No laughing matter: Nitrous oxide rose at end of last ice age

Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. -  Adrian Schilt
Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. – Adrian Schilt

Nitrous oxide (N2O) is an important greenhouse gas that doesn’t receive as much notoriety as carbon dioxide or methane, but a new study confirms that atmospheric levels of N2O rose significantly as the Earth came out of the last ice age and addresses the cause.

An international team of scientists analyzed air extracted from bubbles enclosed in ancient polar ice from Taylor Glacier in Antarctica, allowing for the reconstruction of the past atmospheric composition. The analysis documented a 30 percent increase in atmospheric nitrous oxide concentrations from 16,000 years ago to 10,000 years ago. This rise in N2O was caused by changes in environmental conditions in the ocean and on land, scientists say, and contributed to the warming at the end of the ice age and the melting of large ice sheets that then existed.

The findings add an important new element to studies of how Earth may respond to a warming climate in the future. Results of the study, which was funded by the U.S. National Science Foundation and the Swiss National Science Foundation, are being published this week in the journal Nature.

“We found that marine and terrestrial sources contributed about equally to the overall increase of nitrous oxide concentrations and generally evolved in parallel at the end of the last ice age,” said lead author Adrian Schilt, who did much of the work as a post-doctoral researcher at Oregon State University. Schilt then continued to work on the study at the Oeschger Centre for Climate Change Research at the University of Bern in Switzerland.

“The end of the last ice age represents a partial analog to modern warming and allows us to study the response of natural nitrous oxide emissions to changing environmental conditions,” Schilt added. “This will allow us to better understand what might happen in the future.”

Nitrous oxide is perhaps best known as laughing gas, but it is also produced by microbes on land and in the ocean in processes that occur naturally, but can be enhanced by human activity. Marine nitrous oxide production is linked closely to low oxygen conditions in the upper ocean and global warming is predicted to intensify the low-oxygen zones in many of the world’s ocean basins. N2O also destroys ozone in the stratosphere.

“Warming makes terrestrial microbes produce more nitrous oxide,” noted co-author Edward Brook, an Oregon State paleoclimatologist whose research team included Schilt. “Greenhouse gases go up and down over time, and we’d like to know more about why that happens and how it affects climate.”

Nitrous oxide is among the most difficult greenhouse gases to study in attempting to reconstruct the Earth’s climate history through ice core analysis. The specific technique that the Oregon State research team used requires large samples of pristine ice that date back to the desired time of study – in this case, between about 16,000 and 10,000 years ago.

The unusual way in which Taylor Glacier is configured allowed the scientists to extract ice samples from the surface of the glacier instead of drilling deep in the polar ice cap because older ice is transported upward near the glacier margins, said Brook, a professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The scientists were able to discern the contributions of marine and terrestrial nitrous oxide through analysis of isotopic ratios, which fingerprint the different sources of N2O in the atmosphere.

“The scientific community knew roughly what the N2O concentration trends were prior to this study,” Brook said, “but these findings confirm that and provide more exact details about changes in sources. As nitrous oxide in the atmosphere continues to increase – along with carbon dioxide and methane – we now will be able to more accurately assess where those contributions are coming from and the rate of the increase.”

Atmospheric N2O was roughly 200 parts per billion at the peak of the ice age about 20,000 years ago then rose to 260 ppb by 10,000 years ago. As of 2014, atmospheric N2Owas measured at about 327 ppb, an increase attributed primarily to agricultural influences.

Although the N2O increase at the end of the last ice age was almost equally attributable to marine and terrestrial sources, the scientists say, there were some differences.

“Our data showed that terrestrial emissions changed faster than marine emissions, which was highlighted by a fast increase of emissions on land that preceded the increase in marine emissions,” Schilt pointed out. “It appears to be a direct response to a rapid temperature change between 15,000 and 14,000 years ago.”

That finding underscores the complexity of analyzing how Earth responds to changing conditions that have to account for marine and terrestrial influences; natural variability; the influence of different greenhouse gases; and a host of other factors, Brook said.

“Natural sources of N2O are predicted to increase in the future and this study will help up test predictions on how the Earth will respond,” Brook said.

No laughing matter: Nitrous oxide rose at end of last ice age

Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. -  Adrian Schilt
Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. – Adrian Schilt

Nitrous oxide (N2O) is an important greenhouse gas that doesn’t receive as much notoriety as carbon dioxide or methane, but a new study confirms that atmospheric levels of N2O rose significantly as the Earth came out of the last ice age and addresses the cause.

An international team of scientists analyzed air extracted from bubbles enclosed in ancient polar ice from Taylor Glacier in Antarctica, allowing for the reconstruction of the past atmospheric composition. The analysis documented a 30 percent increase in atmospheric nitrous oxide concentrations from 16,000 years ago to 10,000 years ago. This rise in N2O was caused by changes in environmental conditions in the ocean and on land, scientists say, and contributed to the warming at the end of the ice age and the melting of large ice sheets that then existed.

The findings add an important new element to studies of how Earth may respond to a warming climate in the future. Results of the study, which was funded by the U.S. National Science Foundation and the Swiss National Science Foundation, are being published this week in the journal Nature.

“We found that marine and terrestrial sources contributed about equally to the overall increase of nitrous oxide concentrations and generally evolved in parallel at the end of the last ice age,” said lead author Adrian Schilt, who did much of the work as a post-doctoral researcher at Oregon State University. Schilt then continued to work on the study at the Oeschger Centre for Climate Change Research at the University of Bern in Switzerland.

“The end of the last ice age represents a partial analog to modern warming and allows us to study the response of natural nitrous oxide emissions to changing environmental conditions,” Schilt added. “This will allow us to better understand what might happen in the future.”

