North Atlantic signalled Ice Age thaw 1,000 years before it happened, reveals new research

The Atlantic Ocean at mid-depths may have given out early warning signals – 1,000 years in advance – that the last Ice Age was going to end, scientists report today in the journal Paleoceanography.

Scientists had previously known that at the end of the last Ice Age, around 14,700 years ago, major changes occurred to the Atlantic Ocean in a period known as the Bolling-Allerod interval. During this period, as glaciers melted and the Earth warmed, the currents of the Atlantic Ocean at its deepest levels changed direction.

The researchers have analysed the chemistry of 24 ancient coral fossils from the North Atlantic Ocean to learn more about the circulation of its waters during the last Ice Age. They found that the corals recorded a high variability in the currents of the Atlantic Ocean at mid-depths, around 2km below the surface, up to 1,000 years prior to the Bolling-Allerod interval. The team suggests that these changes may have been an early warning signal that the world was poised to switch from its glacial state to the warmer world we know today, and that the changes happened first at mid-depths.

The study was carried out by researchers from Imperial College London in conjunction with academics from the Scottish Marine Institute, the University of Bristol and Caltech Division of Geology and Planetary Sciences.

Dr David Wilson, from the Department of Earth Science and Engineering at Imperial College London, said: “The world’s oceans have always been an important barometer when it comes to changes in our planet. Excitingly, the coral fossils we’ve studied are showing us that the North Atlantic Ocean at mid-depths was undergoing changes up to 1,000 years earlier than we had expected. The tantalising prospect is that this high variability may have been a signal that the last Ice Age was about to end.”

The fossil corals analysed by the team come from a species called Desmophyllum dianthus, which are often around 5cm in diameter and look like budding flowers. They typically only live for 100 years, giving the team a rare insight into what was happening to the ocean’s currents during this relatively brief time. Thousands of years ago they grew on the New England Seamounts, which are a chain of undersea mountains approximately 1000km off the east coast of the US, located at mid-depths 2km beneath the surface. This underwater area is important for understanding the North Atlantic’s currents.

While some of the corals analysed by the team come from historical collections, most have been collected by researchers from previous expeditions in 2003 and 2005 to the New England Seamounts. The researchers used deep sea robotic submergence vehicles called Hercules and Alvin to collect the ancient coral fossils.

These ancient coral fossils accumulated rare earth elements from seawater, including neodymium, which leached from rocks on land into the Atlantic Ocean and circulated in its currents, eventually ending up in the coral skeletons. Neodymium isotopes in different regions of the world have specific signatures, created by radioactive decay over billions of years. The scientists studied the chemistry of the coral fossils to determine where the neodymium isotopes had come from, giving them a glimpse into the circulation of the Atlantic Ocean at the end of the Ice Age.

Since the world’s oceans are connected by currents, the next step will see the team integrating the evidence they gathered from the North Atlantic Ocean into a picture of global changes in the mid-depths of oceans around the world. In particular, the team is interested in exploring how the Southern Ocean around Antarctica changed around the same time by analysing neodymium isotopes in a collection of Southern Ocean corals.

Massive study provides first detailed look at how Greenland’s ice is vanishing

The surface of the Greenland Ice Sheet. A new study uses NASA data to provide the first detailed reconstruction of how the ice sheet and its many glaciers are changing. The research was led by University at Buffalo geologist Beata Csatho. -  Beata Csatho
The surface of the Greenland Ice Sheet. A new study uses NASA data to provide the first detailed reconstruction of how the ice sheet and its many glaciers are changing. The research was led by University at Buffalo geologist Beata Csatho. – Beata Csatho

The Greenland Ice Sheet is the second-largest body of ice on Earth. It covers an area about five times the size of New York State and Kansas combined, and if it melts completely, oceans could rise by 20 feet. Coastal communities from Florida to Bangladesh would suffer extensive damage.

Now, a new study is revealing just how little we understand this northern behemoth.

Led by geophysicist Beata Csatho, PhD, an associate professor of geology at the University at Buffalo, the research provides what the authors think is the first comprehensive picture of how Greenland’s ice is vanishing. It suggests that current ice sheet modeling studies are too simplistic to accurately predict the future contributions of the entire Greenland Ice Sheet to sea level rise, and that Greenland may lose ice more rapidly in the near future than previously thought.

“The great importance of our data is that for the first time, we have a comprehensive picture of how all of Greenland’s glaciers have changed over the past decade,” Csatho says.

