Geologists dig into science around the globe, on land and at sea

University of Cincinnati geologists will be well represented among geoscientists from around the world at The Geological Society of America’s Annual Meeting and Exposition. The meeting takes place Oct. 19-22, in Vancouver, Canada, and will feature geoscientists representing more than 40 different disciplines. The meeting will feature highlights of UC’s geological research that is taking place globally, from Chile to Costa Rica, Belize, Bulgaria, Scotland, Trinidad and a new project under development in the Canary Islands.

UC faculty and graduate students are lead or supporting authors on more than two dozen Earth Sciences-related research papers and/or PowerPoint and poster exhibitions at the GSA meeting.

The presentations also cover UC’s longtime and extensive exploration and findings in the Cincinnati Arch of the Ohio Valley, world-renowned for its treasure trove of paleontology – plant and animal fossils that were preserved when a shallow sea covered the region 450 million years ago during the Paleozoic Era.

Furthermore, in an effort to diversify the field of researchers in the Earth Sciences, a UC assistant professor of science education and geology, Christopher Atchison, was awarded funding from the National Science Foundation and the Society of Exploration Geophysics to lead a research field trip in Vancouver for students with disabilities. Graduate and undergraduate student participants will conduct the research on Oct. 18 and then join events at the GSA meeting. They’ll be guided by geoscience researchers representing the United Kingdom, New Zealand, Canada and the U.S. Those guides include Atchison and Julie Hendricks, a UC special education major from Batavia, Ohio, who will be using her expertise in American Sign Language (ASL) to assist student researchers representing Deaf and Hard of Hearing communities.

The meeting will also formally introduce Arnold Miller, UC professor of geology, as the new president-elect of the national Paleontological Society Thomas Lowell, professor of geology, is a recently elected Fellow of the Geological Society of America – a recognition for producing a substantial body of research. Lowell joins colleagues Warren Huff, professor of geology, and Lewis Owen, professor and head of the Department of Geology, as GSA Fellows.

Here are highlights of the UC research to be presented at the GSA meeting Oct. 19-22:

Staying Put or Moving On? Researchers Develop Model to Identify Migrating Patterns of Different Species

Are plant and animal species what you might call lifelong residents – they never budge from the same place? That’s a relatively common belief in ecology and paleoecology – that classes of organisms tend to stay put over millions of years and either evolve or go extinct as the environment changes. UC researchers developed a series of numerical models simulating shifting habitats in fossil regions to compare whether species changed environments when factoring geological and other changes in the fossil record. They found that geologically driven changes in the quality of the fossil record did not distort the real ecological signal, and that most species maintained their particular habitat preferences through time. They did not evolve to adapt to changing environments, but rather, they migrated, following their preferred environments. That is to say, they did not stay in place geographically but by moving, they were able to track their favored habitats. Field research for the project was conducted in New York state as well as the paleontological-rich region of Cincinnati; Dayton, Ohio, Lexington, Ky.; and Indiana. Funding for the project was supported by The Paleontological Society; The Geological Society of America; The American Museum of Natural History and the UC Geology Department’s Kenneth E. Caster Memorial Fund.

Presenter: Andrew Zaffos, UC geology doctoral student

Co-authors: Arnold Miller, Carlton Brett

Pioneering Study Provides a Better Understanding of What Southern Ohio and Central Kentucky Looked Like Hundreds of Millions of Years Ago

The end of the Ordovician period resulted in one of the largest mass extinction events in the Earth’s history. T.J. Malgieri, a UC master’s student in geology, led this study examining the limestone and shales of the Upper Ordovician Period – the geologic Grant Lake Formation covering southern Ohio and central Kentucky – to recreate how the shoreline looked some 445 million years ago. In this pioneering study of mud cracks and deposits in the rocks, the researchers discovered that the shoreline existed to the south and that the water became deeper toward the north. By determining these ecological parameters, the ramp study provides a better understanding of environments during a time of significant ecological change. Malgieri says the approach can be applied to other basins throughout the world to create depth indicators in paeloenvironments.

Presenter: T.J. Malgieri, UC geology master’s student

Co-authors: Carlton Brett, Cameron Schalbach, Christopher Aucoin, UC; James Thomka (UC, University of Akron); Benjamin Dattilo, Indiana University Purdue University Ft. Wayne

UC Researchers Take a Unique Approach to Monitoring Groundwater Supplies Near Ohio Fracking Sites

A collaborative research project out of UC is examining effects of fracking on groundwater in the Utica Shale region of eastern Ohio. First launched in Carroll County in 2012, the team of researchers is examining methane levels and origins of methane in private wells and springs before, during and after the onset of fracking. The team travels to the region to take water samples four times a year.