Nitrous oxide is perhaps best known as laughing gas, but it is also produced by microbes on land and in the ocean in processes that occur naturally, but can be enhanced by human activity. Marine nitrous oxide production is linked closely to low oxygen conditions in the upper ocean and global warming is predicted to intensify the low-oxygen zones in many of the world’s ocean basins. N2O also destroys ozone in the stratosphere.

“Warming makes terrestrial microbes produce more nitrous oxide,” noted co-author Edward Brook, an Oregon State paleoclimatologist whose research team included Schilt. “Greenhouse gases go up and down over time, and we’d like to know more about why that happens and how it affects climate.”

Nitrous oxide is among the most difficult greenhouse gases to study in attempting to reconstruct the Earth’s climate history through ice core analysis. The specific technique that the Oregon State research team used requires large samples of pristine ice that date back to the desired time of study – in this case, between about 16,000 and 10,000 years ago.

The unusual way in which Taylor Glacier is configured allowed the scientists to extract ice samples from the surface of the glacier instead of drilling deep in the polar ice cap because older ice is transported upward near the glacier margins, said Brook, a professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The scientists were able to discern the contributions of marine and terrestrial nitrous oxide through analysis of isotopic ratios, which fingerprint the different sources of N2O in the atmosphere.

“The scientific community knew roughly what the N2O concentration trends were prior to this study,” Brook said, “but these findings confirm that and provide more exact details about changes in sources. As nitrous oxide in the atmosphere continues to increase – along with carbon dioxide and methane – we now will be able to more accurately assess where those contributions are coming from and the rate of the increase.”

Atmospheric N2O was roughly 200 parts per billion at the peak of the ice age about 20,000 years ago then rose to 260 ppb by 10,000 years ago. As of 2014, atmospheric N2Owas measured at about 327 ppb, an increase attributed primarily to agricultural influences.

Although the N2O increase at the end of the last ice age was almost equally attributable to marine and terrestrial sources, the scientists say, there were some differences.

“Our data showed that terrestrial emissions changed faster than marine emissions, which was highlighted by a fast increase of emissions on land that preceded the increase in marine emissions,” Schilt pointed out. “It appears to be a direct response to a rapid temperature change between 15,000 and 14,000 years ago.”

That finding underscores the complexity of analyzing how Earth responds to changing conditions that have to account for marine and terrestrial influences; natural variability; the influence of different greenhouse gases; and a host of other factors, Brook said.

“Natural sources of N2O are predicted to increase in the future and this study will help up test predictions on how the Earth will respond,” Brook said.

Abandoned wells can be ‘super-emitters’ of greenhouse gas

One of the wells the researchers tested; this one in the Allegheny National Forest. -  Princeton University
One of the wells the researchers tested; this one in the Allegheny National Forest. – Princeton University

Princeton University researchers have uncovered a previously unknown, and possibly substantial, source of the greenhouse gas methane to the Earth’s atmosphere.

After testing a sample of abandoned oil and natural gas wells in northwestern Pennsylvania, the researchers found that many of the old wells leaked substantial quantities of methane. Because there are so many abandoned wells nationwide (a recent study from Stanford University concluded there were roughly 3 million abandoned wells in the United States) the researchers believe the overall contribution of leaking wells could be significant.

The researchers said their findings identify a need to make measurements across a wide variety of regions in Pennsylvania but also in other states with a long history of oil and gas development such as California and Texas.

“The research indicates that this is a source of methane that should not be ignored,” said Michael Celia, the Theodore Shelton Pitney Professor of Environmental Studies and professor of civil and environmental engineering at Princeton. “We need to determine how significant it is on a wider basis.”

Methane is the unprocessed form of natural gas. Scientists say that after carbon dioxide, methane is the most important contributor to the greenhouse effect, in which gases in the atmosphere trap heat that would otherwise radiate from the Earth. Pound for pound, methane has about 20 times the heat-trapping effect as carbon dioxide. Methane is produced naturally, by processes including decomposition, and by human activity such as landfills and oil and gas production.

While oil and gas companies work to minimize the amount of methane emitted by their operations, almost no attention has been paid to wells that were drilled decades ago. These wells, some of which date back to the 19th century, are typically abandoned and not recorded on official records.

Mary Kang, then a doctoral candidate at Princeton, originally began looking into methane emissions from old wells after researching techniques to store carbon dioxide by injecting it deep underground. While examining ways that carbon dioxide could escape underground storage, Kang wondered about the effect of old wells on methane emissions.

“I was looking for data, but it didn’t exist,” said Kang, now a postdoctoral researcher at Stanford.

In a paper published Dec. 8 in the Proceedings of the National Academy of Sciences, the researchers describe how they chose 19 wells in the adjacent McKean and Potter counties in northwestern Pennsylvania. The wells chosen were all abandoned, and records about the origin of the wells and their conditions did not exist. Only one of the wells was on the state’s list of abandoned wells. Some of the wells, which can look like a pipe emerging from the ground, are located in forests and others in people’s yards. Kang said the lack of documentation made it hard to tell when the wells were originally drilled or whether any attempt had been made to plug them.

“What surprised me was that every well we measured had some methane coming out,” said Celia.

To conduct the research, the team placed enclosures called flux chambers over the tops of the wells. They also placed flux chambers nearby to measure the background emissions from the terrain and make sure the methane was emitted from the wells and not the surrounding area.

Although all the wells registered some level of methane, about 15 percent emitted the gas at a markedly higher level — thousands of times greater than the lower-level wells. Denise Mauzerall, a Princeton professor and a member of the research team, said a critical task is to discover the characteristics of these super-emitting wells.

Mauzerall said the relatively low number of high-emitting wells could offer a workable solution: while trying to plug every abandoned well in the country might be too costly to be realistic, dealing with the smaller number of high emitters could be possible.

