may lose ice more rapidly in the near future than previously thought.

“The great importance of our data is that for the first time, we have a comprehensive picture of how all of Greenland’s glaciers have changed over the past decade,” Csatho says.

“This information is crucial for developing and validating numerical models that predict how the ice sheet may change and contribute to global sea level over the next few hundred years,” says Cornelis J. van der Veen, PhD, professor in the Department of Geography at the University of Kansas, who played a key role in interpreting glaciological changes.

The project was a massive undertaking, using satellite and aerial data from NASA’s ICESat spacecraft and Operation IceBridge field campaign to reconstruct how the height of the Greenland Ice Sheet changed at nearly 100,000 locations from 1993 to 2012.

Ice loss takes place in a complex manner, with the ice sheet both melting and calving ice into the ocean.
The study had two major findings:

  • First, the scientists were able to provide new estimates of annual ice loss at high spatial resolution (see below).

  • Second, the research revealed that current models fail to accurately capture how the entire Greenland Ice Sheet is changing and contributing to rising oceans.

The second point is crucial to climate change modelers.

Today’s simulations use the activity of four well-studied glaciers — Jakobshavn, Helheim, Kangerlussuaq and Petermann — to forecast how the entire ice sheet will dump ice into the oceans.

But the new research shows that activity at these four locations may not be representative of what is happening with glaciers across the ice sheet. In fact, glaciers undergo patterns of thinning and thickening that current climate change simulations fail to address, Csatho says.

“There are 242 outlet glaciers wider than 1.5 km on the Greenland Ice Sheet, and what we see is that their behavior is complex in space and time,” Csatho says. “The local climate and geological conditions, the local hydrology — all of these factors have an effect. The current models do not address this complexity.”

The team identified areas of rapid shrinkage in southeast Greenland that today’s models don’t acknowledge. This leads Csatho to believe that the ice sheet could lose ice faster in the future than today’s simulations would suggest.

The results will be published on Dec. 15 in the Proceedings of the National Academy of Sciences, and the study and all information in this press release are embargoed until 3 p.m. Eastern Time that day.

Photos, data visualizations and video are available by contacting Charlotte Hsu at the University at Buffalo at

How much ice is the Greenland Ice Sheet losing?

To analyze how the height of the ice sheet was changing, Csatho and UB research professor and photogrammetrist Anton Schenk, PhD, developed a computational technique called Surface Elevation Reconstruction And Change detection to fuse together data from NASA satellite and aerial missions.

The analysis found that the Greenland Ice Sheet lost about 243 metric gigatons of ice annually — equivalent to about 277 cubic kilometers of ice per year — from 2003-09, the period for which the team had the most comprehensive data. This loss is estimated to have added about 0.68 millimeters of water to the oceans annually.

The figures are averages, and ice loss varied from year to year, and from region to region.

Why are today’s projections of sea level rise flawed, and how can we fix them?

Glaciers don’t just gradually lose mass when the temperature rises. That’s one reason it’s difficult to predict their response to global warming.

In the study, scientists found that some of Greenland’s glaciers thickened even when the temperature rose. Others exhibited accelerated thinning. Some displayed both thinning and thickening, with sudden reversals.

As a step toward building better models of sea level rise, the research team divided Greenland’s 242 glaciers into 7 major groups based on their behavior from 2003-09.

“Understanding the groupings will help us pick out examples of glaciers that are representative of the whole,” Csatho says. “We can then use data from these representative glaciers in models to provide a more complete picture of what is happening.”

In a new project, she and colleagues are investigating why different glaciers respond differently to warming. Factors could include the temperature of the surrounding ocean; the level of friction between a glacier and the bedrock below; the amount of water under a glacier; and the geometry of the fjord.

“The physics of these processes are not well understood,” Csatho says.

The NASA missions: A colossal undertaking

The study combined data from various NASA missions, including:

  • NASA’s Ice, Cloud and Land Elevation Satellite (ICESat), which measured the ice sheet’s elevation multiple times a year at each of the nearly 100,000 locations from 2003-09.