Presenter: Claire Botner, a UC geology master’s student

Co-author: Amy Townsend-Small, UC assistant professor of geology

Sawing Through Seagrass to Reveal Clues to the Past

Kelsy Feser, a UC doctoral student in geology, is working at several sites around St. Croix in the Virgin Islands to see if human developments impact marine life. The research focuses on shells of snails and clams that have piled up on the sea floor for thousands of years. Digging through layers of thick seagrass beds on the ocean floor, Feser can examine deeper shells that were abundant thousands of years ago and compare them to shallower layers that include living clams and snails. Early analysis indicates a greater population of potentially pollution-tolerant mussels in an area near a landfill on the island, compared with shells from much earlier time periods. Feser is doing this sea grass analysis around additional sites including tourist resorts, an oil refinery, a power plant and a marina. Funding for the research is provided by the Paleontological Society, the GSA, the American Museum of Natural History and the UC Geology Department.

Presenter: Kelsy Feser, UC geology doctoral student

Co-authors: Arnold Miller

Turning to the Present to Understand the Past

In order to properly interpret changes in climate, vegetation, or animal populations over time, it is necessary to establish a comparative baseline. Stella Mosher, a UC geology master’s student, is studying stable carbon, nitrogen, sulfur and strontium isotopes in modern vegetation from the Canary Islands in order to quantify modern climatic and environmental patterns. Her findings will provide a crucial foundation for future UC research on regional paleoclimatic and paleoenvironmental shifts.

Presenter: Stella Mosher, graduate student in geology

Co-authors: Brooke Crowley, assistant professor of geology; Yurena Yanes, research assistant professor of geology

A Study on the Impact of Sea Spray

Sulfur is an element of interest in both geology and archaeology, because it can reveal information about the diets of ancient cultures. This study takes a novel approach to studying how sea spray can affect the sulfur isotope values in plants on a small island, focusing on the island of Trinidad. Researchers collected leaves from different plant species to get their sulfur isotope value, exploring whether wind direction played a role in how plants were influenced by the marine water from sea spray. Vegetation was collected from the edges of the island to the deeply forested areas. The study found that sulfur isotope values deeper inland and on the calmer west coast were dramatically lower in indicating marine water than vegetation along the edges and the east coast. The findings can help indicate the foraging activities of humans and animals. Funding for the study was supported by the Geological Society of America, the UC Graduate Student Association and the UC Department of Geology.

Presenter: Janine Sparks, UC geology doctoral student

Co-authors: Brooke Crowley, UC assistant professor, geology/anthropology; William Gilhooly III, assistant professor, Earth Sciences, Indiana University-Purdue University Indianapolis

Proxy Wars – The Paleobiology Data Debate

For the past several decades, paleobiologists have built large databases containing information on fossil plants and animals of all geological ages to investigate the timing and extent of major changes in biodiversity – changes such as mass extinctions that have taken place throughout the history of life. Biodiversity researcher Arnold Miller says that in building these databases, it can be a challenge to accurately identify species in the geological record, so it has been common for researchers to instead study biodiversity trends using data compiled at broader levels of biological classification, including the genus level, under the assumption that these patterns are effective proxies for what would be observed among species if the data were available. Miller has been involved in construction of The Paleobiology Database, an extensive public online resource that contains global genus- and species-level data, now permitting a direct, novel look at the similarities and differences between patterns at these two levels. Miller’s discussion aims to set the record straight as to when researchers can effectively use a genus as a proxy for a species and also when it’s inappropriate. This research is funded by the NASA Astrobiology Program.

Presenter: Arnold Miller, UC professor of geology

A Novel New Method for Examining the Distribution of Pores in Rocks

Oil and gas companies take an interest in the porosity of sedimentary rocks because those open spaces can be filled with fuel resources. Companies involved with hydraulic fracturing (“fracking”) are also interested in porosity because it could be a source for storing wastewater as a result of fracking. In this unique study, UC researchers made pore-size measurements similar to those used in crystal size distribution (CSD) theory to determine distribution of pores as a function of their sizes, using thin sections of rock. In addition to providing accurate porosity distribution at a given depth, their approach can be extended to evaluate variation of pore spaces as a function of depth in a drill core, percent of pores in each size range, and pore types and pore geometry. The Texas Bureau of Economic Geology provided the rock samples used in the study. Funding for the study was supported by the Turkish Petroleum Corporation.

Presenter: Ugurlu Ibrahim, master’s student in geology

Co-author: Attila Kilinc, professor of geology

Researchers Turn to 3-D Technology to Examine the Formation of Cliffband Landscapes

A blend of photos and technology takes a new twist on studying cliff landscapes and how they were formed. The method called Structure-From-Motion Photogrammetry – computational photo image processing techniques – is used to study the formation of cliff landscapes in Colorado and Utah and to understand how the layered rock formations in the cliffs are affected by erosion.