“The fact that most of the methane is coming out of a small number of wells should make it easier to address if we can identify the high-emitting wells,” said Mauzerall, who has a joint appointment as a professor of civil and environmental engineering and as a professor of public and international affairs at the Woodrow Wilson School.

The researchers have used their results to extrapolate total methane emissions from abandoned wells in Pennsylvania, although they stress that the results are preliminary because of the relatively small sample. But based on that data, they estimate that emissions from abandoned wells represents as much as 10 percent of methane from human activities in Pennsylvania — about the same amount as caused by current oil and gas production. Also, unlike working wells, which have productive lifetimes of 10 to 15 years, abandoned wells can continue to leak methane for decades.

“This may be a significant source,” Mauzerall said. “There is no single silver bullet but if it turns out that we can cap or capture the methane coming off these really big emitters, that would make a substantial difference.”


Besides Kang, who is the paper’s lead author, Celia and Mauzerall, the paper’s co-authors include: Tullis Onstott, a professor of geosciences at Princeton; Cynthia Kanno, who was a Princeton undergraduate and who is a graduate student at the Colorado School of Mines; Matthew Reid, who was a graduate student at Princeton and is a postdoctoral researcher at EPFL in Luzerne, Switzerland; Xin Zhang, a postdoctoral researcher in the Woodrow Wilson School at Princeton; and Yuheng Chen, an associate research scholar in geosciences at Princeton.

Abandoned wells can be ‘super-emitters’ of greenhouse gas

One of the wells the researchers tested; this one in the Allegheny National Forest. -  Princeton University
One of the wells the researchers tested; this one in the Allegheny National Forest. – Princeton University

Princeton University researchers have uncovered a previously unknown, and possibly substantial, source of the greenhouse gas methane to the Earth’s atmosphere.

After testing a sample of abandoned oil and natural gas wells in northwestern Pennsylvania, the researchers found that many of the old wells leaked substantial quantities of methane. Because there are so many abandoned wells nationwide (a recent study from Stanford University concluded there were roughly 3 million abandoned wells in the United States) the researchers believe the overall contribution of leaking wells could be significant.

The researchers said their findings identify a need to make measurements across a wide variety of regions in Pennsylvania but also in other states with a long history of oil and gas development such as California and Texas.

“The research indicates that this is a source of methane that should not be ignored,” said Michael Celia, the Theodore Shelton Pitney Professor of Environmental Studies and professor of civil and environmental engineering at Princeton. “We need to determine how significant it is on a wider basis.”

Methane is the unprocessed form of natural gas. Scientists say that after carbon dioxide, methane is the most important contributor to the greenhouse effect, in which gases in the atmosphere trap heat that would otherwise radiate from the Earth. Pound for pound, methane has about 20 times the heat-trapping effect as carbon dioxide. Methane is produced naturally, by processes including decomposition, and by human activity such as landfills and oil and gas production.

While oil and gas companies work to minimize the amount of methane emitted by their operations, almost no attention has been paid to wells that were drilled decades ago. These wells, some of which date back to the 19th century, are typically abandoned and not recorded on official records.

Mary Kang, then a doctoral candidate at Princeton, originally began looking into methane emissions from old wells after researching techniques to store carbon dioxide by injecting it deep underground. While examining ways that carbon dioxide could escape underground storage, Kang wondered about the effect of old wells on methane emissions.

“I was looking for data, but it didn’t exist,” said Kang, now a postdoctoral researcher at Stanford.

In a paper published Dec. 8 in the Proceedings of the National Academy of Sciences, the researchers describe how they chose 19 wells in the adjacent McKean and Potter counties in northwestern Pennsylvania. The wells chosen were all abandoned, and records about the origin of the wells and their conditions did not exist. Only one of the wells was on the state’s list of abandoned wells. Some of the wells, which can look like a pipe emerging from the ground, are located in forests and others in people’s yards. Kang said the lack of documentation made it hard to tell when the wells were originally drilled or whether any attempt had been made to plug them.

“What surprised me was that every well we measured had some methane coming out,” said Celia.

To conduct the research, the team placed enclosures called flux chambers over the tops of the wells. They also placed flux chambers nearby to measure the background emissions from the terrain and make sure the methane was emitted from the wells and not the surrounding area.

Although all the wells registered some level of methane, about 15 percent emitted the gas at a markedly higher level — thousands of times greater than the lower-level wells. Denise Mauzerall, a Princeton professor and a member of the research team, said a critical task is to discover the characteristics of these super-emitting wells.

Mauzerall said the relatively low number of high-emitting wells could offer a workable solution: while trying to plug every abandoned well in the country might be too costly to be realistic, dealing with the smaller number of high emitters could be possible.

“The fact that most of the methane is coming out of a small number of wells should make it easier to address if we can identify the high-emitting wells,” said Mauzerall, who has a joint appointment as a professor of civil and environmental engineering and as a professor of public and international affairs at the Woodrow Wilson School.

The researchers have used their results to extrapolate total methane emissions from abandoned wells in Pennsylvania, although they stress that the results are preliminary because of the relatively small sample. But based on that data, they estimate that emissions from abandoned wells represents as much as 10 percent of methane from human activities in Pennsylvania — about the same amount as caused by current oil and gas production. Also, unlike working wells, which have productive lifetimes of 10 to 15 years, abandoned wells can continue to leak methane for decades.

“This may be a significant source,” Mauzerall said. “There is no single silver bullet but if it turns out that we can cap or capture the methane coming off these really big emitters, that would make a substantial difference.”