  • NASA’s, massive aerial survey that employs highly specialized research aircrafts to collect data at less frequent intervals than ICESat. These missions began measuring the Greenland Ice Sheet’s elevation in 1993. Operation IceBridge was started in 2009 to bridge the time between ICESat-1 and ICESat-2, and will continue until at least 2017, when NASA’s next generation ICESat-2 satellite is expected to come online.

Csatho says the new study shows why careful monitoring is critical: Given the complex nature of glacier behavior, good data is crucial to building better models.


Besides Csatho, Schenk and van der Veen, the project included additional researchers from the University at Buffalo, Utrecht University in The Netherlands, the Technical University of Denmark and Florida Atlantic University.

Research links soil mineral surfaces to key atmospheric processes

Pictured are, from left, are David Bish, Melissa Donaldson and Jonathan Raff. -  Indiana University
Pictured are, from left, are David Bish, Melissa Donaldson and Jonathan Raff. – Indiana University

Research by Indiana University scientists finds that soil may be a significant and underappreciated source of nitrous acid, a chemical that plays a pivotal role in atmospheric processes such as the formation of smog and determining the lifetime of greenhouse gases.

The study shows for the first time that the surface acidity of common minerals found in soil determines whether the gas nitrous acid will be released into the atmosphere. The finding could contribute to improved models for understanding and controlling air pollution, a significant public health concern.

“We find that the surfaces of minerals in the soil can be much more acidic than the overall pH of the soil would suggest,” said Jonathan Raff, assistant professor in the School of Public and Environmental Affairs and Department of Chemistry. “It’s the acidity of the soil minerals that acts as a knob or a control lever, and that determines whether nitrous acid outgasses from soil or remains as nitrite.”

The article, “Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid,” will be published this week in the journal Proceedings of the National Academy of Sciences. Melissa A. Donaldson, a Ph.D. student in the School of Public and Environmental Affairs, is the lead author. Co-authors are Raff and David L. Bish, the Haydn Murray Chair of Applied Clay Mineralogy in the Department of Geological Sciences.

Nitrous acid, or HONO, plays a key role in regulating atmospheric processes. Sunlight causes it to break down into nitric oxide and the hydroxyl radical, OH. The latter controls the atmospheric lifetime of gases important to air quality and climate change and initiates the chemistry leading to the formation of ground-level ozone, a primary component of smog.

Scientists have known about the nitrous acid’s role in air pollution for 40 years, but they haven’t fully understood how it is produced and destroyed or how it interacts with other substances, because HONO is unstable and difficult to measure.

“Only in the last 10 years have we had the technology to study nitrous acid under environmentally relevant conditions,” Raff said.

Recent studies have shown nitrous acid to be emitted from soil in many locations. But this was unexpected because, according to basic chemistry, the reactions that release nitrous acid should take place only in extremely acidic soils, typically found in rain forests or the taiga of North America and Eurasia.

The standard method to determine the acidity of soil is to mix bulk soil with water and measure the overall pH. But the IU researchers show that the crucial factor is not overall pH but the acidity at the surface of soil minerals, especially iron oxides and aluminum oxides. At the molecular level, the water adsorbed directly to these minerals is unusually acidic and facilitates the conversion of nitrite in the soil to nitrous acid, which then volatilizes.

“With the traditional approach of calculating soil pH, we were severely underestimating nitrous acid emissions from soil,” Raff said. “I think the source is going to turn out to be more important than was previously imagined.”

The research was carried out using soil from a farm field near Columbus, Ind. But aluminum and iron oxides are ubiquitous in soil, and the researchers say the results suggest that about 70 percent of Earth’s soils could be sources of nitrous acid.

Ultimately, the research will contribute to a better understanding of how nitrous acid is produced and how it affects atmospheric processes. That in turn will improve the computer models used by the U.S. Environmental Protection Agency and other regulatory agencies to control air pollution, which the World Health Organization estimates contributes to 7 million premature deaths annually.

“With improved models, policymakers can make better judgments about the costs and benefits of regulations,” Raff said. “If we don’t get the chemistry right, we’re not going to get the right answers to our policy questions regarding air pollution.”