Presenter: Dylan Ward, UC assistant professor of geology

Testing the Links Between Climate and Sedimentation in the Atacama Desert, Northern Chile

The Atacama Desert is used as an analog for understanding the surface of Mars. In some localities, there has been no activity for millions of years. UC researchers have been working along the flank of the Andes Mountains in northern Chile, and this particular examination focuses on the large deposits of sediment that are transported down the plateau and gather at the base. The researchers are finding that their samples are not reflecting the million-year-old relics previously found on such expeditions, but may indicate more youthful activity possibly resulting from climatic events. The research is supported by a $273,634 grant from the National Science Foundation to explore glacio-geomorphic constraints on the climate history of subtropical northern Chile.

Presenter: Jason Cesta, UC geology master’s student

Co-author: Dylan Ward, UC assistant professor of geology

Uncovering the Explosive Mysteries Surrounding the Manganese of Northeast Bulgaria

UC’s geology collections hold minerals from field expeditions around the world, including manganese from the Obrochishte mines of northeastern Bulgaria. Found in the region’s sedimentary rock, manganese can be added to metals such as steel to improve strength. It’s widely believed that these manganese formations were the result of ocean water composition at the time the sediments were deposited in the ocean. In this presentation, UC researchers present new information on why they believe the manganese formations resulted from volcanic eruptions, perhaps during the Rupelian stage of the geologic time scale, when bentonite clay minerals were formed. The presentation evolved from an advance class project last spring under the direction of Warren Huff, a UC professor of geology.

Presenter: Jason Cesta, UC geology master’s student

Co-authors: Warren Huff, UC professor of geology; Christopher Aucoin; Michael Harrell; Thomas Malgieri; Barry Maynard; Cameron Schwalbach; Ibrahim Ugurlu; Antony Winrod

Two UC researchers will chair sessions at the GSA meeting: Doctoral student Gary Motz will chair the session, “Topics in Paleoecology: Modern Analogues and Ancient Systems,” on Oct. 19. Matt Vrazo, also a doctoral student in geology, is chairing “Paleontology: Trace Fossils, Taphonomy and Exceptional Preservation” on Oct. 21, and will present, “Taphonomic and Ecological Controls on Eurypterid Lagerstäten: A Model for Preservation in the Mid-Paleozoic.”

###

UC’s nationally ranked Department of Geology conducts field research around the world in areas spanning paleontology, quaternary geology, geomorphology, sedimentology, stratigraphy, tectonics, environmental geology and biogeochemistry.

The Geological Society of America, founded in 1888, is a scientific society with more than 26,500 members from academia, government, and industry in more than 100 countries. Through its meetings, publications, and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind.

New hi-tech approach to studying sedimentary basins

A radical new approach to analysing sedimentary basins also harnesses technology in a completely novel way. An international research group, led by the University of Sydney, will use big data sets and exponentially increased computing power to model the interaction between processes on the earth’s surface and deep below it in ‘five dimensions’.

As announced by the Federal Minister for Education today, the University’s School of Geosciences will lead the Basin GENESIS Hub that has received $5.4 million over five years from the Australian Research Council (ARC) and industry partners.

The multitude of resources found in sedimentary basins includes groundwater and energy resources. The space between grains of sand in these basins can also be used to store carbon dioxide.

“This research will be of fundamental importance to both the geo-software industry, used by exploration and mining companies, and to other areas of the energy industry,” said Professor Dietmar Müller, Director of the Hub, from the School of Geosciences.

“The outcomes will be especially important for identifying exploration targets in deep basins in remote regions of Australia. It will create a new ‘exploration geodynamics’ toolbox for industry to improve estimates of what resources might be found in individual basins.”

Sedimentary basins form when sediments eroded from highly elevated regions are transported through river systems and deposited into lowland regions and continental margins. The Sydney Basin is a massive basin filled mostly with river sediments that form Hawkesbury sandstone. It is invisible to the Sydney population living above it but has provided building material for many decades.

“Previously the approach to analysing these basins has been based on interpreting geological data and two-dimensional models. We apply infinitely more computing power to enhance our understanding of sedimentary basins as the product of the complex interplay between surface and deep Earth processes,” said Professor Müller.

Associate Professor Rey, a researcher at the School of Geosciences and member of the Hub said, “Our new approach is to understand the formation of sedimentary basins and the changes they undergo, both recently and over millions to hundreds of millions of years, using computer simulations to incorporate information such as the evolution of erosion, sedimentary processes and the deformation of the earth’s crust.”

The researchers will incorporate data from multiple sources to create ‘five-dimensional’ models, combining three-dimensional space with the extra dimensions of time and estimates of uncertainty.

The modelling will span scales from entire basins hundreds of kilometres wide to individual sediment grains.