“This information is crucial for developing and validating numerical models that predict how the ice sheet may change and contribute to global sea level over the next few hundred years,” says Cornelis J. van der Veen, PhD, professor in the Department of Geography at the University of Kansas, who played a key role in interpreting glaciological changes.

The project was a massive undertaking, using satellite and aerial data from NASA’s ICESat spacecraft and Operation IceBridge field campaign to reconstruct how the height of the Greenland Ice Sheet changed at nearly 100,000 locations from 1993 to 2012.

Ice loss takes place in a complex manner, with the ice sheet both melting and calving ice into the ocean.
The study had two major findings:

  • First, the scientists were able to provide new estimates of annual ice loss at high spatial resolution (see below).

  • Second, the research revealed that current models fail to accurately capture how the entire Greenland Ice Sheet is changing and contributing to rising oceans.

The second point is crucial to climate change modelers.

Today’s simulations use the activity of four well-studied glaciers — Jakobshavn, Helheim, Kangerlussuaq and Petermann — to forecast how the entire ice sheet will dump ice into the oceans.

But the new research shows that activity at these four locations may not be representative of what is happening with glaciers across the ice sheet. In fact, glaciers undergo patterns of thinning and thickening that current climate change simulations fail to address, Csatho says.

“There are 242 outlet glaciers wider than 1.5 km on the Greenland Ice Sheet, and what we see is that their behavior is complex in space and time,” Csatho says. “The local climate and geological conditions, the local hydrology — all of these factors have an effect. The current models do not address this complexity.”

The team identified areas of rapid shrinkage in southeast Greenland that today’s models don’t acknowledge. This leads Csatho to believe that the ice sheet could lose ice faster in the future than today’s simulations would suggest.

The results will be published on Dec. 15 in the Proceedings of the National Academy of Sciences, and the study and all information in this press release are embargoed until 3 p.m. Eastern Time that day.

Photos, data visualizations and video are available by contacting Charlotte Hsu at the University at Buffalo at chsu22@buffalo.edu.

How much ice is the Greenland Ice Sheet losing?

To analyze how the height of the ice sheet was changing, Csatho and UB research professor and photogrammetrist Anton Schenk, PhD, developed a computational technique called Surface Elevation Reconstruction And Change detection to fuse together data from NASA satellite and aerial missions.

The analysis found that the Greenland Ice Sheet lost about 243 metric gigatons of ice annually — equivalent to about 277 cubic kilometers of ice per year — from 2003-09, the period for which the team had the most comprehensive data. This loss is estimated to have added about 0.68 millimeters of water to the oceans annually.

The figures are averages, and ice loss varied from year to year, and from region to region.

Why are today’s projections of sea level rise flawed, and how can we fix them?

Glaciers don’t just gradually lose mass when the temperature rises. That’s one reason it’s difficult to predict their response to global warming.

In the study, scientists found that some of Greenland’s glaciers thickened even when the temperature rose. Others exhibited accelerated thinning. Some displayed both thinning and thickening, with sudden reversals.

As a step toward building better models of sea level rise, the research team divided Greenland’s 242 glaciers into 7 major groups based on their behavior from 2003-09.

“Understanding the groupings will help us pick out examples of glaciers that are representative of the whole,” Csatho says. “We can then use data from these representative glaciers in models to provide a more complete picture of what is happening.”

In a new project, she and colleagues are investigating why different glaciers respond differently to warming. Factors could include the temperature of the surrounding ocean; the level of friction between a glacier and the bedrock below; the amount of water under a glacier; and the geometry of the fjord.

“The physics of these processes are not well understood,” Csatho says.

The NASA missions: A colossal undertaking

The study combined data from various NASA missions, including:

  • NASA’s Ice, Cloud and Land Elevation Satellite (ICESat), which measured the ice sheet’s elevation multiple times a year at each of the nearly 100,000 locations from 2003-09.

  • NASA’s, massive aerial survey that employs highly specialized research aircrafts to collect data at less frequent intervals than ICESat. These missions began measuring the Greenland Ice Sheet’s elevation in 1993. Operation IceBridge was started in 2009 to bridge the time between ICESat-1 and ICESat-2, and will continue until at least 2017, when NASA’s next generation ICESat-2 satellite is expected to come online.

Csatho says the new study shows why careful monitoring is critical: Given the complex nature of glacier behavior, good data is crucial to building better models.

Collaborators

Besides Csatho, Schenk and van der Veen, the project included additional researchers from the University at Buffalo, Utrecht University in The Netherlands, the Technical University of Denmark and Florida Atlantic University.