No laughing matter: Nitrous oxide rose at end of last ice age

Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. -  Adrian Schilt
Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. – Adrian Schilt

Nitrous oxide (N2O) is an important greenhouse gas that doesn’t receive as much notoriety as carbon dioxide or methane, but a new study confirms that atmospheric levels of N2O rose significantly as the Earth came out of the last ice age and addresses the cause.

An international team of scientists analyzed air extracted from bubbles enclosed in ancient polar ice from Taylor Glacier in Antarctica, allowing for the reconstruction of the past atmospheric composition. The analysis documented a 30 percent increase in atmospheric nitrous oxide concentrations from 16,000 years ago to 10,000 years ago. This rise in N2O was caused by changes in environmental conditions in the ocean and on land, scientists say, and contributed to the warming at the end of the ice age and the melting of large ice sheets that then existed.

The findings add an important new element to studies of how Earth may respond to a warming climate in the future. Results of the study, which was funded by the U.S. National Science Foundation and the Swiss National Science Foundation, are being published this week in the journal Nature.

“We found that marine and terrestrial sources contributed about equally to the overall increase of nitrous oxide concentrations and generally evolved in parallel at the end of the last ice age,” said lead author Adrian Schilt, who did much of the work as a post-doctoral researcher at Oregon State University. Schilt then continued to work on the study at the Oeschger Centre for Climate Change Research at the University of Bern in Switzerland.

“The end of the last ice age represents a partial analog to modern warming and allows us to study the response of natural nitrous oxide emissions to changing environmental conditions,” Schilt added. “This will allow us to better understand what might happen in the future.”

Nitrous oxide is perhaps best known as laughing gas, but it is also produced by microbes on land and in the ocean in processes that occur naturally, but can be enhanced by human activity. Marine nitrous oxide production is linked closely to low oxygen conditions in the upper ocean and global warming is predicted to intensify the low-oxygen zones in many of the world’s ocean basins. N2O also destroys ozone in the stratosphere.

“Warming makes terrestrial microbes produce more nitrous oxide,” noted co-author Edward Brook, an Oregon State paleoclimatologist whose research team included Schilt. “Greenhouse gases go up and down over time, and we’d like to know more about why that happens and how it affects climate.”

Nitrous oxide is among the most difficult greenhouse gases to study in attempting to reconstruct the Earth’s climate history through ice core analysis. The specific technique that the Oregon State research team used requires large samples of pristine ice that date back to the desired time of study – in this case, between about 16,000 and 10,000 years ago.

The unusual way in which Taylor Glacier is configured allowed the scientists to extract ice samples from the surface of the glacier instead of drilling deep in the polar ice cap because older ice is transported upward near the glacier margins, said Brook, a professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The scientists were able to discern the contributions of marine and terrestrial nitrous oxide through analysis of isotopic ratios, which fingerprint the different sources of N2O in the atmosphere.

“The scientific community knew roughly what the N2O concentration trends were prior to this study,” Brook said, “but these findings confirm that and provide more exact details about changes in sources. As nitrous oxide in the atmosphere continues to increase – along with carbon dioxide and methane – we now will be able to more accurately assess where those contributions are coming from and the rate of the increase.”

Atmospheric N2O was roughly 200 parts per billion at the peak of the ice age about 20,000 years ago then rose to 260 ppb by 10,000 years ago. As of 2014, atmospheric N2Owas measured at about 327 ppb, an increase attributed primarily to agricultural influences.

Although the N2O increase at the end of the last ice age was almost equally attributable to marine and terrestrial sources, the scientists say, there were some differences.

“Our data showed that terrestrial emissions changed faster than marine emissions, which was highlighted by a fast increase of emissions on land that preceded the increase in marine emissions,” Schilt pointed out. “It appears to be a direct response to a rapid temperature change between 15,000 and 14,000 years ago.”

That finding underscores the complexity of analyzing how Earth responds to changing conditions that have to account for marine and terrestrial influences; natural variability; the influence of different greenhouse gases; and a host of other factors, Brook said.

“Natural sources of N2O are predicted to increase in the future and this study will help up test predictions on how the Earth will respond,” Brook said.