Key geographical areas the research will focus on are the North-West shelf of Australia, Papua New Guinea and the Atlantic Ocean continental margins.

The Hub’s technology builds upon the exponential increase in computational power and the increasing amount of available big data (massive data sets of information). The Hub will harness the capacity of Australia’s most powerful computer, launched in 2013.

Magnetic anomaly deep within Earth’s crust reveals Africa in North America

Boulder, Colo., USA – The repeated cycles of plate tectonics that have led to collision and assembly of large supercontinents and their breakup and formation of new ocean basins have produced continents that are collages of bits and pieces of other continents. Figuring out the origin and make-up of continental crust formed and modified by these tectonic events is a vital to understanding Earth’s geology and is important for many applied fields, such as oil, gas, and gold exploration.

In many cases, the rocks involved in these collision and pull-apart episodes are still buried deep beneath the Earth’s surface, so geologists must use geophysical measurements to study these features.

This new study by Elias Parker Jr. of the University of Georgia examines a prominent swath of lower-than-normal magnetism — known as the Brunswick Magnetic Anomaly — that stretches from Alabama through Georgia and off shore to the North Carolina coast.

The cause of this magnetic anomaly has been under some debate. Many geologists attribute the Brunswick Magnetic Anomaly to a belt of 200 million year old volcanic rocks that intruded around the time the Atlantic Ocean. In this case, the location of this magnetic anomaly would then mark the initial location where North America split from the rest of Pangea as that ancient supercontinent broke apart. Parker proposes a different source for this anomalous magnetic zone.

Drawing upon other studies that have demonstrated deeply buried metamorphic rocks can also have a coherent magnetic signal, Parker has analyzed the detailed characteristics of the magnetic anomalies from data collected across zones in Georgia and concludes that the Brunswick Magnetic Anomaly has a similar, deeply buried source. The anomalous magnetic signal is consistent with an older tectonic event — the Alleghanian orogeny that formed the Alleghany-Appalachian Mountains when the supercontinent of Pangea was assembled.

Parker’s main conclusion is that the rocks responsible for the Brunswick Magnetic Anomaly mark a major fault-zone that formed as portions of Africa and North America were sheared together roughly 300 million years ago — and that more extensive evidence for this collision are preserved along this zone. One interesting implication is that perhaps a larger portion of what is now Africa was left behind in the American southeast when Pangea later broke up.</P

Subterranean ‘sedimentary bathtub’ amplifies earthquakes

These images show multiple scenarios for shallow earthquakes within the Georgia Basin. Numbers in the upper right-hand represent how much motion is amplified within the basin and on the surface in Vancouver, respectively. -  Sheri Molnar and Kim Olsen.
These images show multiple scenarios for shallow earthquakes within the Georgia Basin. Numbers in the upper right-hand represent how much motion is amplified within the basin and on the surface in Vancouver, respectively. – Sheri Molnar and Kim Olsen.

Like an amphitheater amplifies sound, the stiff, sturdy soil beneath the Greater Vancouver metropolitan area could greatly amplify the effects of an earthquake, pushing the potential devastation past what building codes in the region are prepared for. That’s the conclusion behind a pair of studies recently coauthored by San Diego State University seismologist Kim Olsen.

Greater Vancouver sits atop a tectonic plate known as the Juan de Fuca Plate, which extends south to encompass Washington and Oregon states. The subterranean region of this plate beneath Vancouver is a bowl-shaped mass of rigid soil called the Georgia Basin. Earthquakes can and do occur in the Georgia Basin and can originate deep within the earth, between 50 and 70 kilometers down, or as shallow as a couple kilometers.

While earthquake researchers have long known that the region is tectonically active and policymakers have enforced building codes designed to protect against earthquakes, those codes aren’t quite strict enough because seismologists have failed to account for how the Georgia Basin affects a quake’s severity, Olsen said. In large part, that’s because until recently the problem has been too computationally complex, he said.

“People have neglected the effects of stiffer soil,” Olsen said. “They haven’t been able to look at the basin as a three-dimensional object.”

The idea to investigate the basin’s effect on earthquakes originated with Sheri Molnar, a postdoctoral researcher at the University of British Columbia. She reached out to Olsen, an expert in earthquake simulation, for help modeling the problem. Using supercomputer technology, Olsen has previously simulated the potential effects of a supermassive magnitude 8.0 quake in Southern California.

Using the same technology, Molnar and Olsen coded an algorithm to take into account the stiff-soil geography of the Georgia Basin to see how it would influence the surface effects of a magnitude 6.8 earthquake. They then ran the simulation for both a shallow and a deep quake.

In both simulations they found that the basin had an amplifying effect on motion on the surface, but the amplification was especially pronounced in shallow earthquakes. In the latter scenario, their model predicts that the sedimentary basin would cause the surface to shake for approximately 22 seconds longer than normal.

