Study hints that ancient Earth made its own water — geologically

A new study is helping to answer a longstanding question that has recently moved to the forefront of earth science: Did our planet make its own water through geologic processes, or did water come to us via icy comets from the far reaches of the solar system?

The answer is likely “both,” according to researchers at The Ohio State University– and the same amount of water that currently fills the Pacific Ocean could be buried deep inside the planet right now.

At the American Geophysical Union (AGU) meeting on Wednesday, Dec. 17, they report the discovery of a previously unknown geochemical pathway by which the Earth can sequester water in its interior for billions of years and still release small amounts to the surface via plate tectonics, feeding our oceans from within.

In trying to understand the formation of the early Earth, some researchers have suggested that the planet was dry and inhospitable to life until icy comets pelted the earth and deposited water on the surface.

Wendy Panero, associate professor of earth sciences at Ohio State, and doctoral student Jeff Pigott are pursuing a different hypothesis: that Earth was formed with entire oceans of water in its interior, and has been continuously supplying water to the surface via plate tectonics ever since.

Researchers have long accepted that the mantle contains some water, but how much water is a mystery. And, if some geological mechanism has been supplying water to the surface all this time, wouldn’t the mantle have run out of water by now?

Because there’s no way to directly study deep mantle rocks, Panero and Pigott are probing the question with high-pressure physics experiments and computer calculations.

“When we look into the origins of water on Earth, what we’re really asking is, why are we so different than all the other planets?” Panero said. “In this solar system, Earth is unique because we have liquid water on the surface. We’re also the only planet with active plate tectonics. Maybe this water in the mantle is key to plate tectonics, and that’s part of what makes Earth habitable.”

Central to the study is the idea that rocks that appear dry to the human eye can actually contain water–in the form of hydrogen atoms trapped inside natural voids and crystal defects. Oxygen is plentiful in minerals, so when a mineral contains some hydrogen, certain chemical reactions can free the hydrogen to bond with the oxygen and make water.

Stray atoms of hydrogen could make up only a tiny fraction of mantle rock, the researchers explained. Given that the mantle is more than 80 percent of the planet’s total volume, however, those stray atoms add up to a lot of potential water.

In a lab at Ohio State, the researchers compress different minerals that are common to the mantle and subject them to high pressures and temperatures using a diamond anvil cell–a device that squeezes a tiny sample of material between two diamonds and heats it with a laser–to simulate conditions in the deep Earth. They examine how the minerals’ crystal structures change as they are compressed, and use that information to gauge the minerals’ relative capacities for storing hydrogen. Then, they extend their experimental results using computer calculations to uncover the geochemical processes that would enable these minerals to rise through the mantle to the surface–a necessary condition for water to escape into the oceans.

In a paper now submitted to a peer-reviewed academic journal, they reported their recent tests of the mineral bridgmanite, a high-pressure form of olivine. While bridgmanite is the most abundant mineral in the lower mantle, they found that it contains too little hydrogen to play an important role in Earth’s water supply.

Another research group recently found that ringwoodite, another form of olivine, does contain enough hydrogen to make it a good candidate for deep-earth water storage. So Panero and Pigott focused their study on the depth where ringwoodite is found–a place 325-500 miles below the surface that researchers call the “transition zone”–as the most likely region that can hold a planet’s worth of water. From there, the same convection of mantle rock that produces plate tectonics could carry the water to the surface.

One problem: If all the water in ringwoodite is continually drained to the surface via plate tectonics, how could the planet hold any in reserve?

For the research presented at AGU, Panero and Pigott performed new computer calculations of the geochemistry in the lowest portion of the mantle, some 500 miles deep and more. There, another mineral, garnet, emerged as a likely water-carrier–a go-between that could deliver some of the water from ringwoodite down into the otherwise dry lower mantle.

If this scenario is accurate, the Earth may today hold half as much water in its depths as is currently flowing in oceans on the surface, Panero said–an amount that would approximately equal the volume of the Pacific Ocean. This water is continuously cycled through the transition zone as a result of plate tectonics.

“One way to look at this research is that we’re putting constraints on the amount of water that could be down there,” Pigott added.

Panero called the complex relationship between plate tectonics and surface water “one of the great mysteries in the geosciences.” But this new study supports researchers’ growing suspicion that mantle convection somehow regulates the amount of water in the oceans. It also vastly expands the timeline for Earth’s water cycle.

“If all of the Earth’s water is on the surface, that gives us one interpretation of the water cycle, where we can think of water cycling from oceans into the atmosphere and into the groundwater over millions of years,” she said. “But if mantle circulation is also part of the water cycle, the total cycle time for our planet’s water has to be billions of years.”

New study measures methane emissions from natural gas production and offers insights into 2 large sources

A team of researchers from the Cockrell School of Engineering at The University of Texas at Austin and environmental testing firm URS reports that a small subset of natural gas wells are responsible for the majority of methane emissions from two major sources — liquid unloadings and pneumatic controller equipment — at natural gas production sites.

With natural gas production in the United States expected to continue to increase during the next few decades, there is a need for a better understanding of methane emissions during natural gas production. The study team believes this research, published Dec. 9 in Environmental Science & Technology, will help to provide a clearer picture of methane emissions from natural gas production sites.

The UT Austin-led field study closely examined two major sources of methane emissions — liquid unloadings and pneumatic controller equipment — at well pad sites across the United States. Researchers found that 19 percent of the pneumatic devices accounted for 95 percent of the emissions from pneumatic devices, and 20 percent of the wells with unloading emissions that vent to the atmosphere accounted for 65 percent to 83 percent of those emissions.

“To put this in perspective, over the past several decades, 10 percent of the cars on the road have been responsible for the majority of automotive exhaust pollution,” said David Allen, chemical engineering professor at the Cockrell School and principal investigator for the study. “Similarly, a small group of sources within these two categories are responsible for the vast majority of pneumatic and unloading emissions at natural gas production sites.”

