North Atlantic signalled Ice Age thaw 1,000 years before it happened, reveals new research

The Atlantic Ocean at mid-depths may have given out early warning signals – 1,000 years in advance – that the last Ice Age was going to end, scientists report today in the journal Paleoceanography.

Scientists had previously known that at the end of the last Ice Age, around 14,700 years ago, major changes occurred to the Atlantic Ocean in a period known as the Bolling-Allerod interval. During this period, as glaciers melted and the Earth warmed, the currents of the Atlantic Ocean at its deepest levels changed direction.

The researchers have analysed the chemistry of 24 ancient coral fossils from the North Atlantic Ocean to learn more about the circulation of its waters during the last Ice Age. They found that the corals recorded a high variability in the currents of the Atlantic Ocean at mid-depths, around 2km below the surface, up to 1,000 years prior to the Bolling-Allerod interval. The team suggests that these changes may have been an early warning signal that the world was poised to switch from its glacial state to the warmer world we know today, and that the changes happened first at mid-depths.

The study was carried out by researchers from Imperial College London in conjunction with academics from the Scottish Marine Institute, the University of Bristol and Caltech Division of Geology and Planetary Sciences.

Dr David Wilson, from the Department of Earth Science and Engineering at Imperial College London, said: “The world’s oceans have always been an important barometer when it comes to changes in our planet. Excitingly, the coral fossils we’ve studied are showing us that the North Atlantic Ocean at mid-depths was undergoing changes up to 1,000 years earlier than we had expected. The tantalising prospect is that this high variability may have been a signal that the last Ice Age was about to end.”

The fossil corals analysed by the team come from a species called Desmophyllum dianthus, which are often around 5cm in diameter and look like budding flowers. They typically only live for 100 years, giving the team a rare insight into what was happening to the ocean’s currents during this relatively brief time. Thousands of years ago they grew on the New England Seamounts, which are a chain of undersea mountains approximately 1000km off the east coast of the US, located at mid-depths 2km beneath the surface. This underwater area is important for understanding the North Atlantic’s currents.

While some of the corals analysed by the team come from historical collections, most have been collected by researchers from previous expeditions in 2003 and 2005 to the New England Seamounts. The researchers used deep sea robotic submergence vehicles called Hercules and Alvin to collect the ancient coral fossils.

These ancient coral fossils accumulated rare earth elements from seawater, including neodymium, which leached from rocks on land into the Atlantic Ocean and circulated in its currents, eventually ending up in the coral skeletons. Neodymium isotopes in different regions of the world have specific signatures, created by radioactive decay over billions of years. The scientists studied the chemistry of the coral fossils to determine where the neodymium isotopes had come from, giving them a glimpse into the circulation of the Atlantic Ocean at the end of the Ice Age.

Since the world’s oceans are connected by currents, the next step will see the team integrating the evidence they gathered from the North Atlantic Ocean into a picture of global changes in the mid-depths of oceans around the world. In particular, the team is interested in exploring how the Southern Ocean around Antarctica changed around the same time by analysing neodymium isotopes in a collection of Southern Ocean corals.

Antarctica: Heat comes from the deep

The Antarctic ice sheet is a giant water reservoir. The ice cap on the southern continent is on average 2,100 meters thick and contains about 70 percent of the world’s fresh water. If this ice mass were to melt completely, it could raise the global sea level by 60 meters. Therefore scientists carefully observe changes in the Antarctic. In the renowned international journal Science, researchers from Germany, the UK, the US and Japan are now publishing data according to which water temperatures, in particular on the shallow shelf seas of West Antarctica, are rising. “There are many large glaciers in the area. The elevated temperatures have accelerated the melting and sliding of these glaciers in recent decades and there are no indications that this trend is changing,” says the lead author of the study, Dr. Sunke Schmidtko from GEOMAR Helmholtz Centre for Ocean Research Kiel.

For their study, he and his colleagues of the University of East Anglia, the California Institute of Technology and the University of Hokkaido (Japan) evaluated all oceanographic data from the waters around Antarctica from 1960 to 2014 that were available in public databases. These data show that five decades ago, the water masses in the West Antarctic shelf seas were already warmer than in other parts of Antarctica, for example, in the Weddell Sea. However, the temperature difference is not constant. Since 1960, the temperatures in the West Antarctic Amundsen Sea and the Bellingshausen Sea have been rising. “Based on the data we were able to see that this shelf process is induced from the open ocean,” says Dr. Schmidtko.

Around Antarctica in greater depth along the continental slope water masses with temperatures from 0.5 to 1.5°C (33-35°F) are predominant. These temperatures are very warm for Antarctic conditions. “These waters have warmed in West Antarctica over the past 50 years. And they are significant shallower than 50 years ago,” says Schmidtko. Especially in the Amundsen Sea and Bellingshausen Sea they now increasingly spill onto the shelf and warm the shelf.

“These are the regions in which accelerated glacial melting has been observed for some time. We show that oceanographic changes over the past 50 years have probably caused this melting. If the water continues to warm, the increased penetration of warmer water masses onto the shelf will likely further accelerate this process, with an impact on the rate of global sea level rise ” explains Professor Karen Heywood from the University of East Anglia.