Besides Kang, who is the paper’s lead author, Celia and Mauzerall, the paper’s co-authors include: Tullis Onstott, a professor of geosciences at Princeton; Cynthia Kanno, who was a Princeton undergraduate and who is a graduate student at the Colorado School of Mines; Matthew Reid, who was a graduate student at Princeton and is a postdoctoral researcher at EPFL in Luzerne, Switzerland; Xin Zhang, a postdoctoral researcher in the Woodrow Wilson School at Princeton; and Yuheng Chen, an associate research scholar in geosciences at Princeton.

New research highlights the key role of ozone in climate change

Many of the complex computer models which are used to predict climate change could be missing an important ozone ‘feedback’ factor in their calculations of future global warming, according to new research led by the University of Cambridge and published today (1 December) in the journal Nature Climate Change.

Computer models play a crucial role in informing climate policy. They are used to assess the effect that carbon emissions have had on the Earth’s climate to date, and to predict possible pathways for the future of our climate.

Increasing computing power combined with increasing scientific knowledge has led to major advances in our understanding of the climate system during the past decades. However, the Earth’s inherent complexity, and the still limited computational power available, means that not every variable can be included in current models. Consequently, scientists have to make informed choices in order to build models which are fit for purpose.

“These models are the only tools we have in terms of predicting the future impacts of climate change, so it’s crucial that they are as accurate and as thorough as we can make them,” said the paper’s lead author Peer Nowack, a PhD student in the Centre for Atmospheric Science, part of Cambridge’s Department of Chemistry.

The new research has highlighted a key role that ozone, a major component of the stratosphere, plays in how climate change occurs, and the possible implications for predictions of global warming. Changes in ozone are often either not included, or are included a very simplified manner, in current climate models. This is due to the complexity and the sheer computational power it takes to calculate these changes, an important deficiency in some studies.

In addition to its role in protecting the Earth from the Sun’s harmful ultraviolet rays, ozone is also a greenhouse gas. The ozone layer is part of a vast chemical network, and changes in environmental conditions, such as changes in temperature or the atmospheric circulation, result in changes in ozone abundance. This process is known as an atmospheric chemical feedback.

Using a comprehensive atmosphere-ocean chemistry-climate model, the Cambridge team, working with researchers from the University of East Anglia, the National Centre for Atmospheric Science, the Met Office and the University of Reading, compared ozone at pre-industrial levels with how it evolves in response to a quadrupling of CO2 in the atmosphere, which is a standard climate change experiment.

What they discovered is a reduction in global surface warming of approximately 20% – equating to 1° Celsius – when compared with most models after 75 years. This difference is due to ozone changes in the lower stratosphere in the tropics, which are mainly caused by changes in the atmospheric circulation under climate change.

“This research has shown that ozone feedback can play a major role in global warming and that it should be included consistently in climate models,” said Nowack. “These models are incredibly complex, just as the Earth is, and there are an almost infinite number of different processes which we could include. Many different processes have to be simplified in order to make them run effectively within the model, but what this research shows is that ozone feedback plays a major role in climate change, and therefore should be included in models in order to make them as accurate as we can make them. However, this particular feedback is especially complex since it depends on many other climate processes that models still simulate differently. Therefore, the best option to represent this feedback consistently might be to calculate ozone changes in every model, in spite of the high computational costs of such a procedure.

“Climate change research is all about having the best data possible. Every climate model currently in use shows that warming is occurring and will continue to occur, but the difference is in how and when they predict warming will happen. Having the best models possible will help make the best climate policy.”

###

For more information, or to speak with the researchers, contact:

Sarah Collins, Office of Communications University of Cambridge Tel: +44 (0)1223 765542, Mob: +44 (0)7525 337458 Email: sarah.collins@admin.cam.ac.uk

Notes for editors:

1.The paper, “A large ozone-circulation feedback and its implications for global warming assessments” is published in the journal Nature Climate Change. DOI: 10.1038/nclimate2451

2.The mission of the University of Cambridge is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. To date, 90 affiliates of the University have won the Nobel Prize. http://www.cam.ac.uk

3.UEA’s school of Environmental Sciences is one of the longest established, largest and most fully developed of its kind in Europe. It was ranked 5th in the Guardian League Table 2015.In the last Research Assessment Exercise, 95 per cent of the school’s activity was classified as internationally excellent or world leading. http://www.uea.ac.uk/env

<br clear="both

New research highlights the key role of ozone in climate change

Many of the complex computer models which are used to predict climate change could be missing an important ozone ‘feedback’ factor in their calculations of future global warming, according to new research led by the University of Cambridge and published today (1 December) in the journal Nature Climate Change.

Computer models play a crucial role in informing climate policy. They are used to assess the effect that carbon emissions have had on the Earth’s climate to date, and to predict possible pathways for the future of our climate.

Increasing computing power combined with increasing scientific knowledge has led to major advances in our understanding of the climate system during the past decades. However, the Earth’s inherent complexity, and the still limited computational power available, means that not every variable can be included in current models. Consequently, scientists have to make informed choices in order to build models which are fit for purpose.

“These models are the only tools we have in terms of predicting the future impacts of climate change, so it’s crucial that they are as accurate and as thorough as we can make them,” said the paper’s lead author Peer Nowack, a PhD student in the Centre for Atmospheric Science, part of Cambridge’s Department of Chemistry.

The new research has highlighted a key role that ozone, a major component of the stratosphere, plays in how climate change occurs, and the possible implications for predictions of global warming. Changes in ozone are often either not included, or are included a very simplified manner, in current climate models. This is due to the complexity and the sheer computational power it takes to calculate these changes, an important deficiency in some studies.

In addition to its role in protecting the Earth from the Sun’s harmful ultraviolet rays, ozone is also a greenhouse gas. The ozone layer is part of a vast chemical network, and changes in environmental conditions, such as changes in temperature or the atmospheric circulation, result in changes in ozone abundance. This process is known as an atmospheric chemical feedback.