Additionally, for pneumatic devices, the study confirmed regional differences in methane emissions first reported by the study team in 2013. The researchers found that methane emissions from pneumatic devices were highest in the Gulf Coast and lowest in the Rocky Mountains.

The study is the second phase of the team’s 2013 study, which included some of the first measurements for methane emissions taken directly at hydraulically fractured well sites. Both phases of the study involved a partnership between the Environmental Defense Fund, participating energy companies, an independent Scientific Advisory Panel and the UT Austin study team.

The unprecedented access to natural gas production facilities and equipment allowed researchers to acquire direct measurements of methane emissions.

Study and Findings on Pneumatic Devices

Pneumatic devices, which use gas pressure to control the opening and closing of valves, emit gas as they operate. These emissions are estimated to be among the larger sources of methane emissions from the natural gas supply chain. The Environmental Protection Agency reports that 477,606 pneumatic (gas actuated) devices are in use at natural gas production sites throughout the U.S.

“Our team’s previous work established that pneumatics are a major contributor to emissions,” Allen said. “Our goal here was to measure a more diverse population of wells to characterize the features of high-emitting pneumatic controllers.”

The research team measured emissions from 377 gas actuated (pneumatic) controllers at natural gas production sites and a small number of oil production sites throughout the U.S.

The researchers sampled all identifiable pneumatic controller devices at each well site, a more comprehensive approach than the random sampling previously conducted. The average methane emissions per pneumatic controller reported in this study are 17 percent higher than the average emissions per pneumatic controller in the 2012 EPA greenhouse gas national emission inventory (released in 2014), but the average from the study is dominated by a small subpopulation of the controllers. Specifically, 19 percent of controllers, with measured emission rates in excess of 6 standard cubic feet per hour (scf/h), accounted for 95 percent of emissions.

The high-emitting pneumatic devices are a combination of devices that are not operating as designed, are used in applications that cause them to release gas frequently or are designed to emit continuously at a high rate.

The researchers also observed regional differences in methane emission levels, with the lowest emissions per device measured in the Rocky Mountains and the highest emissions in the Gulf Coast, similar to the earlier 2013 study. At least some of the regional differences in emission rates can be attributed to the difference in controller type (continuous vent vs. intermittent vent) among regions.

Study and Findings on Liquid Unloadings

After observing variable emissions for liquid unloadings for a limited group of well types in the 2013 study, the research team made more extensive measurements and confirmed that a majority of emissions come from a small fraction of wells that vent frequently. Although it is not surprising to see some correlation between frequency of unloadings and higher annual emissions, the study’s findings indicate that wells with a high frequency of unloadings have annual emissions that are 10 or more times as great as wells that unload less frequently.

The team’s field study, which measured emissions from unloadings from wells at 107 natural gas production wells throughout the U.S., represents the most extensive measurement of emissions associated with liquid unloadings in scientific literature thus far.

A liquid unloading is one method used to clear wells of accumulated liquids to increase production. Because older wells typically produce less gas as they near the end of their life cycle, liquid unloadings happen more often in those wells than in newer wells. The team found a statistical correlation between the age of wells and the frequency of liquid unloadings. The researchers found that the key identifier for high-emitting wells is how many times the well unloads in a given year.

Because liquid unloadings can employ a variety of liquid lifting mechanisms, the study results also reflect differences in liquid unloadings emissions between wells that use two different mechanisms (wells with plunger lifts and wells without plunger lifts). Emissions for unloading events for wells without plunger lifts averaged 21,000 scf (standard cubic feet) to 35,000 scf. For wells with plunger lifts that vent to the atmosphere, emissions averaged 1,000 scf to 10,000 scf of methane per event. Although the emissions per event were higher for wells without plunger lifts, these wells had, on average, fewer events than wells with plunger lifts. Wells without plunger lifts averaged fewer than 10 unloading events per year, and wells with plunger lifts averaged more than 200 events per year.Overall, wells with plunger lifts were estimated to account for 70 percent of emissions from unloadings nationally.

Additionally, researchers found that the Rocky Mountain region, with its large number of wells with a high frequency of unloadings that vent to the atmosphere, accounts for about half of overall emissions from liquid unloadings.

The study team hopes its measurements of liquid unloadings and pneumatic devices will provide a clearer picture of methane emissions from natural gas well sites and about the relationship between well characteristics and emissions.

The study was a cooperative effort involving experts from the Environmental Defense Fund, Anadarko Petroleum Corporation, BG Group PLC, Chevron, ConocoPhillips, Encana Oil & Gas (USA) Inc., Pioneer Natural Resources Company, SWEPI LP (Shell), Statoil, Southwestern Energy and XTO Energy, a subsidiary of ExxonMobil.

The University of Texas at Austin is committed to transparency and disclosure of all potential conflicts of interest of its researchers. Lead researcher David Allen serves as chair of the Environmental Protection Agency’s Science Advisory Board and in this role is a paid Special Governmental Employee. He is also a journal editor for the American Chemical Society and has served as a consultant for multiple companies, including Eastern Research Group, ExxonMobil and the Research Triangle Institute. He has worked on other research projects funded by a variety of governmental, nonprofit and private sector sources including the National Science Foundation, the Environmental Protection Agency, the Texas Commission on Environmental Quality, the American Petroleum Institute and an air monitoring and surveillance project that was ordered by the U.S. District Court for the Southern District of Texas. Adam Pacsi and Daniel Zavala-Araiza, who were graduate students at The University of Texas at the time this work was done, have accepted positions at Chevron Energy Technology Company and the Environmental Defense Fund, respectively.