New research highlights the key role of ozone in climate change

Many of the complex computer models which are used to predict climate change could be missing an important ozone ‘feedback’ factor in their calculations of future global warming, according to new research led by the University of Cambridge and published today (1 December) in the journal Nature Climate Change.

Computer models play a crucial role in informing climate policy. They are used to assess the effect that carbon emissions have had on the Earth’s climate to date, and to predict possible pathways for the future of our climate.

Increasing computing power combined with increasing scientific knowledge has led to major advances in our understanding of the climate system during the past decades. However, the Earth’s inherent complexity, and the still limited computational power available, means that not every variable can be included in current models. Consequently, scientists have to make informed choices in order to build models which are fit for purpose.

“These models are the only tools we have in terms of predicting the future impacts of climate change, so it’s crucial that they are as accurate and as thorough as we can make them,” said the paper’s lead author Peer Nowack, a PhD student in the Centre for Atmospheric Science, part of Cambridge’s Department of Chemistry.

The new research has highlighted a key role that ozone, a major component of the stratosphere, plays in how climate change occurs, and the possible implications for predictions of global warming. Changes in ozone are often either not included, or are included a very simplified manner, in current climate models. This is due to the complexity and the sheer computational power it takes to calculate these changes, an important deficiency in some studies.

In addition to its role in protecting the Earth from the Sun’s harmful ultraviolet rays, ozone is also a greenhouse gas. The ozone layer is part of a vast chemical network, and changes in environmental conditions, such as changes in temperature or the atmospheric circulation, result in changes in ozone abundance. This process is known as an atmospheric chemical feedback.

Using a comprehensive atmosphere-ocean chemistry-climate model, the Cambridge team, working with researchers from the University of East Anglia, the National Centre for Atmospheric Science, the Met Office and the University of Reading, compared ozone at pre-industrial levels with how it evolves in response to a quadrupling of CO2 in the atmosphere, which is a standard climate change experiment.

What they discovered is a reduction in global surface warming of approximately 20% – equating to 1° Celsius – when compared with most models after 75 years. This difference is due to ozone changes in the lower stratosphere in the tropics, which are mainly caused by changes in the atmospheric circulation under climate change.

“This research has shown that ozone feedback can play a major role in global warming and that it should be included consistently in climate models,” said Nowack. “These models are incredibly complex, just as the Earth is, and there are an almost infinite number of different processes which we could include. Many different processes have to be simplified in order to make them run effectively within the model, but what this research shows is that ozone feedback plays a major role in climate change, and therefore should be included in models in order to make them as accurate as we can make them. However, this particular feedback is especially complex since it depends on many other climate processes that models still simulate differently. Therefore, the best option to represent this feedback consistently might be to calculate ozone changes in every model, in spite of the high computational costs of such a procedure.

“Climate change research is all about having the best data possible. Every climate model currently in use shows that warming is occurring and will continue to occur, but the difference is in how and when they predict warming will happen. Having the best models possible will help make the best climate policy.”


For more information, or to speak with the researchers, contact:

Sarah Collins, Office of Communications University of Cambridge Tel: +44 (0)1223 765542, Mob: +44 (0)7525 337458 Email:

Notes for editors:

1.The paper, “A large ozone-circulation feedback and its implications for global warming assessments” is published in the journal Nature Climate Change. DOI: 10.1038/nclimate2451

2.The mission of the University of Cambridge is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. To date, 90 affiliates of the University have won the Nobel Prize.

3.UEA’s school of Environmental Sciences is one of the longest established, largest and most fully developed of its kind in Europe. It was ranked 5th in the Guardian League Table 2015.In the last Research Assessment Exercise, 95 per cent of the school’s activity was classified as internationally excellent or world leading.

<br clear="both

Fountain of youth underlies Antarctic Mountains

Images of the ice-covered Gamburtsev Mountains revealed water-filled valleys, as seen by the cluster of vertical lines in this image. -  Tim Creyts
Images of the ice-covered Gamburtsev Mountains revealed water-filled valleys, as seen by the cluster of vertical lines in this image. – Tim Creyts

Time ravages mountains, as it does people. Sharp features soften, and bodies grow shorter and rounder. But under the right conditions, some mountains refuse to age. In a new study, scientists explain why the ice-covered Gamburtsev Mountains in the middle of Antarctica looks as young as they do.