Climate capers of the past 600,000 years

The researchers remove samples from a core segment taken from Lake Van at the center for Marine environmental sciences MARUM in Bremen, where all of the cores from the PALEOVAN project are stored. -  Photo: Nadine Pickarski/Uni Bonn
The researchers remove samples from a core segment taken from Lake Van at the center for Marine environmental sciences MARUM in Bremen, where all of the cores from the PALEOVAN project are stored. – Photo: Nadine Pickarski/Uni Bonn

If you want to see into the future, you have to understand the past. An international consortium of researchers under the auspices of the University of Bonn has drilled deposits on the bed of Lake Van (Eastern Turkey) which provide unique insights into the last 600,000 years. The samples reveal that the climate has done its fair share of mischief-making in the past. Furthermore, there have been numerous earthquakes and volcanic eruptions. The results of the drilling project also provide a basis for assessing the risk of how dangerous natural hazards are for today’s population. In a special edition of the highly regarded publication Quaternary Science Reviews, the scientists have now published their findings in a number of journal articles.

In the sediments of Lake Van, the lighter-colored, lime-containing summer layers are clearly distinguishable from the darker, clay-rich winter layers — also called varves. In 2010, from a floating platform an international consortium of researchers drilled a 220 m deep sediment profile from the lake floor at a water depth of 360 m and analyzed the varves. The samples they recovered are a unique scientific treasure because the climate conditions, earthquakes and volcanic eruptions of the past 600,000 years can be read in outstanding quality from the cores.

The team of scientists under the auspices of the University of Bonn has analyzed some 5,000 samples in total. “The results show that the climate over the past hundred thousand years has been a roller coaster. Within just a few decades, the climate could tip from an ice age into a warm period,” says Doctor Thomas Litt of the University of Bonn’s Steinmann Institute and spokesman for the PALEOVAN international consortium of researchers. Unbroken continental climate archives from the ice age which encompass several hundred thousand years are extremely rare on a global scale. “There has never before in all of the Middle East and Central Asia been a continental drilling operation going so far back into the past,” says Doctor Litt. In the northern hemisphere, climate data from ice-cores drilled in Greenland encompass the last 120,000 years. The Lake Van project closes a gap in the scientific climate record.

The sediments reveal six cycles of cold and warm periods


Scientists found evidence for a total of six cycles of warm and cold periods in the sediments of Lake Van. The University of Bonn paleoecologist and his colleagues analyzed the pollen preserved in the sediments. Under a microscope they were able to determine which plants around the eastern Anatolian Lake the pollen came from. “Pollen is amazingly durable and is preserved over very long periods when protected in the sediments,” Doctor Litt explained. Insight into the age of the individual layers was gleaned through radiometric age measurements that use the decay of radioactive elements as a geologic clock. Based on the type of pollen and the age, the scientists were able to determine when oak forests typical of warm periods grew around Lake Van and when ice-age steppe made up of grasses, mugwort and goosefoot surrounded the lake.

Once they determine the composition of the vegetation present and the requirements of the plants, the scientists can reconstruct with a high degree of accuracy the temperature and amount of rainfall during different epochs. These analyses enable the team of researchers to read the varves of Lake Van like thousands of pages of an archive. With these data, the team was able to demonstrate that fluctuations in climate were due in large part to periodic changes in the Earth’s orbit parameters and the commensurate changes in solar insolation levels. However, the influence of North Atlantic currents was also evident. “The analysis of the Lake Van sediments has presented us with an image of how an ecosystem reacts to abrupt changes in climate. This fundamental data will help us to develop potential scenarios of future climate effects,” says Doctor Litt.

Risks of earthquakes and volcanic eruptions in the region of Van

Such risk assessments can also be made for other natural forces. “Deposits of volcanic ash with thicknesses of up to 10 m in the Lake Van sediments show us that approximately 270,000 years ago there was a massive eruption,” the University of Bonn paleoecologist said. The team struck some 300 different volcanic events in its drillings. Statistically, that corresponds to one explosive volcanic eruption in the region every 2000 years. Deformations in the sediment layers show that the area is subject to frequent, strong earthquakes. “The area around Lake Van is very densely populated. The data from the core samples show that volcanic activity and earthquakes present a relatively high risk for the region,” Doctor Litt says. According to media reports, in 2011 a 7.2 magnitude earthquake in the Van province claimed the lives of more than 500 people and injured more than 2,500.