Financial support for this work was provided by the Environmental Defense Fund (EDF), Anadarko Petroleum Corporation, BG Group PLC, Chevron, ConocoPhillips, Encana Oil & Gas (USA) Inc., Pioneer Natural Resources Company, SWEPI LP (Shell), Statoil, Southwestern Energy and XTO Energy, a subsidiary of ExxonMobil.

Major funding for the EDF’s 30-month methane research series, including their portion of the University of Texas study, is provided for by the following individuals and foundations: Fiona and Stan Druckenmiller, the Heising-Simons Foundation, Bill and Susan Oberndorf, Betsy and Sam Reeves, the Robertson Foundation, TomKat Charitable Trust and the Walton Family Foundation.

No laughing matter: Nitrous oxide rose at end of last ice age

Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. -  Adrian Schilt
Researchers measured increases in atmospheric nitrous oxide concentrations about 16,000 to 10,000 years ago using ice from Taylor Glacier in Antarctica. – Adrian Schilt

Nitrous oxide (N2O) is an important greenhouse gas that doesn’t receive as much notoriety as carbon dioxide or methane, but a new study confirms that atmospheric levels of N2O rose significantly as the Earth came out of the last ice age and addresses the cause.

An international team of scientists analyzed air extracted from bubbles enclosed in ancient polar ice from Taylor Glacier in Antarctica, allowing for the reconstruction of the past atmospheric composition. The analysis documented a 30 percent increase in atmospheric nitrous oxide concentrations from 16,000 years ago to 10,000 years ago. This rise in N2O was caused by changes in environmental conditions in the ocean and on land, scientists say, and contributed to the warming at the end of the ice age and the melting of large ice sheets that then existed.

The findings add an important new element to studies of how Earth may respond to a warming climate in the future. Results of the study, which was funded by the U.S. National Science Foundation and the Swiss National Science Foundation, are being published this week in the journal Nature.

“We found that marine and terrestrial sources contributed about equally to the overall increase of nitrous oxide concentrations and generally evolved in parallel at the end of the last ice age,” said lead author Adrian Schilt, who did much of the work as a post-doctoral researcher at Oregon State University. Schilt then continued to work on the study at the Oeschger Centre for Climate Change Research at the University of Bern in Switzerland.

“The end of the last ice age represents a partial analog to modern warming and allows us to study the response of natural nitrous oxide emissions to changing environmental conditions,” Schilt added. “This will allow us to better understand what might happen in the future.”

Nitrous oxide is perhaps best known as laughing gas, but it is also produced by microbes on land and in the ocean in processes that occur naturally, but can be enhanced by human activity. Marine nitrous oxide production is linked closely to low oxygen conditions in the upper ocean and global warming is predicted to intensify the low-oxygen zones in many of the world’s ocean basins. N2O also destroys ozone in the stratosphere.

“Warming makes terrestrial microbes produce more nitrous oxide,” noted co-author Edward Brook, an Oregon State paleoclimatologist whose research team included Schilt. “Greenhouse gases go up and down over time, and we’d like to know more about why that happens and how it affects climate.”

Nitrous oxide is among the most difficult greenhouse gases to study in attempting to reconstruct the Earth’s climate history through ice core analysis. The specific technique that the Oregon State research team used requires large samples of pristine ice that date back to the desired time of study – in this case, between about 16,000 and 10,000 years ago.

The unusual way in which Taylor Glacier is configured allowed the scientists to extract ice samples from the surface of the glacier instead of drilling deep in the polar ice cap because older ice is transported upward near the glacier margins, said Brook, a professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The scientists were able to discern the contributions of marine and terrestrial nitrous oxide through analysis of isotopic ratios, which fingerprint the different sources of N2O in the atmosphere.

“The scientific community knew roughly what the N2O concentration trends were prior to this study,” Brook said, “but these findings confirm that and provide more exact details about changes in sources. As nitrous oxide in the atmosphere continues to increase – along with carbon dioxide and methane – we now will be able to more accurately assess where those contributions are coming from and the rate of the increase.”

Atmospheric N2O was roughly 200 parts per billion at the peak of the ice age about 20,000 years ago then rose to 260 ppb by 10,000 years ago. As of 2014, atmospheric N2Owas measured at about 327 ppb, an increase attributed primarily to agricultural influences.

Although the N2O increase at the end of the last ice age was almost equally attributable to marine and terrestrial sources, the scientists say, there were some differences.

“Our data showed that terrestrial emissions changed faster than marine emissions, which was highlighted by a fast increase of emissions on land that preceded the increase in marine emissions,” Schilt pointed out. “It appears to be a direct response to a rapid temperature change between 15,000 and 14,000 years ago.”

That finding underscores the complexity of analyzing how Earth responds to changing conditions that have to account for marine and terrestrial influences; natural variability; the influence of different greenhouse gases; and a host of other factors, Brook said.

“Natural sources of N2O are predicted to increase in the future and this study will help up test predictions on how the Earth will respond,” Brook said.

Abandoned wells can be ‘super-emitters’ of greenhouse gas

One of the wells the researchers tested; this one in the Allegheny National Forest. -  Princeton University
One of the wells the researchers tested; this one in the Allegheny National Forest. – Princeton University

Princeton University researchers have uncovered a previously unknown, and possibly substantial, source of the greenhouse gas methane to the Earth’s atmosphere.

After testing a sample of abandoned oil and natural gas wells in northwestern Pennsylvania, the researchers found that many of the old wells leaked substantial quantities of methane. Because there are so many abandoned wells nationwide (a recent study from Stanford University concluded there were roughly 3 million abandoned wells in the United States) the researchers believe the overall contribution of leaking wells could be significant.

The researchers said their findings identify a need to make measurements across a wide variety of regions in Pennsylvania but also in other states with a long history of oil and gas development such as California and Texas.