The Gamburtsevs were discovered in the 1950s, but remained unexplored until scientists flew ice-penetrating instruments over the mountains 60 years later. As this ancient hidden landscape came into focus, scientists were stunned to see the saw-toothed and towering crags of much younger mountains. Though the Gamburtsevs are contemporaries of the largely worn-down Appalachians, they looked more like the Rockies, which are nearly 200 million years younger.

More surprising still, the scientists discovered a vast network of lakes and rivers at the mountains’ base. Though water usually speeds erosion, here it seems to have kept erosion at bay. The reason, researchers now say, has to do with the thick ice that has entombed the Gamburtsevs since Antarctica went into a deep freeze 35 million years ago.

“The ice sheet acts like an anti-aging cream,” said the study’s lead author, Timothy Creyts, a geophysicist at Columbia University’s Lamont-Doherty Earth Observatory. “It triggers a series of thermodynamic processes that have almost perfectly preserved the Gamburtsevs since ice began spreading across the continent.”

The study, which appears in the latest issue of the journal Geophysical Research Letters, explains how the blanket of ice covering the Gamburtsevs has preserved its rugged ridgelines.

Snow falling at the surface of the ice sheet draws colder temperatures down, closer to protruding peaks in a process called divergent cooling. At the same time, heat radiating from bedrock beneath the ice sheet melts ice in the deep valleys to form rivers and lakes. As rivers course along the base of the ice sheet, high pressures from the overlying ice sheet push water up valleys in reverse. This uphill flow refreezes as it meets colder temperature from above. Thus, ridgelines are cryogenically preserved.

The oldest rocks in the Gamburtsevs formed more than a billion years ago, in the collision of several continents. Though these prototype mountains eroded away, a lingering crustal root became reactivated when the supercontinent Gondwana ripped apart, starting about 200 million years ago. Tectonic forces pushed the land up again to form the modern Gamburtsevs, which range across an area the size of the Alps. Erosion again chewed away at the mountains until earth entered a cooling phase 35 million years ago. Expanding outward from the Gamburtsevs, a growing layer of ice joined several other nucleation points to cover the entire continent in ice.

The researchers say that the mechanism that stalled aging of the Gamburtsevs at higher elevations may explain why some ridgelines in the Torngat Mountains on Canada’s Labrador Peninsula and the Scandinavian Mountains running through Norway, Sweden and Finland appear strikingly untouched. Massive ice sheets covered both landscapes during the last ice age, which peaked about 20,000 years ago, but many high-altitude features bear little trace of this event.

“The authors identify a mechanism whereby larger parts of mountains ranges in glaciated regions–not just Antarctica–could be spared from erosion,” said Stewart Jamieson, a glaciologist at Durham University who was not involved in the study. “This is important because these uplands are nucleation centers for ice sheets. If they were to gradually erode during glacial cycles, they would become less effective as nucleation points during later ice ages.”

Ice sheet behavior, then, may influence climate change in ways that scientists and computer models have yet to appreciate. As study coauthor Fausto Ferraccioli, head of the British Antarctic Survey’s airborne geophysics group, put it: “If these mountains in interior East Antarctica had been more significantly eroded then the ice sheet itself
may have had a different history.”

Other Authors

Hugh Carr and Tom Jordan of the British Antarctic Survey; Robin Bell, Michael Wolovick and Nicholas Frearson of Lamont-Doherty; Kathryn Rose of University of Bristol; Detlef Damaske of Germany’s Federal Institute for Geosciences and Natural Resources; David Braaten of Kansas University; and Carol Finn of the U.S. Geological Survey.

Copies of the paper, “Freezing of ridges and water networks preserves the Gamburtsev Subglacial Mountains for millions of years,” are available from the authors.