Publication: “Results from the PALEOVAN drilling project: A 600,000 year long continental archive in the Near East”, Quaternary Science Reviews, Volume 104, online publication: (http://dx.doi.org/10.1016/j.quascirev.2014.09.026)

Felling pine trees to study their wind resistance

Forestry experts of the French Institute for Agricultural Research INRA together with technicians from NEIKER-Tecnalia and the Chartered Provincial Council of Bizkaia felled radiata pine specimens of different ages in order to find out their resistance to gales and observe the force the wind needs to exert to blow down these trees in the particular conditions of the Basque Country.

This experience is of great interest for the managers of forests and will help them to manage their woodlands better and incorporate the wind variable into decisions like the distribution of plantations, or the most propitious moment for felling the trees.

Professionals like timber growers in the forestry sector, foresters, forestry technicians and researchers gathered to witness the simulation from close quarters. The trees were felled with steel cables that act as the wind force and which were fitted with sensors to measure the force need to bring the trees down. Each radiata pine had been fitted with three tilt meters that recorded the degree of tilt according to the force exerted on the tree. That way it was possible to determine the resistance of the roots and the strength of the trunk, two essential parameters to find out the capacity of the tree to withstand the thrust of the wind.

The experience carried out this morning is part of the seminar ‘FORRISK: Wind damage risk in forests’, which took place in the Bizkaia Aretoa in Bilbao, and was organised by NEIKER-Tecnalia in collaboration with the Chartered Provincial Council of Bizkaia, HAZI and the Atlantic Regional Office of EFI (European Forest Institute). The seminar is part of the European project “FORRISK- Network for innovation in silviculture and integrated systems for forest risk management”. This initiative has been co-funded by the ERDF and by the Sub-Ministry for Agriculture, Fisheries and Food Policy of the Government of the Basque Autonomous Community (region). The seminar took place in Bilbao because of its status as European Forest City 2014.

The seminar was used to present the detailed map of the characteristics of the wind in the Basque Country, which timber growers and forestry managers can now avail themselves of.The map has been produced by researchers at INRA, the French Institute for Agricultural Research, who have used information from the 57 meteorological stations equipped with anemometers in the network of the Basque Meteorological Authority, Euskalmet.

A tool for estimating wind damage

Those attending the seminar also had the chance to get to know the ForestGALES computing tool that allows managers to estimate the probability of wind damage in forests. ForestGALES was originally created for Britain and has been adapted to the characteristics of the Basque geography by INRA, NEIKER-Tecnalia and HAZI technicians. This innovative application is of great use in specifying concrete actions (for example: spacing, silvicultural interventions like clearing or thinning) bearing in mind the probability of wind damage on each plot.

To get the most out of this tool, it is necessary to know the resistance of the roots and strength of the trunks of the relevant species, as well as the characteristics of the wind where the trees are growing.So today’s simulation and the Basque wind map are two fundamental components for developing the ForestGALES model.

Increase in extreme winds owing to climate change

Cyclones like Klaus (2009) and Xynthia (2010) brought down over 200,000 cubic metres of timber as they passed through the Basque Country, owing to gusts of winds in excess of 228 kilometres per hour. Predictions indicate that the frequency of extreme phenomena like these is set to increase owing to climate change. So the forestry sector needs to have information and tools that will enable it to tackle the risks resulting from the wind.

New study shows 3 abrupt pulse of CO2 during last deglaciation

A new study shows that the rise of atmospheric carbon dioxide that contributed to the end of the last ice age more than 10,000 years ago did not occur gradually, but was characterized by three “pulses” in which C02 rose abruptly.

Scientists are not sure what caused these abrupt increases, during which C02 levels rose about 10-15 parts per million – or about 5 percent per episode – over a period of 1-2 centuries. It likely was a combination of factors, they say, including ocean circulation, changing wind patterns, and terrestrial processes.

The finding is important, however, because it casts new light on the mechanisms that take the Earth in and out of ice age regimes. Results of the study, which was funded by the National Science Foundation, appear this week in the journal Nature.

“We used to think that naturally occurring changes in carbon dioxide took place relatively slowly over the 10,000 years it took to move out of the last ice age,” said Shaun Marcott, lead author on the article who conducted his study as a post-doctoral researcher at Oregon State University. “This abrupt, centennial-scale variability of CO2 appears to be a fundamental part of the global carbon cycle.”

Some previous research has hinted at the possibility that spikes in atmospheric carbon dioxide may have accelerated the last deglaciation, but that hypothesis had not been resolved, the researchers say. The key to the new finding is the analysis of an ice core from the West Antarctic that provided the scientists with an unprecedented glimpse into the past.