“The research indicates that this is a source of methane that should not be ignored,” said Michael Celia, the Theodore Shelton Pitney Professor of Environmental Studies and professor of civil and environmental engineering at Princeton. “We need to determine how significant it is on a wider basis.”

Methane is the unprocessed form of natural gas. Scientists say that after carbon dioxide, methane is the most important contributor to the greenhouse effect, in which gases in the atmosphere trap heat that would otherwise radiate from the Earth. Pound for pound, methane has about 20 times the heat-trapping effect as carbon dioxide. Methane is produced naturally, by processes including decomposition, and by human activity such as landfills and oil and gas production.

While oil and gas companies work to minimize the amount of methane emitted by their operations, almost no attention has been paid to wells that were drilled decades ago. These wells, some of which date back to the 19th century, are typically abandoned and not recorded on official records.

Mary Kang, then a doctoral candidate at Princeton, originally began looking into methane emissions from old wells after researching techniques to store carbon dioxide by injecting it deep underground. While examining ways that carbon dioxide could escape underground storage, Kang wondered about the effect of old wells on methane emissions.

“I was looking for data, but it didn’t exist,” said Kang, now a postdoctoral researcher at Stanford.

In a paper published Dec. 8 in the Proceedings of the National Academy of Sciences, the researchers describe how they chose 19 wells in the adjacent McKean and Potter counties in northwestern Pennsylvania. The wells chosen were all abandoned, and records about the origin of the wells and their conditions did not exist. Only one of the wells was on the state’s list of abandoned wells. Some of the wells, which can look like a pipe emerging from the ground, are located in forests and others in people’s yards. Kang said the lack of documentation made it hard to tell when the wells were originally drilled or whether any attempt had been made to plug them.

“What surprised me was that every well we measured had some methane coming out,” said Celia.

To conduct the research, the team placed enclosures called flux chambers over the tops of the wells. They also placed flux chambers nearby to measure the background emissions from the terrain and make sure the methane was emitted from the wells and not the surrounding area.

Although all the wells registered some level of methane, about 15 percent emitted the gas at a markedly higher level — thousands of times greater than the lower-level wells. Denise Mauzerall, a Princeton professor and a member of the research team, said a critical task is to discover the characteristics of these super-emitting wells.

Mauzerall said the relatively low number of high-emitting wells could offer a workable solution: while trying to plug every abandoned well in the country might be too costly to be realistic, dealing with the smaller number of high emitters could be possible.

“The fact that most of the methane is coming out of a small number of wells should make it easier to address if we can identify the high-emitting wells,” said Mauzerall, who has a joint appointment as a professor of civil and environmental engineering and as a professor of public and international affairs at the Woodrow Wilson School.

The researchers have used their results to extrapolate total methane emissions from abandoned wells in Pennsylvania, although they stress that the results are preliminary because of the relatively small sample. But based on that data, they estimate that emissions from abandoned wells represents as much as 10 percent of methane from human activities in Pennsylvania — about the same amount as caused by current oil and gas production. Also, unlike working wells, which have productive lifetimes of 10 to 15 years, abandoned wells can continue to leak methane for decades.

“This may be a significant source,” Mauzerall said. “There is no single silver bullet but if it turns out that we can cap or capture the methane coming off these really big emitters, that would make a substantial difference.”

Besides Kang, who is the paper’s lead author, Celia and Mauzerall, the paper’s co-authors include: Tullis Onstott, a professor of geosciences at Princeton; Cynthia Kanno, who was a Princeton undergraduate and who is a graduate student at the Colorado School of Mines; Matthew Reid, who was a graduate student at Princeton and is a postdoctoral researcher at EPFL in Luzerne, Switzerland; Xin Zhang, a postdoctoral researcher in the Woodrow Wilson School at Princeton; and Yuheng Chen, an associate research scholar in geosciences at Princeton.

Adjusting Earth’s thermostat, with caution

David Keith, Gordon McKay Professor of Applied Physics at Harvard SEAS and professor of public policy at Harvard Kennedy School, coauthored several papers on climate engineering with colleagues at Harvard and beyond. -  Eliza Grinnell, SEAS Communications.
David Keith, Gordon McKay Professor of Applied Physics at Harvard SEAS and professor of public policy at Harvard Kennedy School, coauthored several papers on climate engineering with colleagues at Harvard and beyond. – Eliza Grinnell, SEAS Communications.

A vast majority of scientists believe that the Earth is warming at an unprecedented rate and that human activity is almost certainly the dominant cause. But on the topics of response and mitigation, there is far less consensus.

One of the most controversial propositions for slowing the increase in temperatures here on Earth is to manipulate the atmosphere above. Specifically, some scientists believe it should be possible to offset the warming effect of greenhouses gases by reflecting more of the sun’s energy back into space.

The potential risks–and benefits–of solar radiation management (SRM) are substantial. So far, however, all of the serious testing has been confined to laboratory chambers and theoretical models. While those approaches are valuable, they do not capture the full range of interactions among chemicals, the impact of sunlight on these reactions, or multiscale variations in the atmosphere.

Now, a team of researchers from the Harvard School of Engineering and Applied Sciences (SEAS) has outlined how a small-scale “stratospheric perturbation experiment” could work. By proposing, in detail, a way to take the science of geoengineering to the skies, they hope to stimulate serious discussion of the practice by policymakers and scientists.

Ultimately, they say, informed decisions on climate policy will need to rely on the best information available from controlled and cautious field experiments.

The paper is among several published today in a special issue of the Philosophical Transactions of the Royal Society A that examine the nuances, the possible consequences, and the current state of scientific understanding of climate engineering. David Keith, whose work features prominently in the issue, is Gordon McKay Professor of Applied Physics at Harvard SEAS and a professor of public policy at Harvard Kennedy School. His coauthors on the topic of field experiments include James Anderson, Philip S. Weld Professor of Applied Chemistry at Harvard SEAS and in Harvard’s Department of Chemistry and Chemical Biology; and other colleagues at Harvard SEAS.