Using a comprehensive atmosphere-ocean chemistry-climate model, the Cambridge team, working with researchers from the University of East Anglia, the National Centre for Atmospheric Science, the Met Office and the University of Reading, compared ozone at pre-industrial levels with how it evolves in response to a quadrupling of CO2 in the atmosphere, which is a standard climate change experiment.

What they discovered is a reduction in global surface warming of approximately 20% – equating to 1° Celsius – when compared with most models after 75 years. This difference is due to ozone changes in the lower stratosphere in the tropics, which are mainly caused by changes in the atmospheric circulation under climate change.

“This research has shown that ozone feedback can play a major role in global warming and that it should be included consistently in climate models,” said Nowack. “These models are incredibly complex, just as the Earth is, and there are an almost infinite number of different processes which we could include. Many different processes have to be simplified in order to make them run effectively within the model, but what this research shows is that ozone feedback plays a major role in climate change, and therefore should be included in models in order to make them as accurate as we can make them. However, this particular feedback is especially complex since it depends on many other climate processes that models still simulate differently. Therefore, the best option to represent this feedback consistently might be to calculate ozone changes in every model, in spite of the high computational costs of such a procedure.

“Climate change research is all about having the best data possible. Every climate model currently in use shows that warming is occurring and will continue to occur, but the difference is in how and when they predict warming will happen. Having the best models possible will help make the best climate policy.”

###

For more information, or to speak with the researchers, contact:

Sarah Collins, Office of Communications University of Cambridge Tel: +44 (0)1223 765542, Mob: +44 (0)7525 337458 Email: sarah.collins@admin.cam.ac.uk

Notes for editors:

1.The paper, “A large ozone-circulation feedback and its implications for global warming assessments” is published in the journal Nature Climate Change. DOI: 10.1038/nclimate2451

2.The mission of the University of Cambridge is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. To date, 90 affiliates of the University have won the Nobel Prize. http://www.cam.ac.uk

3.UEA’s school of Environmental Sciences is one of the longest established, largest and most fully developed of its kind in Europe. It was ranked 5th in the Guardian League Table 2015.In the last Research Assessment Exercise, 95 per cent of the school’s activity was classified as internationally excellent or world leading. http://www.uea.ac.uk/env

<br clear="both

Rare 2.5-billion-year-old rocks reveal hot spot of sulfur-breathing bacteria

Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. -  Alan J. Kaufman
Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. – Alan J. Kaufman

Wriggle your toes in a marsh’s mucky bottom sediment and you’ll probably inhale a rotten egg smell, the distinctive odor of hydrogen sulfide gas. That’s the biochemical signature of sulfur-using bacteria, one of Earth’s most ancient and widespread life forms.

Among scientists who study the early history of our 4.5 billion-year-old planet, there is a vigorous debate about the evolution of sulfur-dependent bacteria. These simple organisms arose at a time when oxygen levels in the atmosphere were less than one-thousandth of what they are now. Living in ocean waters, they respired (or breathed in) sulfate, a form of sulfur, instead of oxygen. But how did that sulfate reach the ocean, and when did it become abundant enough for living things to use it?

New research by University of Maryland geology doctoral student Iadviga Zhelezinskaia offers a surprising answer. Zhelezinskaia is the first researcher to analyze the biochemical signals of sulfur compounds found in 2.5 billion-year-old carbonate rocks from Brazil. The rocks were formed on the ocean floor in a geologic time known as the Neoarchaean Eon. They surfaced when prospectors drilling for gold in Brazil punched a hole into bedrock and pulled out a 590-foot-long core of ancient rocks.

In research published Nov. 7, 2014 in the journal Science, Zhelezinskaia and three co-authors–physicist John Cliff of the University of Western Australia and geologists Alan Kaufman and James Farquhar of UMD–show that bacteria dependent on sulfate were plentiful in some parts of the Neoarchaean ocean, even though sea water typically contained about 1,000 times less sulfate than it does today.

“The samples Iadviga measured carry a very strong signal that sulfur compounds were consumed and altered by living organisms, which was surprising,” says Farquhar. “She also used basic geochemical models to give an idea of how much sulfate was in the oceans, and finds the sulfate concentrations are very low, much lower than previously thought.”

Geologists study sulfur because it is abundant and combines readily with other elements, forming compounds stable enough to be preserved in the geologic record. Sulfur has four naturally occurring stable isotopes–atomic signatures left in the rock record that scientists can use to identify the elements’ different forms. Researchers measuring sulfur isotope ratios in a rock sample can learn whether the sulfur came from the atmosphere, weathering rocks or biological processes. From that information about the sulfur sources, they can deduce important information about the state of the atmosphere, oceans, continents and biosphere when those rocks formed.

Farquhar and other researchers have used sulfur isotope ratios in Neoarchaean rocks to show that soon after this period, Earth’s atmosphere changed. Oxygen levels soared from just a few parts per million to almost their current level, which is around 21 percent of all the gases in the atmosphere. The Brazilian rocks Zhelezinskaia sampled show only trace amounts of oxygen, a sign they were formed before this atmospheric change.

With very little oxygen, the Neoarchaean Earth was a forbidding place for most modern life forms. The continents were probably much drier and dominated by volcanoes that released sulfur dioxide, carbon dioxide, methane and other greenhouse gases. Temperatures probably ranged between 0 and 100 degrees Celsius (32 to 212 degrees Fahrenheit), warm enough for liquid oceans to form and microbes to grow in them.

Rocks 2.5 billion years old or older are extremely rare, so geologists’ understanding of the Neoarchaean are based on a handful of samples from a few small areas, such as Western Australia, South Africa and Brazil. Geologists theorize that Western Australia and South Africa were once part of an ancient supercontinent called Vaalbara. The Brazilian rock samples are comparable in age, but they may not be from the same supercontinent, Zhelezinskaia says.