Scientists studying past climate have been hampered by the limitations of previous ice cores. Cores from Greenland, for example, provide unique records of rapid climate events going back 120,000 years – but high concentrations of impurities don’t allow researchers to accurately determine atmospheric carbon dioxide records. Antarctic ice cores have fewer impurities, but generally have had lower “temporal resolution,” providing less detailed information about atmospheric CO2.

However, a new core from West Antarctica, drilled to a depth of 3,405 meters in 2011 and spanning the last 68,000 years, has “extraordinary detail,” said Oregon State paleoclimatologist Edward Brook, a co-author on the Nature study and an internationally recognized ice core expert. Because the area where the core was taken gets high annual snowfall, he said, the new ice core provides one of the most detailed records of atmospheric CO2.

“It is a remarkable ice core and it clearly shows distinct pulses of carbon dioxide increase that can be very reliably dated,” Brook said. “These are some of the fastest natural changes in CO2 we have observed, and were probably big enough on their own to impact the Earth’s climate.

“The abrupt events did not end the ice age by themselves,” Brook added. “That might be jumping the gun a bit. But it is fair to say that the natural carbon cycle can change a lot faster than was previously thought – and we don’t know all of the mechanisms that caused that rapid change.”

The researchers say that the increase in atmospheric CO2 from the peak of the last ice age to complete deglaciation was about 80 parts per million, taking place over 10,000 years. Thus, the finding that 30-45 ppm of the increase happened in just a few centuries was significant.

The overall rise of atmospheric carbon dioxide during the last deglaciation was thought to have been triggered by the release of CO2 from the deep ocean – especially the Southern Ocean. However, the researchers say that no obvious ocean mechanism is known that would trigger rises of 10-15 ppm over a time span as short as one to two centuries.

“The oceans are simply not thought to respond that fast,” Brook said. “Either the cause of these pulses is at least part terrestrial, or there is some mechanism in the ocean system we don’t yet know about.”

One reason the researchers are reluctant to pin the end of the last ice age solely on CO2 increases is that other processes were taking place, according to Marcott, who recently joined the faculty of the University of Wisconsin-Madison.

“At the same time CO2 was increasing, the rate of methane in the atmosphere was also increasing at the same or a slightly higher rate,” Marcott said. “We also know that during at least two of these pulses, the Atlantic Meridional Overturning Circulation changed as well. Changes in the ocean circulation would have affected CO2 – and indirectly methane, by impacting global rainfall patterns.”

“The Earth is a big coupled system,” he added, “and there are many pieces to the puzzle. The discovery of these strong, rapid pulses of CO2 is an important piece.”

Icelandic volcano sits on massive magma hot spot

This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. -  Morten S. Riishuus, Nordic Volcanological Institute
This image shows the Holuhraun fissure eruption on the flanks of the Bárðarbunga volcano in central Iceland on Oct. 4, 2014, showing the development of a lava lake in the foreground. Vapor clouds over the lava lake are caused by degassing of volatile-rich basaltic magma. – Morten S. Riishuus, Nordic Volcanological Institute

Spectacular eruptions at Bárðarbunga volcano in central Iceland have been spewing lava continuously since Aug. 31. Massive amounts of erupting lava are connected to the destruction of supercontinents and dramatic changes in climate and ecosystems.

New research from UC Davis and Aarhus University in Denmark shows that high mantle temperatures miles beneath the Earth’s surface are essential for generating such large amounts of magma. In fact, the scientists found that the Bárðarbunga volcano lies directly above the hottest portion of the North Atlantic mantle plume.

The study, published online Oct. 5 and appearing in the November issue of Nature Geoscience, comes from Charles Lesher, professor of Earth and Planetary Science at UC Davis and a visiting professor at Aarhus University, and his former PhD student, Eric Brown, now a post-doctoral scholar at Aarhus University.

“From time to time the Earth’s mantle belches out huge quantities of magma on a scale unlike anything witnessed in historic times,” Lesher said. “These events provide unique windows into the internal working of our planet.”

Such fiery events have produced large igneous provinces throughout Earth’s history. They are often attributed to upwelling of hot, deeply sourced mantle material, or “mantle plumes.”

Recent models have dismissed the role of mantle plumes in the formation of large igneous provinces, ascribing their origin instead to chemical anomalies in the shallow mantle.

Based on the volcanic record in and around Iceland over the last 56 million years and numerical modeling, Brown and Lesher show that high mantle temperatures are essential for generating the large magma volumes that gave rise to the North Atlantic large igneous provinces bordering Greenland and northern Europe.

Their findings further substantiate the critical role of mantle plumes in forming large igneous provinces.