“The idea of conducting experiments to alter atmospheric processes is justifiably controversial, and our experiment, SCoPEx, is just a proposal,” Keith emphasizes. “It will continue to evolve until it is funded, and we will only move ahead if the funding is substantially public, with a formal approval process and independent risk assessment.”

With so much at stake, Keith believes transparency is essential. But the science of climate engineering is also widely misunderstood.

“People often claim that you cannot test geoengineering except by doing it at full scale,” says Keith. “This is nonsense. It is possible to do a small-scale test, with quite low risks, that measures key aspects of the risk of geoengineering–in this case the risk of ozone loss.”

Such controlled experiments, targeting key questions in atmospheric chemistry, Keith says, would reduce the number of “unknown unknowns” and help to inform science-based policy.

The experiment Keith and Anderson’s team is proposing would involve only a tiny amount of material–a few hundred grams of sulfuric acid, an amount Keith says is roughly equivalent to what a typical commercial aircraft releases in a few minutes while flying in the stratosphere. It would provide important insight into how much SRM would reduce radiative heating, the concentration of water vapor in the stratosphere, and the processes that determine water vapor transport–which affects the concentration of ozone.

In addition to the experiment proposed in that publication, another paper coauthored by Keith and collaborators at the California Institute of Technology (CalTech) collects and reviews a number of other experimental methods, to demonstrate the diversity of possible approaches.

“There is a wide range of experiments that could be done that would significantly reduce our uncertainty about the risks and effectiveness of solar geoengineering,” Keith says. “Many could be done with very small local risks.”

A third paper explores how solar geoengineering might actually be implemented, if an international consensus were reached, and suggests that a gradual implementation that aims to limit the rate of climate change would be a plausible strategy.

“Many people assume that solar geoengineering would be used to suddenly restore the Earth’s climate to preindustrial temperatures,” says Keith, “but it’s very unlikely that it would make any policy sense to try to do so.”

Keith also points to another paper in the Royal Society’s special issue–one by Andy Parker at the Belfer Center for Science and International Affairs at Harvard Kennedy School. Parker’s paper furthers the discussion of governance and good practices in geoengineering research in the absence of both national legislation and international agreement, a topic raised last year in Science by Keith and Edward Parson of UCLA.

“The scientific aspects of geoengineering research must, by necessity, advance in tandem with a thorough discussion of the social science and policy,” Keith warns. “Of course, these risks must also be weighed against the risk of doing nothing.”

For further information, see: “Stratospheric controlled perturbation experiment (SCoPEx): A small-scale experiment to improve understanding of the risks of solar geoengineering” doi: 10.1098/rsta.2014.0059

By John Dykema, project scientist at Harvard SEAS; David Keith, Gordon McKay Professor of Applied Physics at Harvard SEAS and professor of public policy at Harvard Kennedy School; James Anderson, Philip S. Weld Professor of Applied Chemistry at Harvard SEAS and in Harvard’s Department of Chemistry and Chemical Biology; and Debra Weisenstein, research management specialist at Harvard SEAS.

“Field experiments on solar geoengineering: Report of a workshop exploring a representative research portfolio”
doi: 10.1098/rsta.2014.0175

By David Keith; Riley Duren, chief systems engineer at the NASA Jet Propulsion Laboratory at CalTech; and Douglas MacMartin, senior research associate and lecturer at CalTech.

“Solar geoengineering to limit the rate of temperature change”
doi: 10.1098/rsta.2014.0134

By Douglas MacMartin; Ken Caldeira, senior scientist at the Carnegie Institute for Science and professor of environmental Earth system sciences at Stanford University; and David Keith.

“Governing solar geoengineering research as it leaves the laboratory”
doi: 10.1098/rsta.2014.0173

By Andy Parker, associate of the Belfer Center at Harvard Kennedy School.

Groundwater warming up in synch

For their study, the researchers were able to fall back on uninterrupted long-term temperature measurements of groundwater flows around the cities of Cologne and Karlsruhe, where the operators of the local waterworks have been measuring the temperature of the groundwater, which is largely uninfluenced by humans, for forty years. This is unique and a rare commodity for the researchers. “For us, the data was a godsend,” stresses Peter Bayer, a senior assistant at ETH Zurich’s Geological Institute. Even with some intensive research, they would not have been able to find a comparable series of measurements. Evidently, it is less interesting or too costly for waterworks to measure groundwater temperatures systematically for a lengthy period of time. “Or the data isn’t digitalised and only archived on paper,” suspects the hydrogeologist.

Damped image of atmospheric warming

Based on the readings, the researchers were able to demonstrate that the groundwater is not just warming up; the warming stages observed in the atmosphere are also echoed. “Global warming is reflected directly in the groundwater, albeit damped and with a certain time lag,” says Bayer, summarising the main results that the project has yielded. The researchers published their study in the journal Hydrology and Earth System Sciences.

The data also reveals that the groundwater close to the surface down to a depth of around sixty metres has warmed up statistically significantly in the course of global warming over the last forty years. This water heating follows the warming pattern of the local and regional climate, which in turn mirrors that of global warming.

The groundwater reveals how the atmosphere has made several temperature leaps at irregular intervals. These “regime shifts” can also be observed in the global climate, as the researchers write in their study. Bayer was surprised at how quickly the groundwater responded to climate change.

Heat exchange with the subsoil

The earth’s atmosphere has warmed up by an average of 0.13 degrees Celsius per decade in the last fifty years. And this warming doesn’t stop at the subsoil, either, as other climate scientists have demonstrated in the last two decades with drillings all over the world. However, the researchers only tended to consider soils that did not contain any water or where there were no groundwater flow.