Scientist Contact

Tim Creyts


Climate change was not to blame for the collapse of the Bronze Age

Scientists will have to find alternative explanations for a huge population collapse in Europe at the end of the Bronze Age as researchers prove definitively that climate change – commonly assumed to be responsible – could not have been the culprit.

Archaeologists and environmental scientists from the University of Bradford, University of Leeds, University College Cork, Ireland (UCC), and Queen’s University Belfast have shown that the changes in climate that scientists believed to coincide with the fall in population in fact occurred at least two generations later.

Their results, published this week in Proceedings of the National Academy of Sciences, show that human activity starts to decline after 900BC, and falls rapidly after 800BC, indicating a population collapse. But the climate records show that colder, wetter conditions didn’t occur until around two generations later.

Fluctuations in levels of human activity through time are reflected by the numbers of radiocarbon dates for a given period. The team used new statistical techniques to analyse more than 2000 radiocarbon dates, taken from hundreds of archaeological sites in Ireland, to pinpoint the precise dates that Europe’s Bronze Age population collapse occurred.

The team then analysed past climate records from peat bogs in Ireland and compared the archaeological data to these climate records to see if the dates tallied. That information was then compared with evidence of climate change across NW Europe between 1200 and 500 BC.

“Our evidence shows definitively that the population decline in this period cannot have been caused by climate change,” says Ian Armit, Professor of Archaeology at the University of Bradford, and lead author of the study.

Graeme Swindles, Associate Professor of Earth System Dynamics at the University of Leeds, added, “We found clear evidence for a rapid change in climate to much wetter conditions, which we were able to precisely pinpoint to 750BC using statistical methods.”

According to Professor Armit, social and economic stress is more likely to be the cause of the sudden and widespread fall in numbers. Communities producing bronze needed to trade over very large distances to obtain copper and tin. Control of these networks enabled the growth of complex, hierarchical societies dominated by a warrior elite. As iron production took over, these networks collapsed, leading to widespread conflict and social collapse. It may be these unstable social conditions, rather than climate change, that led to the population collapse at the end of the Bronze Age.

According to Katharina Becker, Lecturer in the Department of Archaeology at UCC, the Late Bronze Age is usually seen as a time of plenty, in contrast to an impoverished Early Iron Age. “Our results show that the rich Bronze Age artefact record does not provide the full picture and that crisis began earlier than previously thought,” she says.

“Although climate change was not directly responsible for the collapse it is likely that the poor climatic conditions would have affected farming,” adds Professor Armit. “This would have been particularly difficult for vulnerable communities, preventing population recovery for several centuries.”

The findings have significance for modern day climate change debates which, argues Professor Armit, are often too quick to link historical climate events with changes in population.

“The impact of climate change on humans is a huge concern today as we monitor rising temperatures globally,” says Professor Armit.

“Often, in examining the past, we are inclined to link evidence of climate change with evidence of population change. Actually, if you have high quality data and apply modern analytical techniques, you get a much clearer picture and start to see the real complexity of human/environment relationships in the past.”

Adjusting Earth’s thermostat, with caution

David Keith, Gordon McKay Professor of Applied Physics at Harvard SEAS and professor of public policy at Harvard Kennedy School, coauthored several papers on climate engineering with colleagues at Harvard and beyond. -  Eliza Grinnell, SEAS Communications.
David Keith, Gordon McKay Professor of Applied Physics at Harvard SEAS and professor of public policy at Harvard Kennedy School, coauthored several papers on climate engineering with colleagues at Harvard and beyond. – Eliza Grinnell, SEAS Communications.

A vast majority of scientists believe that the Earth is warming at an unprecedented rate and that human activity is almost certainly the dominant cause. But on the topics of response and mitigation, there is far less consensus.

One of the most controversial propositions for slowing the increase in temperatures here on Earth is to manipulate the atmosphere above. Specifically, some scientists believe it should be possible to offset the warming effect of greenhouses gases by reflecting more of the sun’s energy back into space.

The potential risks–and benefits–of solar radiation management (SRM) are substantial. So far, however, all of the serious testing has been confined to laboratory chambers and theoretical models. While those approaches are valuable, they do not capture the full range of interactions among chemicals, the impact of sunlight on these reactions, or multiscale variations in the atmosphere.