“The deep structure of the Georgia Basin can amplify the ground motion of an earthquake by a factor of three or more,” Olsen said. “It’s an irregularly shaped bathtub of sediments that can trap and amplify the waves.”

The deep and shallow studies were published today in the Bulletin of the Seismological Society of America.

Current building codes in Vancouver don’t take into account this amplification, Olsen added, meaning many buildings in the region would be in danger if a large earthquake were to hit.

Vancouver isn’t the only large metropolis built atop sedimentary basins. Los Angeles and San Francisco, too, sit on basins similar to the Georgia Basin. Olsen is currently investigating how major earthquakes along the San Andreas Fault would be affected by these basins.

He hopes that city planners can use this knowledge to update their building codes to reflect the amplifying geography beneath their feet.

“That’s always going to be the goal, to make structures safer and to mitigate the damage in the future,” Olsen said.

Nearby Georgia basin may amplify ground shaking from next quake

Tall buildings, bridges and other long-period structures in Greater Vancouver may experience greater shaking from large (M 6.8 +) earthquakes than previously thought due to the amplification of surface waves passing through the Georgia basin, according to two studies published by the Bulletin of the Seismological Society of America (BSSA). The basin will have the greatest impact on ground motion passing over it from earthquakes generated south and southwest of Vancouver.

“For very stiff soils, current building codes don’t include amplification of ground motion,” said lead author Sheri Molnar, a researcher at the University of British Columbia. “While the building codes say there should not be any increase or decrease in ground motion, our results show that there could be an average amplification of up to a factor of three or four in Greater Vancouver.”

The research provides the first detailed studies of 3D earthquake ground motion for a sedimentary basin in Canada. Since no large crustal earthquakes have occurred in the area since the installation of a local seismic network, these studies offer refined predictions of ground motion from large crustal earthquakes likely to occur.

Southwestern British Columbia is situated above the seismically active Cascadia subduction zone. A complex tectonic region, earthquakes occur in three zones: the thrust fault interface between the Juan de Fuca plate, which is sliding beneath the North America plate; within the over-riding North America plate; and within the subducting Juan de Fuca plate.

Molnar and her colleagues investigate the effect the three dimensional (3D) deep basin beneath Greater Vancouver has on the earthquake-generated waves that pass through it. The Georgia basin is one in a series of basins spanning form California to southern Alaska along the Pacific margin of the North America and is relatively wide and shallow. The basin is filled with sedimentary layers of silts, sands and glacial deposits.

While previous research suggested how approximately 100 meters of material near the surface would affect ground shaking, no studies had looked at the effect of the 3D basin structure on long period seismic waves.

To fill in that gap in knowledge, Molnar and colleagues performed numerical modeling of wave propagation, using various scenarios for both shallow quakes (5 km in depth) within the North America plate and deep quakes (40 – 55 km in depth) within the Juan de Fuca subducting plate, the latter being the most common type of earthquake. The authors did not focus on earthquakes generated by a megathrust rupture of the Cascadia subduction zone, a scenario studied previously by co-author Kim Olsen of San Diego State University.

For these two studies, the authors modeled 10 scenario earthquakes for the subducting plate and 8 shallow crustal earthquakes within the North America plate, assuming rupture sites based on known seismicity. The computational analyses suggest the basin distorts the seismic radiation pattern – how the energy moves through the basin – and produces a larger area of higher ground motions. Steep basin edges excite the seismic waves, amplifying the ground motion.

The largest surface waves generated across Greater Vancouver are associated with earthquakes located approximately 80 km or more, south-southwest of the city, suggest the authors.

“The results were an eye opener,” said Molnar. “Because of the 3D basin structure, there’s greater hazard since it will amplify ground shaking. Now we have a grasp of how much the basin increases ground shaking for the most likely future large earthquakes.”

In Greater Vancouver, there are more than 700 12-story and taller commercial and residential buildings, and large structures – high-rise buildings, bridges and pipelines – that are more affected by long period seismic waves, or long wavelength shaking. “That’s where these results have impact,” said Molnar.

Source of Galapagos eruptions is not where models place it

Birds flock not far from a volcano on Isabella Island, where two still active volcanoes are located. The location of the mantle plume, to the southeast of where computer modeling had put it, may explain the continued activity of volcanoes on the various Galapagos Islands. -  Douglas Toomey
Birds flock not far from a volcano on Isabella Island, where two still active volcanoes are located. The location of the mantle plume, to the southeast of where computer modeling had put it, may explain the continued activity of volcanoes on the various Galapagos Islands. – Douglas Toomey

Images gathered by University of Oregon scientists using seismic waves penetrating to a depth of 300 kilometers (almost 200 miles) report the discovery of an anomaly that likely is the volcanic mantle plume of the Galapagos Islands. It’s not where geologists and computer modeling had assumed.