While the fact that the groundwater has not escaped climate change was revealed by researchers from Eawag and ETH Zurich in a study published three years ago, it only concerned “artificial” groundwater. In order to enhance it, river water is trickled off in certain areas. The temperature profile of the groundwater generated as a result thus matches that of the river water.

The new study, however, examines groundwater that has barely been influenced by humans. According to Bayer, it is plausible that the natural groundwater flow is also warming up in the course of climate change. “The difference in temperature between the atmosphere and the subsoil balances out naturally.” The energy transfer takes place via thermal conduction and the groundwater flow, much like a heat exchanger, which enables the heat transported to spread in the subsoil and level out.

The consequences of these findings, however, are difficult to gauge. The warmer temperatures might influence subterranean ecosystems on the one hand and groundwater-dependent biospheres on the other, which include cold areas in flowing waters where the groundwater discharges. For cryophilic organisms such as certain fish, groundwater warming could have negative consequences.

Consequences difficult to gauge

Higher groundwater temperatures also influence the water’s chemical composition, especially the chemical equilibria of nitrate or carbonate. After all, chemical reactions usually take place more quickly at higher temperatures. Bacterial activity might also increase at rising water temperatures. If the groundwater becomes warmer, undesirable bacteria such as gastro-intestinal disease pathogens might multiply more effectively. However, the scientists can also imagine positive effects. “The groundwater’s excess heat could be used geothermally for instance,” adds Kathrin Menberg, the first author of the study.

Massive geographic change may have triggered explosion of animal life

A new analysis from The University of Texas at Austin's Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. -  Ian Dalziel
A new analysis from The University of Texas at Austin’s Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. – Ian Dalziel

A new analysis of geologic history may help solve the riddle of the “Cambrian explosion,” the rapid diversification of animal life in the fossil record 530 million years ago that has puzzled scientists since the time of Charles Darwin.

A paper by Ian Dalziel of The University of Texas at Austin’s Jackson School of Geosciences, published in the November issue of Geology, a journal of the Geological Society of America, suggests a major tectonic event may have triggered the rise in sea level and other environmental changes that accompanied the apparent burst of life.

The Cambrian explosion is one of the most significant events in Earth’s 4.5-billion-year history. The surge of evolution led to the sudden appearance of almost all modern animal groups. Fossils from the Cambrian explosion document the rapid evolution of life on Earth, but its cause has been a mystery.

The sudden burst of new life is also called “Darwin’s dilemma” because it appears to contradict Charles Darwin’s hypothesis of gradual evolution by natural selection.

“At the boundary between the Precambrian and Cambrian periods, something big happened tectonically that triggered the spreading of shallow ocean water across the continents, which is clearly tied in time and space to the sudden explosion of multicellular, hard-shelled life on the planet,” said Dalziel, a research professor at the Institute for Geophysics and a professor in the Department of Geological Sciences.

Beyond the sea level rise itself, the ancient geologic and geographic changes probably led to a buildup of oxygen in the atmosphere and a change in ocean chemistry, allowing more complex life-forms to evolve, he said.

The paper is the first to integrate geological evidence from five present-day continents — North America, South America, Africa, Australia and Antarctica — in addressing paleogeography at that critical time.

Dalziel proposes that present-day North America was still attached to the southern continents until sometime into the Cambrian period. Current reconstructions of the globe’s geography during the early Cambrian show the ancient continent of Laurentia — the ancestral core of North America — as already having separated from the supercontinent Gondwanaland.

In contrast, Dalziel suggests the development of a deep oceanic gateway between the Pacific and Iapetus (ancestral Atlantic) oceans isolated Laurentia in the early Cambrian, a geographic makeover that immediately preceded the global sea level rise and apparent explosion of life.

“The reason people didn’t make this connection before was because they hadn’t looked at all the rock records on the different present-day continents,” he said.

The rock record in Antarctica, for example, comes from the very remote Ellsworth Mountains.

“People have wondered for a long time what rifted off there, and I think it was probably North America, opening up this deep seaway,” Dalziel said. “It appears ancient North America was initially attached to Antarctica and part of South America, not to Europe and Africa, as has been widely believed.”

Although the new analysis adds to evidence suggesting a massive tectonic shift caused the seas to rise more than half a billion years ago, Dalziel said more research is needed to determine whether this new chain of paleogeographic events can truly explain the sudden rise of multicellular life in the fossil record.

“I’m not claiming this is the ultimate explanation of the Cambrian explosion,” Dalziel said. “But it may help to explain what was happening at that time.”


To read the paper go to

Lack of oxygen delayed the rise of animals on Earth

Christopher Reinhard and Noah Planavsky conduct research for the study in China. -  Yale University
Christopher Reinhard and Noah Planavsky conduct research for the study in China. – Yale University

Geologists are letting the air out of a nagging mystery about the development of animal life on Earth.

Scientists have long speculated as to why animal species didn’t flourish sooner, once sufficient oxygen covered the Earth’s surface. Animals began to prosper at the end of the Proterozoic period, about 800 million years ago — but what about the billion-year stretch before that, when most researchers think there also was plenty of oxygen?

Well, it seems the air wasn’t so great then, after all.

In a study published Oct. 30 in Science, Yale researcher Noah Planavsky and his colleagues found that oxygen levels during the “boring billion” period were only 0.1% of what they are today. In other words, Earth’s atmosphere couldn’t have supported a diversity of creatures, no matter what genetic advancements were poised to occur.

“There is no question that genetic and ecological innovation must ultimately be behind the rise of animals, but it is equally unavoidable that animals need a certain level of oxygen,” said Planavsky, co-lead author of the research along with Christopher Reinhard of the Georgia Institute of Technology. “We’re providing the first evidence that oxygen levels were low enough during this period to potentially prevent the rise of animals.”

