New study finds oceans arrived early to Earth

In this illustration of the early solar system, the dashed white line represents the snow line -- the transition from the hotter inner solar system, where water ice is not stable (brown) to the outer Solar system, where water ice is stable (blue). Two possible ways that the inner solar system received water are: water molecules sticking to dust grains inside the 'snow line' (as shown in the inset) and carbonaceous chondrite material flung into the inner solar system by the effect of gravity from protoJupiter. With either scenario, water must accrete to the inner planets within the first ca. 10 million years of solar system formation. -  Illustration by Jack Cook, Woods Hole Oceanographic Institution
In this illustration of the early solar system, the dashed white line represents the snow line — the transition from the hotter inner solar system, where water ice is not stable (brown) to the outer Solar system, where water ice is stable (blue). Two possible ways that the inner solar system received water are: water molecules sticking to dust grains inside the ‘snow line’ (as shown in the inset) and carbonaceous chondrite material flung into the inner solar system by the effect of gravity from protoJupiter. With either scenario, water must accrete to the inner planets within the first ca. 10 million years of solar system formation. – Illustration by Jack Cook, Woods Hole Oceanographic Institution

Earth is known as the Blue Planet because of its oceans, which cover more than 70 percent of the planet’s surface and are home to the world’s greatest diversity of life. While water is essential for life on the planet, the answers to two key questions have eluded us: where did Earth’s water come from and when?

While some hypothesize that water came late to Earth, well after the planet had formed, findings from a new study led by scientists at the Woods Hole Oceanographic Institution (WHOI) significantly move back the clock for the first evidence of water on Earth and in the inner solar system.

“The answer to one of the basic questions is that our oceans were always here. We didn’t get them from a late process, as was previously thought,” said Adam Sarafian, the lead author of the paper published Oct. 31, 2014, in the journal Science and a MIT/WHOI Joint Program student in the Geology and Geophysics Department.

One school of thought was that planets originally formed dry, due to the high-energy, high-impact process of planet formation, and that the water came later from sources such as comets or “wet” asteroids, which are largely composed of ices and gases.

“With giant asteroids and meteors colliding, there’s a lot of destruction,” said Horst Marschall, a geologist at WHOI and coauthor of the paper. “Some people have argued that any water molecules that were present as the planets were forming would have evaporated or been blown off into space, and that surface water as it exists on our planet today, must have come much, much later—hundreds of millions of years later.”

The study’s authors turned to another potential source of Earth’s water— carbonaceous chondrites. The most primitive known meteorites, carbonaceous chondrites, were formed in the same swirl of dust, grit, ice and gasses that gave rise to the sun some 4.6 billion years ago, well before the planets were formed.

“These primitive meteorites resemble the bulk solar system composition,” said WHOI geologist and coauthor Sune Nielsen. “They have quite a lot of water in them, and have been thought of before as candidates for the origin of Earth’s water.

In order to determine the source of water in planetary bodies, scientists measure the ratio between the two stable isotopes of hydrogen: deuterium and hydrogen. Different regions of the solar system are characterized by highly variable ratios of these isotopes. The study’s authors knew the ratio for carbonaceous chondrites and reasoned that if they could compare that to an object that was known to crystallize while Earth was actively accreting then they could gauge when water appeared on Earth.

To test this hypothesis, the research team, which also includes Francis McCubbin from the Institute of Meteoritics at the University of New Mexico and Brian Monteleone of WHOI, utilized meteorite samples provided by NASA from the asteroid 4-Vesta. The asteroid 4-Vesta, which formed in the same region of the solar system as Earth, has a surface of basaltic rock—frozen lava. These basaltic meteorites from 4-Vesta are known as eucrites and carry a unique signature of one of the oldest hydrogen reservoirs in the solar system. Their age—approximately 14 million years after the solar system formed—makes them ideal for determining the source of water in the inner solar system at a time when Earth was in its main building phase. The researchers analyzed five different samples at the Northeast National Ion Microprobe Facility—a state-of-the-art national facility housed at WHOI that utilizes secondary ion mass spectrometers. This is the first time hydrogen isotopes have been measured in eucrite meteorites.

The measurements show that 4-Vesta contains the same hydrogen isotopic composition as carbonaceous chondrites, which is also that of Earth. That, combined with nitrogen isotope data, points to carbonaceous chondrites as the most likely common source of water.

“The study shows that Earth’s water most likely accreted at the same time as the rock. The planet formed as a wet planet with water on the surface,” Marschall said.