Most of the Neoarchaean rocks studied are from Western Australia and South Africa and are black shale, which forms when fine dust settles on the sea floor. The Brazilian prospector’s core contains plenty of black shale and a band of carbonate rock, formed below the surface of shallow seas, in a setting that probably resembled today’s Bahama Islands. Black shale usually contains sulfur-bearing pyrite, but carbonate rock typically does not, so geologists have not focused on sulfur signals in Neoarchaean carbonate rocks until now.

Zhelezinskaia “chose to look at a type of rock that others generally avoided, and what she saw was spectacularly different,” said Kaufman. “It really opened our eyes to the implications of this study.”

The Brazilian carbonate rocks’ isotopic ratios showed they formed in ancient seabed containing sulfate from atmospheric sources, not continental rock. And the isotopic ratios also showed that Neoarchaean bacteria were plentiful in the sediment, respiring sulfate and emitted hydrogen sulfide–the same process that goes on today as bacteria recycle decaying organic matter into minerals and gases.

How could the sulfur-dependent bacteria have thrived during a geologic time when sulfur levels were so low? “It seems that they were in shallow water, where evaporation may have been high enough to concentrate the sulfate, and that would make it abundant enough to support the bacteria,” says Zhelezinskaia.

Zhelezinskaia is now analyzing carbonate rocks of the same age from Western Australia and South Africa, to see if the pattern holds true for rocks formed in other shallow water environments. If it does, the results may change scientists’ understanding of one of Earth’s earliest biological processes.

“There is an ongoing debate about when sulfate-reducing bacteria arose and how that fits into the evolution of life on our planet,” says Farquhar. “These rocks are telling us the bacteria were there 2.5 billion years ago, and they were doing something significant enough that we can see them today.”

###

This research was supported by the Fulbright Program (Grantee ID 15110620), the NASA Astrobiology Institute (Grant No. NNA09DA81A) and the National Science Foundation Frontiers in Earth-System Dynamics program (Grant No. 432129). The content of this article does not necessarily reflect the views of these organizations.

“Large sulfur isotope fractionations associated with Neoarchaean microbial sulfate reductions,” Iadviga Zhelezinskaia, Alan J. Kaufman, James Farquhar and John Cliff, was published Nov. 7, 2014 in Science. Download the abstract after 2 p.m. U.S. Eastern time, Nov. 6, 2014: http://www.sciencemag.org/lookup/doi/10.1126/science.1256211

James Farquhar home page

http://www.geol.umd.edu/directory.php?id=13

Alan J. Kaufman home page

http://www.geol.umd.edu/directory.php?id=15

Iadviga Zhelezinskaia home page

http://www.geol.umd.edu/directory.php?id=66

Media Relations Contact: Abby Robinson, 301-405-5845, abbyr@umd.edu

Writer: Heather Dewar

Rare 2.5-billion-year-old rocks reveal hot spot of sulfur-breathing bacteria

Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. -  Alan J. Kaufman
Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. – Alan J. Kaufman

Wriggle your toes in a marsh’s mucky bottom sediment and you’ll probably inhale a rotten egg smell, the distinctive odor of hydrogen sulfide gas. That’s the biochemical signature of sulfur-using bacteria, one of Earth’s most ancient and widespread life forms.

Among scientists who study the early history of our 4.5 billion-year-old planet, there is a vigorous debate about the evolution of sulfur-dependent bacteria. These simple organisms arose at a time when oxygen levels in the atmosphere were less than one-thousandth of what they are now. Living in ocean waters, they respired (or breathed in) sulfate, a form of sulfur, instead of oxygen. But how did that sulfate reach the ocean, and when did it become abundant enough for living things to use it?

New research by University of Maryland geology doctoral student Iadviga Zhelezinskaia offers a surprising answer. Zhelezinskaia is the first researcher to analyze the biochemical signals of sulfur compounds found in 2.5 billion-year-old carbonate rocks from Brazil. The rocks were formed on the ocean floor in a geologic time known as the Neoarchaean Eon. They surfaced when prospectors drilling for gold in Brazil punched a hole into bedrock and pulled out a 590-foot-long core of ancient rocks.

In research published Nov. 7, 2014 in the journal Science, Zhelezinskaia and three co-authors–physicist John Cliff of the University of Western Australia and geologists Alan Kaufman and James Farquhar of UMD–show that bacteria dependent on sulfate were plentiful in some parts of the Neoarchaean ocean, even though sea water typically contained about 1,000 times less sulfate than it does today.

“The samples Iadviga measured carry a very strong signal that sulfur compounds were consumed and altered by living organisms, which was surprising,” says Farquhar. “She also used basic geochemical models to give an idea of how much sulfate was in the oceans, and finds the sulfate concentrations are very low, much lower than previously thought.”

Geologists study sulfur because it is abundant and combines readily with other elements, forming compounds stable enough to be preserved in the geologic record. Sulfur has four naturally occurring stable isotopes–atomic signatures left in the rock record that scientists can use to identify the elements’ different forms. Researchers measuring sulfur isotope ratios in a rock sample can learn whether the sulfur came from the atmosphere, weathering rocks or biological processes. From that information about the sulfur sources, they can deduce important information about the state of the atmosphere, oceans, continents and biosphere when those rocks formed.

Farquhar and other researchers have used sulfur isotope ratios in Neoarchaean rocks to show that soon after this period, Earth’s atmosphere changed. Oxygen levels soared from just a few parts per million to almost their current level, which is around 21 percent of all the gases in the atmosphere. The Brazilian rocks Zhelezinskaia sampled show only trace amounts of oxygen, a sign they were formed before this atmospheric change.