“Our work offers new tools to constrain the physical and chemical conditions in the mantle responsible for large igneous provinces,” Brown said. “There’s little doubt that the mantle is composed of different types of chemical compounds, but this is not the dominant factor. Rather, locally high mantle temperatures are the key ingredient.”

The research was supported by grants from the US National Science Foundation and by the Niels Bohr Professorship funded by Danish National Research Foundation.

Read the full study at http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2264.html.

Icebergs once drifted to Florida, new climate model suggests

This is a map showing the pathway taken by icebergs from Hudson Bay, Canada, to Florida. The blue colors (behind the arrows) are an actual snapshot from the authors' high resolution model showing how much less salty the water is than normal. The more blue the color the less salty it is than normal. In this case, blue all the way along the coast shows that very fresh, cold waters are flowing along the entire east coast from Hudson Bay to Florida. -  UMass Amherst
This is a map showing the pathway taken by icebergs from Hudson Bay, Canada, to Florida. The blue colors (behind the arrows) are an actual snapshot from the authors’ high resolution model showing how much less salty the water is than normal. The more blue the color the less salty it is than normal. In this case, blue all the way along the coast shows that very fresh, cold waters are flowing along the entire east coast from Hudson Bay to Florida. – UMass Amherst

Using a first-of-its-kind, high-resolution numerical model to describe ocean circulation during the last ice age about 21,000 year ago, oceanographer Alan Condron of the University of Massachusetts Amherst has shown that icebergs and meltwater from the North American ice sheet would have regularly reached South Carolina and even southern Florida. The models are supported by the discovery of iceberg scour marks on the sea floor along the entire continental shelf.

Such a view of past meltwater and iceberg movement implies that the mechanisms of abrupt climate change are more complex than previously thought, Condron says. “Our study is the first to show that when the large ice sheet over North America known as the Laurentide ice sheet began to melt, icebergs calved into the sea around Hudson Bay and would have periodically drifted along the east coast of the United States as far south as Miami and the Bahamas in the Caribbean, a distance of more than 3,100 miles, about 5,000 kilometers.”

His work, conducted with Jenna Hill of Coastal Carolina University, is described in the current advance online issue of Nature Geosciences. “Determining how far south of the subpolar gyre icebergs and meltwater penetrated is vital for understanding the sensitivity of North Atlantic Deep Water formation and climate to past changes in high-latitude freshwater runoff,” the authors say.

Hill analyzed high-resolution images of the sea floor from Cape Hatteras to Florida and identified about 400 scour marks on the seabed that were formed by enormous icebergs plowing through mud on the sea floor. These characteristic grooves and pits were formed as icebergs moved into shallower water and their keels bumped and scraped along the ocean floor.

“The depth of the scours tells us that icebergs drifting to southern Florida were at least 1,000 feet, or 300 meters thick,” says Condron. “This is enormous. Such icebergs are only found off the coast of Greenland today.”

To investigate how icebergs might have drifted as far south as Florida, Condron simulated the release of a series of glacial meltwater floods in his high-resolution ocean circulation model at four different levels for two locations, Hudson Bay and the Gulf of St. Lawrence.

Condron reports, “In order for icebergs to drift to Florida, our glacial ocean circulation model tells us that enormous volumes of meltwater, similar to a catastrophic glacial lake outburst flood, must have been discharging into the ocean from the Laurentide ice sheet, from either Hudson Bay or the Gulf of St. Lawrence.”

Further, during these large meltwater flood events, the surface ocean current off the coast of Florida would have undergone a complete, 180-degree flip in direction, so that the warm, northward flowing Gulf Stream would have been replaced by a cold, southward flowing current, he adds.

As a result, waters off the coast of Florida would have been only a few degrees above freezing. Such events would have led to the sudden appearance of massive icebergs along the east coast of the United States all the way to Florida Keys, Condron points out. These events would have been abrupt and short-lived, probably less than a year, he notes.

“This new research shows that much of the meltwater from the Greenland ice sheet may be redistributed by narrow coastal currents and circulate through subtropical regions prior to reaching the subpolar ocean. It’s a more complicated picture than we believed before,” Condron says. He and Hill say that future research on mechanisms of abrupt climate change should take into account coastal boundary currents in redistributing ice sheet runoff and subpolar fresh water.

First eyewitness accounts of mystery volcanic eruption

This eruption occurred just before the 1815 Tambora volcanic eruption which is famous for its impact on climate worldwide, with 1816 given memorable names such as ‘Eighteen-Hundred-and-Froze-to-Death’, the ‘Year of the Beggar’ and the ‘Year Without a Summer’ because of unseasonal frosts, crop failure and famine across Europe and North America. The extraordinary conditions are considered to have inspired literary works such as Byron’s ‘Darkness’ and Mary Shelley’s Frankenstein.