The scientists also draw attention to the rising up of warm water masses in the southwestern Weddell Sea. Here very cold temperatures (less than minus 1.5°C or 29°F) prevail on the shelf and a large-scale melting of shelf ice has not been observed yet. If the shoaling of warm water masses continues, it is expected that there will be major environmental changes with dramatic consequences for the Filchner or Ronne Ice Shelf, too. For the first time glaciers outside the West Antarctic could experience enhanced melting from below.

To what extent the diverse biology of the Southern Ocean is influenced by the observed changes is not fully understood. The shelf areas include spawning areas for the Antarctic krill, a shrimp species widespread in the Southern Ocean, which plays a key role in the Antarctic food chain. Research results have shown that spawning cycles could change in warmer conditions. A final assessment of the impact has not yet been made.

The exact reasons for the increase of the heating and the rising of warm water masses has not yet been completely resolved. “We suspect that they are related to large-scale variations in wind systems over the southern hemisphere. But which processes specifically play a role must be evaluated in more detail.” says Dr. Schmidtko.

West Antarctic melt rate has tripled: UC Irvine-NASA

A comprehensive, 21-year analysis of the fastest-melting region of Antarctica has found that the melt rate of glaciers there has tripled during the last decade.

The glaciers in the Amundsen Sea Embayment in West Antarctica are hemorrhaging ice faster than any other part of Antarctica and are the most significant Antarctic contributors to sea level rise. This study is the first to evaluate and reconcile observations from four different measurement techniques to produce an authoritative estimate of the amount and the rate of loss over the last two decades.

“The mass loss of these glaciers is increasing at an amazing rate,” said scientist Isabella Velicogna, jointly of the UC Irvine and NASA’s Jet Propulsion Laboratory. Velicogna is a coauthor of a paper on the results, which has been accepted for Dec. 5 publication in the journal Geophysical Research Letters.

Lead author Tyler Sutterley, a UCI doctoral candidate, and his team did the analysis to verify that the melting in this part of Antarctica is shifting into high gear. “Previous studies had suggested that this region is starting to change very dramatically since the 1990s, and we wanted to see how all the different techniques compared,” Sutterley said. “The remarkable agreement among the techniques gave us confidence that we are getting this right.”

The researchers reconciled measurements of the mass balance of glaciers flowing into the Amundsen Sea Embayment. Mass balance is a measure of how much ice the glaciers gain and lose over time from accumulating or melting snow, discharges of ice as icebergs, and other causes. Measurements from all four techniques were available from 2003 to 2009. Combined, the four data sets span the years 1992 to 2013.

The glaciers in the embayment lost mass throughout the entire period. The researchers calculated two separate quantities: the total amount of loss, and the changes in the rate of loss.

The total amount of loss averaged 83 gigatons per year (91.5 billion U.S. tons). By comparison, Mt. Everest weighs about 161 gigatons, meaning the Antarctic glaciers lost a Mt.-Everest’s-worth amount of water weight every two years over the last 21 years.

The rate of loss accelerated an average of 6.1 gigatons (6.7 billion U.S. tons) per year since 1992.

From 2003 to 2009, when all four observational techniques overlapped, the melt rate increased an average of 16.3 gigatons per year — almost three times the rate of increase for the full 21-year period. The total amount of loss was close to the average at 84 gigatons.

The four sets of observations include NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites, laser altimetry from NASA’s Operation IceBridge airborne campaign and earlier ICESat satellite, radar altimetry from the European Space Agency’s Envisat satellite, and mass budget analyses using radars and the University of Utrecht’s Regional Atmospheric Climate Model.

The scientists noted that glacier and ice sheet behavior worldwide is by far the greatest uncertainty in predicting future sea level. “We have an excellent observing network now. It’s critical that we maintain this network to continue monitoring the changes,” Velicogna said, “because the changes are proceeding very fast.”


About the University of California, Irvine:

Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 30,000 students and offers 192 degree programs. Located in one of the world’s safest and most economically vibrant communities, it’s Orange County’s second-largest employer, contributing $4.8 billion annually to the local economy.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit Additional resources for journalists may be found at

First harvest of research based on the final GOCE gravity model

This image, based on the final GOCE gravity model, charts current velocities in the Gulf Stream in meters per second. -  TUM IAPG
This image, based on the final GOCE gravity model, charts current velocities in the Gulf Stream in meters per second. – TUM IAPG

Just four months after the final data package from the GOCE satellite mission was delivered, researchers are laying out a rich harvest of scientific results, with the promise of more to come. A mission of the European Space Agency (ESA), the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) provided the most accurate measurements yet of Earth’s gravitational field. The GOCE Gravity Consortium, coordinated by the Technische Universität München (TUM), produced all of the mission’s data products including the fifth and final GOCE gravity model. On this basis, studies in geophysics, geology, ocean circulation, climate change, and civil engineering are sharpening the picture of our dynamic planet – as can be seen in the program of the 5th International GOCE User Workshop, taking place Nov. 25-28 in Paris.