The team’s experiments put the suspected plume at a depth of 250 kilometers (155 miles), at a location about 150 kilometers (about 100 miles) southeast of Fernandina Island, the westernmost island of the chain, and where generations of geologists and computer-generated mantle convection models have placed the plume.

The plume anomaly is consistent with partial melting, melt extraction, and remixing of hot rocks and is spreading north toward the mid-ocean ridge instead of, as projected, eastward with the migrating Nazca plate on which the island chain sits, says co-author Douglas R. Toomey, a professor in the UO’s Department of Geological Sciences.

The findings — published online Jan. 19 ahead of print in the February issue of the journal Nature Geoscience — “help explain why so many of the volcanoes in the Galapagos are active,” Toomey said.

The Galapagos chain covers roughly 3,040 square miles of ocean and is centered about 575 miles west of Ecuador, which governs the islands. Galapagos volcanic activity has been difficult to understand, Toomey said, because conventional wisdom and modeling say newer eruptions should be moving ahead of the plate, not unlike the long-migrating Yellowstone hotspot. </p

The separating angles of the two plates in the Galapagos region cloud easy understanding. The leading edge of the Nazca plate is at Fernandina. The Cocos plate, on which the islands’ some 1,000-kilometer-long (620-miles) hotspot chain once sat, is moving to the northeast.

The suspected plume’s location is closer to Isabella and Floreana islands. While a dozen volcanoes remain active in the archipelago, the three most volatile are Fernandina’s and the Cerro Azul and Sierra Negra volcanoes on the southwest and southeast tips, respectively, of Isabella Island, the archipelago’s largest landmass.

The plume’s more southern location, Toomey said, adds fuel to his group’s findings, at three different sites along the globe encircling mid-ocean ridge (where 85 percent of Earth’s volcanic activity occurs), that Earth’s internal convection doesn’t always adhere to modeling efforts and raises new questions about how ocean plates at the Earth’s surface — the lithosphere — interact with the hotter, more fluid asthenosphere that sits atop the mantle.

“Ocean islands have always been enigmatic,” said co-author Dennis J. Geist of the Department of Geological Sciences at the University of Idaho. “Why out in the middle of the ocean basins do you get these big volcanoes? The Galapagos, Hawaii, Tahiti, Iceland — all the world’s great ocean islands – they’re mysterious.”

The Galapagos plume, according to the new paper, extends up into shallower depths and tracks northward and perpendicular to plate motion. Mantle plumes, such as the Galapagos, Yellowstone and Hawaii, generally are believed to bend in the direction of plate migration. In the Galapagos, however, the volcanic plume has decoupled from the plates involved.

“Here’s an archipelago of volcanic islands that are broadly active over a large region, and the plume is almost decoupled from the plate motion itself,” Toomey said. “It is going opposite than expected, and we don’t know why.”

The answer may be in the still unknown rheology of the gooey asthenosphere on which the Earth’s plates ride, Toomey said. In their conclusion, the paper’s five co-authors theorize that the plume material is carried to the mid-ocean ridge by a deep return flow centered in the asthenosphere rather than flowing along the base of the lithosphere as in modeling projections.

“Researchers at the University of Oregon are using tools and technologies to yield critical insights into complex scientific questions,” said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO Graduate School. “This research by Dr. Toomey and his team sheds new light on the volcanic activity of the Galapagos Islands and raises new questions about plate tectonics and the interaction between the zones of the Earth’s mantle.”

Co-authors with Toomey and Geist were: doctoral student Darwin R. Villagomez, now with ID Analytics in San Diego, Calif.; Emilie E.E. Hooft of the UO Department of Geological Sciences; and Sean C. Solomon of the Lamont-Doherty Earth Observatory at Columbia University.

The National Science Foundation (grants OCE-9908695, OCE-0221549 and EAR-0651123 to the UO; OCE-0221634 to the Carnegie Institution of Washington and EAR-11452711 to the University of Idaho) supported the research.

Ancient ice melt unearthed in Antarctic mud

Global warming five million years ago may have caused parts of Antarctica’s large ice sheets to melt and sea levels to rise by approximately 20 metres, scientists report today in the journal Nature Geoscience.

The researchers, from Imperial College London, and their academic partners studied mud samples to learn about ancient melting of the East Antarctic ice sheet. They discovered that melting took place repeatedly between five and three million years ago, during a geological period called Pliocene Epoch, which may have caused sea levels to rise approximately ten metres.

Scientists have previously known that the ice sheets of West Antarctica and Greenland partially melted around the same time. The team say that this may have caused sea levels to rise by a total of 20 metres.

The academics say understanding this glacial melting during the Pliocene Epoch may give us insights into how sea levels could rise as a consequence of current global warming. This is because the Pliocene Epoch had carbon dioxide concentrations similar to now and global temperatures comparable to those predicted for the end of this century.