With very little oxygen, the Neoarchaean Earth was a forbidding place for most modern life forms. The continents were probably much drier and dominated by volcanoes that released sulfur dioxide, carbon dioxide, methane and other greenhouse gases. Temperatures probably ranged between 0 and 100 degrees Celsius (32 to 212 degrees Fahrenheit), warm enough for liquid oceans to form and microbes to grow in them.

Rocks 2.5 billion years old or older are extremely rare, so geologists’ understanding of the Neoarchaean are based on a handful of samples from a few small areas, such as Western Australia, South Africa and Brazil. Geologists theorize that Western Australia and South Africa were once part of an ancient supercontinent called Vaalbara. The Brazilian rock samples are comparable in age, but they may not be from the same supercontinent, Zhelezinskaia says.

Most of the Neoarchaean rocks studied are from Western Australia and South Africa and are black shale, which forms when fine dust settles on the sea floor. The Brazilian prospector’s core contains plenty of black shale and a band of carbonate rock, formed below the surface of shallow seas, in a setting that probably resembled today’s Bahama Islands. Black shale usually contains sulfur-bearing pyrite, but carbonate rock typically does not, so geologists have not focused on sulfur signals in Neoarchaean carbonate rocks until now.

Zhelezinskaia “chose to look at a type of rock that others generally avoided, and what she saw was spectacularly different,” said Kaufman. “It really opened our eyes to the implications of this study.”

The Brazilian carbonate rocks’ isotopic ratios showed they formed in ancient seabed containing sulfate from atmospheric sources, not continental rock. And the isotopic ratios also showed that Neoarchaean bacteria were plentiful in the sediment, respiring sulfate and emitted hydrogen sulfide–the same process that goes on today as bacteria recycle decaying organic matter into minerals and gases.

How could the sulfur-dependent bacteria have thrived during a geologic time when sulfur levels were so low? “It seems that they were in shallow water, where evaporation may have been high enough to concentrate the sulfate, and that would make it abundant enough to support the bacteria,” says Zhelezinskaia.

Zhelezinskaia is now analyzing carbonate rocks of the same age from Western Australia and South Africa, to see if the pattern holds true for rocks formed in other shallow water environments. If it does, the results may change scientists’ understanding of one of Earth’s earliest biological processes.

“There is an ongoing debate about when sulfate-reducing bacteria arose and how that fits into the evolution of life on our planet,” says Farquhar. “These rocks are telling us the bacteria were there 2.5 billion years ago, and they were doing something significant enough that we can see them today.”

###

This research was supported by the Fulbright Program (Grantee ID 15110620), the NASA Astrobiology Institute (Grant No. NNA09DA81A) and the National Science Foundation Frontiers in Earth-System Dynamics program (Grant No. 432129). The content of this article does not necessarily reflect the views of these organizations.

“Large sulfur isotope fractionations associated with Neoarchaean microbial sulfate reductions,” Iadviga Zhelezinskaia, Alan J. Kaufman, James Farquhar and John Cliff, was published Nov. 7, 2014 in Science. Download the abstract after 2 p.m. U.S. Eastern time, Nov. 6, 2014: http://www.sciencemag.org/lookup/doi/10.1126/science.1256211

James Farquhar home page

http://www.geol.umd.edu/directory.php?id=13

Alan J. Kaufman home page

http://www.geol.umd.edu/directory.php?id=15

Iadviga Zhelezinskaia home page

http://www.geol.umd.edu/directory.php?id=66

Media Relations Contact: Abby Robinson, 301-405-5845, abbyr@umd.edu

Writer: Heather Dewar

New study shows 3 abrupt pulse of CO2 during last deglaciation

A new study shows that the rise of atmospheric carbon dioxide that contributed to the end of the last ice age more than 10,000 years ago did not occur gradually, but was characterized by three “pulses” in which C02 rose abruptly.

Scientists are not sure what caused these abrupt increases, during which C02 levels rose about 10-15 parts per million – or about 5 percent per episode – over a period of 1-2 centuries. It likely was a combination of factors, they say, including ocean circulation, changing wind patterns, and terrestrial processes.

The finding is important, however, because it casts new light on the mechanisms that take the Earth in and out of ice age regimes. Results of the study, which was funded by the National Science Foundation, appear this week in the journal Nature.

“We used to think that naturally occurring changes in carbon dioxide took place relatively slowly over the 10,000 years it took to move out of the last ice age,” said Shaun Marcott, lead author on the article who conducted his study as a post-doctoral researcher at Oregon State University. “This abrupt, centennial-scale variability of CO2 appears to be a fundamental part of the global carbon cycle.”

Some previous research has hinted at the possibility that spikes in atmospheric carbon dioxide may have accelerated the last deglaciation, but that hypothesis had not been resolved, the researchers say. The key to the new finding is the analysis of an ice core from the West Antarctic that provided the scientists with an unprecedented glimpse into the past.

Scientists studying past climate have been hampered by the limitations of previous ice cores. Cores from Greenland, for example, provide unique records of rapid climate events going back 120,000 years – but high concentrations of impurities don’t allow researchers to accurately determine atmospheric carbon dioxide records. Antarctic ice cores have fewer impurities, but generally have had lower “temporal resolution,” providing less detailed information about atmospheric CO2.

However, a new core from West Antarctica, drilled to a depth of 3,405 meters in 2011 and spanning the last 68,000 years, has “extraordinary detail,” said Oregon State paleoclimatologist Edward Brook, a co-author on the Nature study and an internationally recognized ice core expert. Because the area where the core was taken gets high annual snowfall, he said, the new ice core provides one of the most detailed records of atmospheric CO2.