Now, a team of researchers from the Harvard School of Engineering and Applied Sciences (SEAS) has outlined how a small-scale “stratospheric perturbation experiment” could work. By proposing, in detail, a way to take the science of geoengineering to the skies, they hope to stimulate serious discussion of the practice by policymakers and scientists.

Ultimately, they say, informed decisions on climate policy will need to rely on the best information available from controlled and cautious field experiments.

The paper is among several published today in a special issue of the Philosophical Transactions of the Royal Society A that examine the nuances, the possible consequences, and the current state of scientific understanding of climate engineering. David Keith, whose work features prominently in the issue, is Gordon McKay Professor of Applied Physics at Harvard SEAS and a professor of public policy at Harvard Kennedy School. His coauthors on the topic of field experiments include James Anderson, Philip S. Weld Professor of Applied Chemistry at Harvard SEAS and in Harvard’s Department of Chemistry and Chemical Biology; and other colleagues at Harvard SEAS.

“The idea of conducting experiments to alter atmospheric processes is justifiably controversial, and our experiment, SCoPEx, is just a proposal,” Keith emphasizes. “It will continue to evolve until it is funded, and we will only move ahead if the funding is substantially public, with a formal approval process and independent risk assessment.”

With so much at stake, Keith believes transparency is essential. But the science of climate engineering is also widely misunderstood.

“People often claim that you cannot test geoengineering except by doing it at full scale,” says Keith. “This is nonsense. It is possible to do a small-scale test, with quite low risks, that measures key aspects of the risk of geoengineering–in this case the risk of ozone loss.”

Such controlled experiments, targeting key questions in atmospheric chemistry, Keith says, would reduce the number of “unknown unknowns” and help to inform science-based policy.

The experiment Keith and Anderson’s team is proposing would involve only a tiny amount of material–a few hundred grams of sulfuric acid, an amount Keith says is roughly equivalent to what a typical commercial aircraft releases in a few minutes while flying in the stratosphere. It would provide important insight into how much SRM would reduce radiative heating, the concentration of water vapor in the stratosphere, and the processes that determine water vapor transport–which affects the concentration of ozone.

In addition to the experiment proposed in that publication, another paper coauthored by Keith and collaborators at the California Institute of Technology (CalTech) collects and reviews a number of other experimental methods, to demonstrate the diversity of possible approaches.

“There is a wide range of experiments that could be done that would significantly reduce our uncertainty about the risks and effectiveness of solar geoengineering,” Keith says. “Many could be done with very small local risks.”

A third paper explores how solar geoengineering might actually be implemented, if an international consensus were reached, and suggests that a gradual implementation that aims to limit the rate of climate change would be a plausible strategy.

“Many people assume that solar geoengineering would be used to suddenly restore the Earth’s climate to preindustrial temperatures,” says Keith, “but it’s very unlikely that it would make any policy sense to try to do so.”

Keith also points to another paper in the Royal Society’s special issue–one by Andy Parker at the Belfer Center for Science and International Affairs at Harvard Kennedy School. Parker’s paper furthers the discussion of governance and good practices in geoengineering research in the absence of both national legislation and international agreement, a topic raised last year in Science by Keith and Edward Parson of UCLA.

“The scientific aspects of geoengineering research must, by necessity, advance in tandem with a thorough discussion of the social science and policy,” Keith warns. “Of course, these risks must also be weighed against the risk of doing nothing.”

For further information, see: “Stratospheric controlled perturbation experiment (SCoPEx): A small-scale experiment to improve understanding of the risks of solar geoengineering” doi: 10.1098/rsta.2014.0059

By John Dykema, project scientist at Harvard SEAS; David Keith, Gordon McKay Professor of Applied Physics at Harvard SEAS and professor of public policy at Harvard Kennedy School; James Anderson, Philip S. Weld Professor of Applied Chemistry at Harvard SEAS and in Harvard’s Department of Chemistry and Chemical Biology; and Debra Weisenstein, research management specialist at Harvard SEAS.