However, the global deterioration of the 1810s into the coldest decade in the last 500 years started six years earlier, with another large eruption. In contrast to Tambora, this so-called ‘Unknown’ eruption seemingly occurred unnoticed, with both its location and date a mystery. In fact the ‘Unknown’ eruption was only recognised in the 1990s, from tell-tale markers in Greenland and Antarctic ice that record the rare events when volcanic aerosols are so violently erupted that they reach the Earth’s stratosphere.

Working in collaboration with colleagues from the School of Earth Sciences and PhD student Alvaro Guevara-Murua, Dr Caroline Williams, from the Department of Hispanic, Portuguese and Latin American Studies, began searching historical archives for references to the event.

Dr Williams said: “I spent months combing through the vast Spanish colonial archive, but it was a fruitless search – clearly the volcano wasn’t in Latin America. I then turned to the writings of Colombian scientist Francisco José de Caldas, who served as Director of the Astronomical Observatory of Bogotá between 1805 and 1810. Finding his precise description of the effects of an eruption was a ‘Eureka’ moment.”

In February 1809 Caldas wrote about a “mystery” that included a constant, stratospheric “transparent cloud that obstructs the sun’s brilliance” over Bogotá, starting on the 11 December 1808 and seen across Colombia. He gave detailed observations, for example that the “natural fiery colour [of the sun] has changed to that of silver, so much so that many have mistaken it for the moon”; and that the weather was unusually cold, the fields covered with ice and the crops damaged by frost.

Unearthing a short account written by physician José Hipólito Unanue in Lima, Peru, describing sunset after-glows (a common atmospheric effect caused by volcanic aerosols in the stratosphere) at the same time as Caldas’ “vapours above the horizon”, enabled the researchers to verify that the atmospheric effects of the eruption were seen at the same time on both sides of the equator.

These two 19th century Latin American scientists provide the first direct observations that can be linked to the ‘Unknown’ eruption. More importantly, the accounts date the eruption to within a fortnight of 4 December 1808.

Dr Erica Hendy said: “There have to be more observations hidden away, for example in ship logs. Having a date for the eruption will now make it much easier to track these down, and maybe even pinpoint the volcano. Climate modelling of this fascinating decade will also now be more accurate because the season of the eruption determines how the aerosols disperse around the globe and where climatic effects are felt.”

Alvaro Guevara-Murua added: “This study has meant delving into many fields of research – obviously paleoclimatology and volcanology, but also 19th century meteorology and Spanish colonial history – and has also needed rigorous precision to correctly translate the words of two scientists writing 200 years ago. Giving them a voice in modern science has been a big responsibility.”

One further question remains: why are there so few historical accounts of what was clearly a significant event with wide-reaching consequences? Perhaps, Dr Williams suggests, the political environment on both sides of the Atlantic at the beginning of the nineteenth century played a part.

“The eruption coincided with the Napoleonic Wars in Europe, the Peninsular War in Spain, and with political developments in Latin America that would soon lead to the independence of almost all of Spain’s American colonies. It’s possible that, in Europe and Latin America at least, the attention of individuals who might otherwise have provided us with a record of unusual meteorological or atmospheric effects simply turned to military and political matters instead,” she said.

Scientists obtain new data on the weather 10,000 years ago from sediments of a lake in Sierra Nevada

University of Granada researchers are collecting samples in an Alpine lake in Sierra Nevada (Granada). -  UGRdivulga
University of Granada researchers are collecting samples in an Alpine lake in Sierra Nevada (Granada). – UGRdivulga

A research project which counts with the participation of the University of Granada has revealed new data on the climate change that took place in the Iberian Peninsula around the mid Holocene (around 6.000 years ago), when the amount of atmospheric dust coming from the Sahara increased. The data came from a study of the sediments found in an Alpine lake in Sierra Nevada (Granada)

This study, published in the journal Chemical Geology, is based on the sedimentation of atmospheric dust from the Sahara, a very frequent phenomenon in the South of the Iberian Peninsula. This phenomenon is easily identified currently, for instance, when a thin layer of red dust can be occasionally found on vehicles.