The scientists found their evidence by analyzing chromium (Cr) isotopes in ancient sediments from China, Australia, Canada, and the United States. Chromium is found in the Earth’s continental crust, and chromium oxidation is directly linked to the presence of free oxygen in the atmosphere.

Specifically, the team studied samples deposited in shallow, iron-rich ocean areas, near the shore. They compared their data with other samples taken from younger locales known to have higher levels of oxygen.

Oxygen’s role in controlling the first appearance of animals has long vexed scientists. “We were missing the right approach until now,” Planavsky said. “Chromium gave us the proxy.” Previous estimates put the oxygen level at 40% of today’s conditions during pre-animal times, leaving open the possibility that oxygen was already plentiful enough to support animal life.

In the new study, the researchers acknowledged that oxygen levels were “highly dynamic” in the early atmosphere, with the potential for occasional spikes. However, they said, “It seems clear that there is a first-order difference in the nature of Earth surface Cr cycling” before and after the rise of animals.

“If we are right, our results will really change how people view the origins of animals and other complex life, and their relationships to the co-evolving environment,” said co-author Tim Lyons of the University of California-Riverside. “This could be a game changer.”

“There’s a lot of interest right now in a broader discussion surrounding the role that environmental stability played in the evolution of complex life, and we think our results are a significant contribution to that,” Reinhard said.

Rare 2.5-billion-year-old rocks reveal hot spot of sulfur-breathing bacteria

Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. -  Alan J. Kaufman
Gold miners prospecting in a mountainous region of Brazil drilled this 590-foot cylinder of bedrock from the Neoarchaean Eon, which provides rare evidence of conditions on Earth 2.5 billion years ago. – Alan J. Kaufman

Wriggle your toes in a marsh’s mucky bottom sediment and you’ll probably inhale a rotten egg smell, the distinctive odor of hydrogen sulfide gas. That’s the biochemical signature of sulfur-using bacteria, one of Earth’s most ancient and widespread life forms.

Among scientists who study the early history of our 4.5 billion-year-old planet, there is a vigorous debate about the evolution of sulfur-dependent bacteria. These simple organisms arose at a time when oxygen levels in the atmosphere were less than one-thousandth of what they are now. Living in ocean waters, they respired (or breathed in) sulfate, a form of sulfur, instead of oxygen. But how did that sulfate reach the ocean, and when did it become abundant enough for living things to use it?

New research by University of Maryland geology doctoral student Iadviga Zhelezinskaia offers a surprising answer. Zhelezinskaia is the first researcher to analyze the biochemical signals of sulfur compounds found in 2.5 billion-year-old carbonate rocks from Brazil. The rocks were formed on the ocean floor in a geologic time known as the Neoarchaean Eon. They surfaced when prospectors drilling for gold in Brazil punched a hole into bedrock and pulled out a 590-foot-long core of ancient rocks.

In research published Nov. 7, 2014 in the journal Science, Zhelezinskaia and three co-authors–physicist John Cliff of the University of Western Australia and geologists Alan Kaufman and James Farquhar of UMD–show that bacteria dependent on sulfate were plentiful in some parts of the Neoarchaean ocean, even though sea water typically contained about 1,000 times less sulfate than it does today.

“The samples Iadviga measured carry a very strong signal that sulfur compounds were consumed and altered by living organisms, which was surprising,” says Farquhar. “She also used basic geochemical models to give an idea of how much sulfate was in the oceans, and finds the sulfate concentrations are very low, much lower than previously thought.”

Geologists study sulfur because it is abundant and combines readily with other elements, forming compounds stable enough to be preserved in the geologic record. Sulfur has four naturally occurring stable isotopes–atomic signatures left in the rock record that scientists can use to identify the elements’ different forms. Researchers measuring sulfur isotope ratios in a rock sample can learn whether the sulfur came from the atmosphere, weathering rocks or biological processes. From that information about the sulfur sources, they can deduce important information about the state of the atmosphere, oceans, continents and biosphere when those rocks formed.

Farquhar and other researchers have used sulfur isotope ratios in Neoarchaean rocks to show that soon after this period, Earth’s atmosphere changed. Oxygen levels soared from just a few parts per million to almost their current level, which is around 21 percent of all the gases in the atmosphere. The Brazilian rocks Zhelezinskaia sampled show only trace amounts of oxygen, a sign they were formed before this atmospheric change.

With very little oxygen, the Neoarchaean Earth was a forbidding place for most modern life forms. The continents were probably much drier and dominated by volcanoes that released sulfur dioxide, carbon dioxide, methane and other greenhouse gases. Temperatures probably ranged between 0 and 100 degrees Celsius (32 to 212 degrees Fahrenheit), warm enough for liquid oceans to form and microbes to grow in them.

Rocks 2.5 billion years old or older are extremely rare, so geologists’ understanding of the Neoarchaean are based on a handful of samples from a few small areas, such as Western Australia, South Africa and Brazil. Geologists theorize that Western Australia and South Africa were once part of an ancient supercontinent called Vaalbara. The Brazilian rock samples are comparable in age, but they may not be from the same supercontinent, Zhelezinskaia says.

Most of the Neoarchaean rocks studied are from Western Australia and South Africa and are black shale, which forms when fine dust settles on the sea floor. The Brazilian prospector’s core contains plenty of black shale and a band of carbonate rock, formed below the surface of shallow seas, in a setting that probably resembled today’s Bahama Islands. Black shale usually contains sulfur-bearing pyrite, but carbonate rock typically does not, so geologists have not focused on sulfur signals in Neoarchaean carbonate rocks until now.

Zhelezinskaia “chose to look at a type of rock that others generally avoided, and what she saw was spectacularly different,” said Kaufman. “It really opened our eyes to the implications of this study.”