“It is a remarkable ice core and it clearly shows distinct pulses of carbon dioxide increase that can be very reliably dated,” Brook said. “These are some of the fastest natural changes in CO2 we have observed, and were probably big enough on their own to impact the Earth’s climate.

“The abrupt events did not end the ice age by themselves,” Brook added. “That might be jumping the gun a bit. But it is fair to say that the natural carbon cycle can change a lot faster than was previously thought – and we don’t know all of the mechanisms that caused that rapid change.”

The researchers say that the increase in atmospheric CO2 from the peak of the last ice age to complete deglaciation was about 80 parts per million, taking place over 10,000 years. Thus, the finding that 30-45 ppm of the increase happened in just a few centuries was significant.

The overall rise of atmospheric carbon dioxide during the last deglaciation was thought to have been triggered by the release of CO2 from the deep ocean – especially the Southern Ocean. However, the researchers say that no obvious ocean mechanism is known that would trigger rises of 10-15 ppm over a time span as short as one to two centuries.

“The oceans are simply not thought to respond that fast,” Brook said. “Either the cause of these pulses is at least part terrestrial, or there is some mechanism in the ocean system we don’t yet know about.”

One reason the researchers are reluctant to pin the end of the last ice age solely on CO2 increases is that other processes were taking place, according to Marcott, who recently joined the faculty of the University of Wisconsin-Madison.

“At the same time CO2 was increasing, the rate of methane in the atmosphere was also increasing at the same or a slightly higher rate,” Marcott said. “We also know that during at least two of these pulses, the Atlantic Meridional Overturning Circulation changed as well. Changes in the ocean circulation would have affected CO2 – and indirectly methane, by impacting global rainfall patterns.”

“The Earth is a big coupled system,” he added, “and there are many pieces to the puzzle. The discovery of these strong, rapid pulses of CO2 is an important piece.”

New study shows 3 abrupt pulse of CO2 during last deglaciation

A new study shows that the rise of atmospheric carbon dioxide that contributed to the end of the last ice age more than 10,000 years ago did not occur gradually, but was characterized by three “pulses” in which C02 rose abruptly.

Scientists are not sure what caused these abrupt increases, during which C02 levels rose about 10-15 parts per million – or about 5 percent per episode – over a period of 1-2 centuries. It likely was a combination of factors, they say, including ocean circulation, changing wind patterns, and terrestrial processes.

The finding is important, however, because it casts new light on the mechanisms that take the Earth in and out of ice age regimes. Results of the study, which was funded by the National Science Foundation, appear this week in the journal Nature.

“We used to think that naturally occurring changes in carbon dioxide took place relatively slowly over the 10,000 years it took to move out of the last ice age,” said Shaun Marcott, lead author on the article who conducted his study as a post-doctoral researcher at Oregon State University. “This abrupt, centennial-scale variability of CO2 appears to be a fundamental part of the global carbon cycle.”

Some previous research has hinted at the possibility that spikes in atmospheric carbon dioxide may have accelerated the last deglaciation, but that hypothesis had not been resolved, the researchers say. The key to the new finding is the analysis of an ice core from the West Antarctic that provided the scientists with an unprecedented glimpse into the past.

Scientists studying past climate have been hampered by the limitations of previous ice cores. Cores from Greenland, for example, provide unique records of rapid climate events going back 120,000 years – but high concentrations of impurities don’t allow researchers to accurately determine atmospheric carbon dioxide records. Antarctic ice cores have fewer impurities, but generally have had lower “temporal resolution,” providing less detailed information about atmospheric CO2.

However, a new core from West Antarctica, drilled to a depth of 3,405 meters in 2011 and spanning the last 68,000 years, has “extraordinary detail,” said Oregon State paleoclimatologist Edward Brook, a co-author on the Nature study and an internationally recognized ice core expert. Because the area where the core was taken gets high annual snowfall, he said, the new ice core provides one of the most detailed records of atmospheric CO2.

“It is a remarkable ice core and it clearly shows distinct pulses of carbon dioxide increase that can be very reliably dated,” Brook said. “These are some of the fastest natural changes in CO2 we have observed, and were probably big enough on their own to impact the Earth’s climate.

“The abrupt events did not end the ice age by themselves,” Brook added. “That might be jumping the gun a bit. But it is fair to say that the natural carbon cycle can change a lot faster than was previously thought – and we don’t know all of the mechanisms that caused that rapid change.”

The researchers say that the increase in atmospheric CO2 from the peak of the last ice age to complete deglaciation was about 80 parts per million, taking place over 10,000 years. Thus, the finding that 30-45 ppm of the increase happened in just a few centuries was significant.

The overall rise of atmospheric carbon dioxide during the last deglaciation was thought to have been triggered by the release of CO2 from the deep ocean – especially the Southern Ocean. However, the researchers say that no obvious ocean mechanism is known that would trigger rises of 10-15 ppm over a time span as short as one to two centuries.

“The oceans are simply not thought to respond that fast,” Brook said. “Either the cause of these pulses is at least part terrestrial, or there is some mechanism in the ocean system we don’t yet know about.”

One reason the researchers are reluctant to pin the end of the last ice age solely on CO2 increases is that other processes were taking place, according to Marcott, who recently joined the faculty of the University of Wisconsin-Madison.

“At the same time CO2 was increasing, the rate of methane in the atmosphere was also increasing at the same or a slightly higher rate,” Marcott said. “We also know that during at least two of these pulses, the Atlantic Meridional Overturning Circulation changed as well. Changes in the ocean circulation would have affected CO2 – and indirectly methane, by impacting global rainfall patterns.”

“The Earth is a big coupled system,” he added, “and there are many pieces to the puzzle. The discovery of these strong, rapid pulses of CO2 is an important piece.”