While the findings don’t preclude a late addition of water on Earth, it shows that it wasn’t necessary since the right amount and composition of water was present at a very early stage.

“An implication of that is that life on our planet could have started to begin very early,” added Nielsen. “Knowing that water came early to the inner solar system also means that the other inner planets could have been wet early and evolved life before they became the harsh environments they are today.

Reservoirs of ancient lava shaped Earth

Geological history has periodically featured giant lava eruptions that coat large swaths of land or ocean floor with basaltic lava, which hardens into rock formations called flood basalt. New research from Matthew Jackson and Richard Carlson proposes that the remnants of six of the largest volcanic events of the past 250 million years contain traces of the ancient Earth’s primitive mantle-which existed before the largely differentiated mantle of today-offering clues to the geochemical history of the planet. Their work is published online July 27 by Nature.

Scientists recently discovered that an area in northern Canada and Greenland comprised of flood basalt contains traces of ancient Earth’s primitive mantle. Carlson and Jackson’s research expanded these findings, in order to determine if other large volcanic rock deposits also derive from primitive sources.

Information about the primitive mantle reservoir-which came into existence after the Earth’s core formed but before the Earth’s outer rocky shell differentiated into crust and depleted mantle-would teach scientists about the geochemistry of early Earth and how our planet arrived at its present state.

Until recently, scientists believed that the Earth’s primitive mantle, such as the remnants found in northern Canada and Greenland, originated from a type of meteorite called carbonaceous chondrites. But comparisons of isotopes of the element neodymium between samples from Earth and samples from chondrites didn’t produce the expected results, which suggested that modern mantle reservoirs may have evolved from something different.

Carlson, of Carnegie’s Department of Terrestrial Magnetism, and Jackson, a former Carnegie fellow now at Boston University, examined the isotopic characteristics of flood basalts to determine whether they were created by a primitive mantle source, even if it wasn’t a chondritic one.

They used geochemical techniques based on isotopes of neodymium and lead to compare basalts from the previously discovered 62-million-year-old primitive mantle source in northern Canada’s Baffin Island and West Greenland to basalts from the South Pacific’s Ontong-Java Plateau, which formed in the largest volcanic event in geologic history. They discovered minor differences in the isotopic compositions of the two basaltic provinces, but not beyond what could be expected in a primitive reservoir.

They compared these findings to basalts from four other large accumulations of lava-formed rocks in Botswana, Russia, India, and the Indian Ocean, and determined that lavas that have interacted with continental crust the least (and are thus less contaminated) have neodymium and lead isotopic compositions similar to an early-formed primitive mantle composition.

The presence of these early-earth signatures in the six flood basalts suggests that a significant fraction of the world’s largest volcanic events originate from a modern mantle source that is similar to the primitive reservoir discovered in Baffin Island and West Greenland. This primitive mantle is hotter, due to a higher concentration of radioactive elements, and more easily melted than other mantle reservoirs. As a result, it could be more likely to generate the eruptions that form flood basalts.

Arctic rocks offer new glimpse of primitive Earth

Scientists have discovered a new window into the Earth’s violent past. Geochemical evidence from volcanic rocks collected on Baffin Island in the Canadian Arctic suggests that beneath it lies a region of the Earth’s mantle that has largely escaped the billions of years of melting and geological churning that has affected the rest of the planet. Researchers believe the discovery offers clues to the early chemical evolution of the Earth.

The newly identified mantle “reservoir,” as it is called, dates from just a few tens of million years after the Earth was first assembled from the collisions of smaller bodies. This reservoir likely represents the composition of the mantle shortly after formation of the core, but before the 4.5 billion years of crust formation and recycling modified the composition of most of the rest of Earth’s interior.

“This was a key phase in the evolution of the Earth,” says co-author Richard Carlson of the Carnegie Institution’s Department of Terrestrial Magnetism. “It set the stage for everything that came after. Primitive mantle such as that we have identified would have been the ultimate source of all the magmas and all the different rock types we see on Earth today.”

Carlson and lead author Matthew Jackson (a former Carnegie postdoctoral fellow, now at Boston University), with colleagues, using samples collected by coauthor Don Francis of McGill University, targeted the Baffin Island rocks, which are the earliest expression of the mantle hotspot now feeding volcanic eruptions on Iceland, because previous study of helium isotopes in these rocks showed them to have anomalously high ratios of helium-3 to helium-4. Helium-3 is generally extremely rare within the Earth; most of the mantle’s supply has been outgassed by volcanic eruptions and lost to space over the planet’s long geological history. In contrast, helium-4 has been constantly replenished within the Earth by the decay of radioactive uranium and thorium. The high proportion of helium-3 suggests that the Baffin Island lavas came from a reservoir in the mantle that had never previously outgassed its original helium-3, implying that it had not been subjected to the extensive chemical differentiation experienced by most of the mantle.