Dr Tina Van De Flierdt, co-author from the Department of Earth Science and Engineering at Imperial College London, says: “The Pliocene Epoch had temperatures that were two or three degrees higher than today and similar atmospheric carbon dioxide levels to today. Our study underlines that these conditions have led to a large loss of ice and significant rises in global sea level in the past. Scientists predict that global temperatures of a similar level may be reached by the end of this century, so it is very important for us to understand what the possible consequences might be.”

The East Antarctic ice sheet is the largest ice mass on Earth, roughly the size of Australia. The ice sheet has fluctuated in size since its formation 34 million years ago, but scientists have previously assumed that it had stabilised around 14 million years ago.

The team in today’s study were able to determine that the ice sheet had partially melted during this “stable” period by analysing the chemical content of mud in sediments. These were drilled from depths of more than three kilometres below sea level off the coast of Antarctica.

Analysing the mud revealed a chemical fingerprint that enabled the team to trace where it came from on the continent. They discovered that the mud originated from rocks that are currently hidden under the ice sheet. The only way that significant amounts of this mud could have been deposited as sediment in the sea would be if the ice sheet had retreated inland and eroded these rocks, say the team.

The academics suggest that the melting of the ice sheet may have been caused in part by the fact that some of it rests in basins below sea level. This puts the ice in direct contact with seawater and when the ocean warms, as it did during the Pliocene, the ice sheet becomes vulnerable to melting.

Carys Cook, co-author and research postgraduate from the Grantham Institute for Climate Change at Imperial, adds: “Scientists previously considered the East Antarctic ice sheet to be more stable than the much smaller ice sheets in West Antarctica and Greenland, even though very few studies of East Antarctic ice sheet have been carried out. Our work now shows that the East Antarctic ice sheet has been much more sensitive to climate change in the past than previously realised. This finding is important for our understanding of what may happen to the Earth if we do not tackle the effects of climate change.”

The next step will see the team analysing sediment samples to determine how quickly the East Antarctic ice sheet melted during the Pliocene. This information could be useful in the future for predicting how quickly the ice sheet could melt as a result of global warming.

Arctic current flowed under deep freeze of last ice age, study says

Arctic sea ice formation feeds global ocean circulation. New evidence suggests that this dynamic process persisted through the last ice age. -  National Snow & Ice Data Center
Arctic sea ice formation feeds global ocean circulation. New evidence suggests that this dynamic process persisted through the last ice age. – National Snow & Ice Data Center

During the last ice age, when thick ice covered the Arctic, many scientists assumed that the deep currents below that feed the North Atlantic Ocean and help drive global ocean currents slowed or even stopped. But in a new study in Nature, researchers show that the deep Arctic Ocean has been churning briskly for the last 35,000 years, through the chill of the last ice age and warmth of modern times, suggesting that at least one arm of the system of global ocean currents that move heat around the planet has behaved similarly under vastly different climates.

“The Arctic Ocean must have been flushed at approximately the same rate it is today regardless of how different things were at the surface,” said study co-author Jerry McManus, a geochemist at Columbia University’s Lamont-Doherty Earth Observatory.

Researchers reconstructed Arctic circulation through deep time by measuring radioactive trace elements buried in sediments on the Arctic seafloor. Uranium eroded from the continents and delivered to the ocean by rivers, decays into sister elements thorium and protactinium. Thorium and protactinium eventually attach to particles falling through the water and wind up in mud at the bottom. By comparing expected ratios of thorium and protactinium in those ocean sediments to observed amounts, the authors showed that protactinium was being swept out of the Arctic before it could settle to the ocean bottom.From the amount of missing protactinium, scientists can infer how quickly the overlying water must have been flushed at the time the sediments were accumulating.

“The water couldn’t have been stagnant, because we see the export of protactinium,” said the study’s lead author, Sharon Hoffmann, a geochemist at Lamont-Doherty.

The upper part of the modern Arctic Ocean is flushed by North Atlantic currents while the Arctic’s deep basins are flushed by salty currents formed during sea ice formation at the surface. “The study shows that both mechanisms must have been active from the height of glaciation until now,” said Robert Newton, an oceanographer at Lamont-Doherty who was not involved in the research. “There must have been significant melt-back of sea ice each summer even at the height of the last ice age to have sea ice formation on the shelves each year. This will be a surprise to many Arctic researchers who believe deep water formation shuts down during glaciations.”

The researchers analyzed sediment cores collected during the U.S.-Canada Arctic Ocean Section cruise in 1994, a major Arctic research expedition that involved several Lamont-Doherty scientists. In each location, the cores showed that protactinium has been lower than expected for at least the past 35,000 years. By sampling cores from a range of depths, including the bottom of the Arctic deep basins, the researchers show that even the deepest waters were being flushed out at about the same rate as in the modern Arctic.