Scientists have studied an Alpine lake in Sierra Nevada, 3020 metres above sea level, called Rio Seco lake. They collected samples from sediments 1,5 metres deep, which represent approximately the last 11.000 years (a period known as Holocene), and they found, among other paleoclimate indicators, evidence of atmospheric dust coming from the Sahara. According to one of the researchers in this study, Antonio García-Alix Daroca, from the University of Granada, “the sedimentation of this atmospheric dust over the course of the Holocene has affected the vital cycles of the lakes in Sierra Nevada, since such dust contains a variety of nutrients and / or minerals which do not abound at such heights and which are required by certain organisms which dwell there.”

More atmospheric dust from the Sahara

This study has also revealed the existence of a relatively humid period during the early phase of the Holocene (10.000 – 6.000 years approximately). This period witnessed the onset of an aridification tendency which has lasted until our days, and it has coincided with an increase in the fall of atmospheric dust in the South of the Ibeian Peninsula, as a result of African dust storms.

“We have also detected certain climate cycles ultimately related to solar causes or the North Atlantic Oscillacion (NAO)”, according to García-Alix. “Since we do not have direct indicators of these climate and environmental changes, such as humidity and temperature data, in order to conduct this research we have resorted to indirect indicators, such as fossil polen, carbons and organic and inorganic geochemistry within the sediments”.

Has the puzzle of rapid climate change in the last ice age been solved?

During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong northwest winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful 'conveyor belt' in the world's oceans, was thus much weaker than at present, and consequently transported less heat to northern regions. -  Map: Alfred-Wegener-Institut
During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong northwest winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful ‘conveyor belt’ in the world’s oceans, was thus much weaker than at present, and consequently transported less heat to northern regions. – Map: Alfred-Wegener-Institut

During the last ice age a large part of North America was covered with a massive ice sheet up to 3km thick. The water stored in this ice sheet is part of the reason why the sea level was then about 120 meters lower than today. Young Chinese scientist Xu Zhang, lead author of the study who undertook his PhD at the Alfred Wegener Institute, explains. “The rapid climate changes known in the scientific world as Dansgaard-Oeschger events were limited to a period of time from 110,000 to 23,000 years before present. The abrupt climate changes did not take place at the extreme low sea levels, corresponding to the time of maximum glaciation 20,000 years ago, nor at high sea levels such as those prevailing today – they occurred during periods of intermediate ice volume and intermediate sea levels.” The results presented by the AWI researchers can explain the history of climate changes during glacial periods, comparing simulated model data with that retrieved from ice cores and marine sediments.

How rapid temperature changes might have occurred during times when the Northern Hemisphere ice sheets were at intermediate sizes (see schematic depictions on http://bit.ly/1uQoI70).

During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong westerly winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful “conveyor belt” in the world’s oceans, was thus much weaker than at present, and consequently transported less heat to northern regions.

During the extended cold phases the ice sheets continued to thicken. When higher ice sheets prevailed over North America, typical in periods of intermediate sea levels, the prevailing westerly winds split into two branches. The major wind field ran to the north of the so-called Laurentide Ice Sheet and ensured that the sea ice boundary off the European coast shifted to the north. Ice-free seas permit heat exchange to take place between the atmosphere and the ocean. At the same time, the southern branch of the northwesterly winds drove warmer water into the ice-free areas of the northeast Atlantic and thus amplified the transportation of heat to the north. The modified conditions stimulated enhanced circulation in the ocean. Consequently, a thicker Laurentide Ice Sheet over North America resulted in increased ocean circulation and therefore greater transportation of heat to the north. The climate in the Northern Hemisphere became dramatically warmer within a few decades until, due to the retreat of the glaciers over North America and the renewed change in wind conditions, it began to cool off again.

“Using the simulations performed with our climate model, we were able to demonstrate that the climate system can respond to small changes with abrupt climate swings,” explains Professor Gerrit Lohmann, leader of the Paleoclimate Dynamics group at the Alfred Wegener Institute, Germany. In doing so he illustrates the new study’s significance with regards to contemporary climate change. “At medium sea levels, powerful forces, such as the dramatic acceleration of polar ice cap melting, are not necessary to result in abrupt climate shifts and associated drastic temperature changes.”

At present, the extent of Arctic sea ice is far less than during the last glacial period. The Laurentide Ice Sheet, the major driving force for ocean circulation during the glacials, has also disappeared. Climate changes following the pattern of the last ice age are therefore not to be anticipated under today’s conditions.

“There are apparently some situations in which the climate system is more resistant to change while in others the system tends toward strong fluctuations,” summarises Gerrit Lohmann. “In terms of the Earth’s history, we are currently in one of the climate system’s more stable phases. The preconditions, which gave rise to rapid temperature changes during the last ice age do not exist today. But this does not mean that sudden climate changes can be excluded in the future.”