The researchers confirmed this conclusion by analyzing the lead isotopes in the lava samples, which date the reservoir to between 4.55 and 4.45 billion years old. This age is only slightly younger than the Earth itself. The early age of the mantle reservoir implies that it existed before melting of the mantle began to create the magmas that rose to form Earth’s crust and before plate tectonics allowed that crust to be mixed back into the mantle.

Many researchers have assumed that before continental crust formed the mantle’s chemistry was similar to that of meteorites called chondrites, but that the formation of continents altered its chemistry, causing it to become depleted in the elements, called incompatible elements, that are extracted with the magma when melting occurs in the mantle. “Our results question this assumption,” says Carlson. “They suggest that before continent extraction, the mantle already was depleted in incompatible elements compared to chondrites, perhaps because of an even earlier Earth differentiation event, or perhaps because the Earth originally formed from building blocks depleted in these elements.”

Of the two possibilities, Carlson favors the early differentiation model, which would involve a global magma ocean on the newly-formed Earth. This magma ocean produced a crust that predated the crust that exists today. “In our model, the original crust that formed by the solidification of the magma ocean was buoyantly unstable at Earth’s surface because it was rich in iron,” he says. “This instability caused it to sink to the base of the mantle, taking the incompatible elements with it, where it remains today.”

Some of this deep material may have remained liquid despite the high pressures, and Carlson points out that seismological studies of the deep mantle reveal certain areas, one beneath the southern Pacific and another beneath Africa, that appear to be molten and possibly chemically different from the rest of the mantle. “I’m holding out hope that these seismically imaged areas might be the compositional complement to the “depleted” primitive mantle that we sample in the Baffin Island lavas,” he says.

6 North American sites hold 12,900-year-old nanodiamond-rich soil

Abundant tiny particles of diamond dust exist in sediments dating to 12,900 years ago at six North American sites, adding strong evidence for Earth’s impact with a rare swarm of carbon-and-water-rich comets or carbonaceous chondrites, reports a nine-member scientific team.

These nanodiamonds, which are produced under high-temperature, high-pressure conditions created by cosmic impacts and have been found in meteorites, are concentrated in similarly aged sediments at Murray Springs, Ariz., Bull Creek, Okla., Gainey, Mich., and Topper, S.C., as well as Lake Hind, Manitoba, and Chobot, Alberta, in Canada. Nanodiamonds can be produced on Earth, but only through high-explosive detonations or chemical vaporization.

Last year a 26-member team from 16 institutions proposed that a cosmic impact event, possibly by multiple airbursts of comets, set off a 1,300-year-long cold spell known as the Younger Dryas, fragmented the prehistoric Clovis culture and led to the extinction of a large range of animals, including mammoths, across North America. The team’s paper was published in the Oct. 9, 2007, issue of the Proceedings of the National Academy of Sciences. (News release on the 2007 paper is available at: http://tinyurl.com/82988t, with link to a copy of that paper.)

Now, reporting in the Jan. 2 issue of the journal Science, a team led by the University of Oregon’s Douglas J. Kennett, a member of the original research team, report finding billions of nanometer-sized diamonds concentrated in sediments — weighing from about 10 to 2,700 parts per billion — in the six locations during digs funded by the National Science Foundation.

“The nanodiamonds that we found at all six locations exist only in sediments associated with the Younger Dryas Boundary layers, not above it or below it,” said Kennett, a UO archaeologist. “These discoveries provide strong evidence for a cosmic impact event at approximately 12,900 years ago that would have had enormous environmental consequences for plants, animals and humans across North America.”

The Clovis culture of hunters and gatherers was named after hunting tools referred to as Clovis points, first discovered in a mammoth’s skeleton in 1926 near Clovis, N.M. Clovis sites later were identified across the United States, Mexico and Central America. Clovis people possibly entered North America across a land bridge from Siberia. The peak of the Clovis era is generally considered to have run from 13,200 to 12,900 years ago. One of the diamond-rich sediment layers reported sits directly on top of Clovis materials at the Murray Springs site.