The Brazilian carbonate rocks’ isotopic ratios showed they formed in ancient seabed containing sulfate from atmospheric sources, not continental rock. And the isotopic ratios also showed that Neoarchaean bacteria were plentiful in the sediment, respiring sulfate and emitted hydrogen sulfide–the same process that goes on today as bacteria recycle decaying organic matter into minerals and gases.

How could the sulfur-dependent bacteria have thrived during a geologic time when sulfur levels were so low? “It seems that they were in shallow water, where evaporation may have been high enough to concentrate the sulfate, and that would make it abundant enough to support the bacteria,” says Zhelezinskaia.

Zhelezinskaia is now analyzing carbonate rocks of the same age from Western Australia and South Africa, to see if the pattern holds true for rocks formed in other shallow water environments. If it does, the results may change scientists’ understanding of one of Earth’s earliest biological processes.

“There is an ongoing debate about when sulfate-reducing bacteria arose and how that fits into the evolution of life on our planet,” says Farquhar. “These rocks are telling us the bacteria were there 2.5 billion years ago, and they were doing something significant enough that we can see them today.”


This research was supported by the Fulbright Program (Grantee ID 15110620), the NASA Astrobiology Institute (Grant No. NNA09DA81A) and the National Science Foundation Frontiers in Earth-System Dynamics program (Grant No. 432129). The content of this article does not necessarily reflect the views of these organizations.

“Large sulfur isotope fractionations associated with Neoarchaean microbial sulfate reductions,” Iadviga Zhelezinskaia, Alan J. Kaufman, James Farquhar and John Cliff, was published Nov. 7, 2014 in Science. Download the abstract after 2 p.m. U.S. Eastern time, Nov. 6, 2014:

James Farquhar home page

Alan J. Kaufman home page

Iadviga Zhelezinskaia home page

Media Relations Contact: Abby Robinson, 301-405-5845,

Writer: Heather Dewar

New study shows 3 abrupt pulse of CO2 during last deglaciation

A new study shows that the rise of atmospheric carbon dioxide that contributed to the end of the last ice age more than 10,000 years ago did not occur gradually, but was characterized by three “pulses” in which C02 rose abruptly.

Scientists are not sure what caused these abrupt increases, during which C02 levels rose about 10-15 parts per million – or about 5 percent per episode – over a period of 1-2 centuries. It likely was a combination of factors, they say, including ocean circulation, changing wind patterns, and terrestrial processes.

The finding is important, however, because it casts new light on the mechanisms that take the Earth in and out of ice age regimes. Results of the study, which was funded by the National Science Foundation, appear this week in the journal Nature.

“We used to think that naturally occurring changes in carbon dioxide took place relatively slowly over the 10,000 years it took to move out of the last ice age,” said Shaun Marcott, lead author on the article who conducted his study as a post-doctoral researcher at Oregon State University. “This abrupt, centennial-scale variability of CO2 appears to be a fundamental part of the global carbon cycle.”

Some previous research has hinted at the possibility that spikes in atmospheric carbon dioxide may have accelerated the last deglaciation, but that hypothesis had not been resolved, the researchers say. The key to the new finding is the analysis of an ice core from the West Antarctic that provided the scientists with an unprecedented glimpse into the past.

Scientists studying past climate have been hampered by the limitations of previous ice cores. Cores from Greenland, for example, provide unique records of rapid climate events going back 120,000 years – but high concentrations of impurities don’t allow researchers to accurately determine atmospheric carbon dioxide records. Antarctic ice cores have fewer impurities, but generally have had lower “temporal resolution,” providing less detailed information about atmospheric CO2.

However, a new core from West Antarctica, drilled to a depth of 3,405 meters in 2011 and spanning the last 68,000 years, has “extraordinary detail,” said Oregon State paleoclimatologist Edward Brook, a co-author on the Nature study and an internationally recognized ice core expert. Because the area where the core was taken gets high annual snowfall, he said, the new ice core provides one of the most detailed records of atmospheric CO2.

“It is a remarkable ice core and it clearly shows distinct pulses of carbon dioxide increase that can be very reliably dated,” Brook said. “These are some of the fastest natural changes in CO2 we have observed, and were probably big enough on their own to impact the Earth’s climate.

“The abrupt events did not end the ice age by themselves,” Brook added. “That might be jumping the gun a bit. But it is fair to say that the natural carbon cycle can change a lot faster than was previously thought – and we don’t know all of the mechanisms that caused that rapid change.”

The researchers say that the increase in atmospheric CO2 from the peak of the last ice age to complete deglaciation was about 80 parts per million, taking place over 10,000 years. Thus, the finding that 30-45 ppm of the increase happened in just a few centuries was significant.

The overall rise of atmospheric carbon dioxide during the last deglaciation was thought to have been triggered by the release of CO2 from the deep ocean – especially the Southern Ocean. However, the researchers say that no obvious ocean mechanism is known that would trigger rises of 10-15 ppm over a time span as short as one to two centuries.

“The oceans are simply not thought to respond that fast,” Brook said. “Either the cause of these pulses is at least part terrestrial, or there is some mechanism in the ocean system we don’t yet know about.”

One reason the researchers are reluctant to pin the end of the last ice age solely on CO2 increases is that other processes were taking place, according to Marcott, who recently joined the faculty of the University of Wisconsin-Madison.

“At the same time CO2 was increasing, the rate of methane in the atmosphere was also increasing at the same or a slightly higher rate,” Marcott said. “We also know that during at least two of these pulses, the Atlantic Meridional Overturning Circulation changed as well. Changes in the ocean circulation would have affected CO2 – and indirectly methane, by impacting global rainfall patterns.”

“The Earth is a big coupled system,” he added, “and there are many pieces to the puzzle. The discovery of these strong, rapid pulses of CO2 is an important piece.”