“Field experiments on solar geoengineering: Report of a workshop exploring a representative research portfolio”
doi: 10.1098/rsta.2014.0175

By David Keith; Riley Duren, chief systems engineer at the NASA Jet Propulsion Laboratory at CalTech; and Douglas MacMartin, senior research associate and lecturer at CalTech.

“Solar geoengineering to limit the rate of temperature change”
doi: 10.1098/rsta.2014.0134

By Douglas MacMartin; Ken Caldeira, senior scientist at the Carnegie Institute for Science and professor of environmental Earth system sciences at Stanford University; and David Keith.

“Governing solar geoengineering research as it leaves the laboratory”
doi: 10.1098/rsta.2014.0173

By Andy Parker, associate of the Belfer Center at Harvard Kennedy School.

Groundwater warming up in synch

For their study, the researchers were able to fall back on uninterrupted long-term temperature measurements of groundwater flows around the cities of Cologne and Karlsruhe, where the operators of the local waterworks have been measuring the temperature of the groundwater, which is largely uninfluenced by humans, for forty years. This is unique and a rare commodity for the researchers. “For us, the data was a godsend,” stresses Peter Bayer, a senior assistant at ETH Zurich’s Geological Institute. Even with some intensive research, they would not have been able to find a comparable series of measurements. Evidently, it is less interesting or too costly for waterworks to measure groundwater temperatures systematically for a lengthy period of time. “Or the data isn’t digitalised and only archived on paper,” suspects the hydrogeologist.

Damped image of atmospheric warming

Based on the readings, the researchers were able to demonstrate that the groundwater is not just warming up; the warming stages observed in the atmosphere are also echoed. “Global warming is reflected directly in the groundwater, albeit damped and with a certain time lag,” says Bayer, summarising the main results that the project has yielded. The researchers published their study in the journal Hydrology and Earth System Sciences.

The data also reveals that the groundwater close to the surface down to a depth of around sixty metres has warmed up statistically significantly in the course of global warming over the last forty years. This water heating follows the warming pattern of the local and regional climate, which in turn mirrors that of global warming.

The groundwater reveals how the atmosphere has made several temperature leaps at irregular intervals. These “regime shifts” can also be observed in the global climate, as the researchers write in their study. Bayer was surprised at how quickly the groundwater responded to climate change.

Heat exchange with the subsoil

The earth’s atmosphere has warmed up by an average of 0.13 degrees Celsius per decade in the last fifty years. And this warming doesn’t stop at the subsoil, either, as other climate scientists have demonstrated in the last two decades with drillings all over the world. However, the researchers only tended to consider soils that did not contain any water or where there were no groundwater flow.

While the fact that the groundwater has not escaped climate change was revealed by researchers from Eawag and ETH Zurich in a study published three years ago, it only concerned “artificial” groundwater. In order to enhance it, river water is trickled off in certain areas. The temperature profile of the groundwater generated as a result thus matches that of the river water.

The new study, however, examines groundwater that has barely been influenced by humans. According to Bayer, it is plausible that the natural groundwater flow is also warming up in the course of climate change. “The difference in temperature between the atmosphere and the subsoil balances out naturally.” The energy transfer takes place via thermal conduction and the groundwater flow, much like a heat exchanger, which enables the heat transported to spread in the subsoil and level out.

The consequences of these findings, however, are difficult to gauge. The warmer temperatures might influence subterranean ecosystems on the one hand and groundwater-dependent biospheres on the other, which include cold areas in flowing waters where the groundwater discharges. For cryophilic organisms such as certain fish, groundwater warming could have negative consequences.

Consequences difficult to gauge

Higher groundwater temperatures also influence the water’s chemical composition, especially the chemical equilibria of nitrate or carbonate. After all, chemical reactions usually take place more quickly at higher temperatures. Bacterial activity might also increase at rising water temperatures. If the groundwater becomes warmer, undesirable bacteria such as gastro-intestinal disease pathogens might multiply more effectively. However, the scientists can also imagine positive effects. “The groundwater’s excess heat could be used geothermally for instance,” adds Kathrin Menberg, the first author of the study.