The only deep exit from the Arctic is through Fram Strait, which divides Greenland and Norway’s Svalbard islands. The deep waters of the modern Arctic flow into the North Atlantic via the Nordic seas, contributing up to 40 percent of the water that becomes North Atlantic Deep Water-known as the “ocean’s lungs” for delivering oxygen and salt to the rest of world’s oceans.

One direction for future research is to find out where the missing Arctic protactinium of the past ended up. “It’s somewhere,” said McManus. “All the protactinium in the ocean is buried in ocean sediments. If it’s not buried in one place, it’s buried in another. Our evidence suggests it’s leaving the Arctic but we think it’s unlikely to get very far before being removed.”

Geologists push back date basins formed, supporting frozen Earth theory


Even in geology, it’s not often a date gets revised by 500 million years.



But University of Florida geologists say they have found strong evidence that a half-dozen major basins in India were formed a billion or more years ago, making them at least 500 million years older than commonly thought. The findings appear to remove one of the major obstacles to the Snowball Earth theory that a frozen Earth was once entirely covered in snow and ice – and might even lend some weight to a controversial claim that complex life originated hundreds of million years earlier than most scientists currently believe.



“In modern geology, to revise the age of basins like this by 500 million years is pretty unique,” says Joe Meert, a UF associate professor of geology.



Agreed Abhijit Basu, a professor of geological studies at Indiana University: “The required revision is enormous – 500 million years or about 11 percent of total Earth history.”



Meert is one of eight authors of a paper on the research that recently appeared in the online edition of the journal Precambrian Research.



The Purana basins – which include the subject of the study, the Vindhyan basin – are located south of New Delhi in the northern and central regions of India. They are slight, mostly flat depressions in the Earth’s crust that span thousands of square miles. For decades, Meert said, most geologists have believed the basins formed 500 million to 700 million years ago when the Earth’s crust stretched, thinned and then subsided.



Meert said that date may have originated in early radiometric dating of sediment from the basin. Radiometric dating involves estimating age based on the decay or radioactive elements. Additionally, he said, apparent fossils retrieved from the basin seemed to have originated between 500 million and 700 million years ago.



The researchers were working on an unrelated project and had no intention of re-examining the basins’ age. But then a UF graduate student, Laura Gregory, dated a kimberlite retrieved from the Vindhyan basin to about 1,073 million years ago. A kimberlite is a volcanic rock that contains diamonds.


Gregory also used paleomagnetism, a technique that estimates where rocks were formed by using the orientation of their magnetic minerals. Curious about whether the kimberlite results would apply more generally to the region, fellow UF graduate student Shawn Malone compared the kimberlite’s orientation to other rocks from the Vindhyan basin. To his surprise, he found the orientations were virtually identical.



As a result, the geologists expanded the investigation, using a modified chain saw to drill wine-cork-sized cores out of dozens of rocks collected from 56 sites. Their contents all also had the same or very similar magnetic orientation, Meert said.



Much of the basins are composed of sediments that cannot be dated using any method. But Meert said the sediment also contains zircon, which can be dated using laser mass spectrometry – vaporizing tiny bits of the rocks with a laser, then analyzing their uranium and “daughter” lead contents to tease out their formation date based on rates of decay.



All the zircon the researchers tested originated 1,020 million years ago, Meert said.



The Snowball Earth theory posits that the Earth was covered in snow and ice from about 635 million to 700 million years ago. While much geological evidence has been found to support that theory worldwide, the Vindhyan and other Purana basins lacked numerous telltale signs, such as striated or scratched boulders formed when ice drags small pebbles over bedrock and boulder beds derived from glaciers known as tillites, Meert said. As a result, he said, the basins represented a prominent obstacle to the theory.



The new study removes that obstacle because it pushes back the origins of the basins to well before Snowball Earth would have occurred.



A 2007 study, conducted independently of the UF study and published in the Journal of Geology, dated rocks from another Purana basin to 1,020 million years ago, another 500-million-year revision. One of its authors was M.E. “Pat” Bickford, a professor emeritus at Syracuse University’s department of earth sciences. Bickford said the revisions of the age of the Purana basins calls into question the hypothesis that they formed when the supercontinent Rodinia broke up. Rodinia is thought to have separated into the modern continents about 700 million years ago, but the revisions make the basins too old for that split, Bickford said.



The UF research could also support a Swedish paleontologist’s controversial dating of multicellular creatures called Ediacarans from an older part of the basin to 1.6 billion years. But, said Meert, “Of all the implications of this research, the notion that Ediacaran-like organisms may be much older than 580 million years is probably the most speculative.”



The National Science Foundation funded the UF research.