The GOCE satellite made 27,000 orbits between its launch in March 2009 and re-entry in November 2013, measuring tiny variations in the gravitational field that correspond to uneven distributions of mass in Earth’s oceans, continents, and deep interior. Some 800 million observations went into the computation of the final model, which is composed of more than 75,000 parameters representing the global gravitational field with a spatial resolution of around 70 kilometers. The precision of the model improved over time, as each release incorporated more data. Centimeter accuracy has now been achieved for variations of the geoid – a gravity-derived figure of Earth’s surface that serves as a global reference for sea level and heights – in a model based solely on GOCE data.

The fifth and last data release benefited from two special phases of observation. After its first three years of operation, the satellite’s orbit was lowered from 255 to 225 kilometers, increasing the sensitivity of gravity measurements to reveal even more detailed structures of the gravity field. And through most of the satellite’s final plunge through the atmosphere, some instruments continued to report measurements that have sparked intense interest far beyond the “gravity community” – for example, among researchers concerned with aerospace engineering, atmospheric sciences, and space debris.

Moving on: new science, future missions

Through the lens of Earth’s gravitational field, scientists can image our planet in a way that is complementary to approaches that rely on light, magnetism, or seismic waves. They can determine the speed of ocean currents from space, monitor rising sea level and melting ice sheets, uncover hidden features of continental geology, even peer into the convection machine that drives plate tectonics. Topics like these dominate the more than 100 talks scheduled for the 5th GOCE User Workshop, with technical talks on measurements and models playing a smaller role. “I see this as a sign of success, that the emphasis has shifted decisively to the user community,” says Prof. Roland Pail, director of the Institute for Astronomical and Physical Geodesy at TUM.

This shift can be seen as well among the topics covered by TUM researchers, such as estimates of the elastic thickness of the continents from GOCE gravity models, mass trends in Antarctica from global gravity fields, and a scientific roadmap toward worldwide unification of height systems. For his part Pail – who was responsible for delivery of the data products – chose to speak about consolidating science requirements for a next-generation gravity field mission.

TUM has organized a public symposium on “Seeing Earth in the ‘light’ of gravity” for the 2015 Annual Meeting of the American Association for the Advancement of Science in San Jose, California. This session, featuring speakers from Australia, Canada, Denmark, France, Germany and Italy, takes place on Feb. 14, 2015. (See

This research was supported in part by the European Space Agency.


“EGM_TIM_RL05: An Independent Geoid with Centimeter Accuracy Purely Based on the GOCE Mission,” Jan Martin Brockmann, Norbert Zehentner, Eduard Höck, Roland Pail, Ina Loth, Torsten Mayer-Gürr, and Wolf-Dieter Shuh. Geophysical Research Letters 2014, doi:10.1002/2014GL061904.

Fountain of youth underlies Antarctic Mountains

Images of the ice-covered Gamburtsev Mountains revealed water-filled valleys, as seen by the cluster of vertical lines in this image. -  Tim Creyts
Images of the ice-covered Gamburtsev Mountains revealed water-filled valleys, as seen by the cluster of vertical lines in this image. – Tim Creyts

Time ravages mountains, as it does people. Sharp features soften, and bodies grow shorter and rounder. But under the right conditions, some mountains refuse to age. In a new study, scientists explain why the ice-covered Gamburtsev Mountains in the middle of Antarctica looks as young as they do.

The Gamburtsevs were discovered in the 1950s, but remained unexplored until scientists flew ice-penetrating instruments over the mountains 60 years later. As this ancient hidden landscape came into focus, scientists were stunned to see the saw-toothed and towering crags of much younger mountains. Though the Gamburtsevs are contemporaries of the largely worn-down Appalachians, they looked more like the Rockies, which are nearly 200 million years younger.

More surprising still, the scientists discovered a vast network of lakes and rivers at the mountains’ base. Though water usually speeds erosion, here it seems to have kept erosion at bay. The reason, researchers now say, has to do with the thick ice that has entombed the Gamburtsevs since Antarctica went into a deep freeze 35 million years ago.

“The ice sheet acts like an anti-aging cream,” said the study’s lead author, Timothy Creyts, a geophysicist at Columbia University’s Lamont-Doherty Earth Observatory. “It triggers a series of thermodynamic processes that have almost perfectly preserved the Gamburtsevs since ice began spreading across the continent.”

The study, which appears in the latest issue of the journal Geophysical Research Letters, explains how the blanket of ice covering the Gamburtsevs has preserved its rugged ridgelines.

Snow falling at the surface of the ice sheet draws colder temperatures down, closer to protruding peaks in a process called divergent cooling. At the same time, heat radiating from bedrock beneath the ice sheet melts ice in the deep valleys to form rivers and lakes. As rivers course along the base of the ice sheet, high pressures from the overlying ice sheet push water up valleys in reverse. This uphill flow refreezes as it meets colder temperature from above. Thus, ridgelines are cryogenically preserved.

The oldest rocks in the Gamburtsevs formed more than a billion years ago, in the collision of several continents. Though these prototype mountains eroded away, a lingering crustal root became reactivated when the supercontinent Gondwana ripped apart, starting about 200 million years ago. Tectonic forces pushed the land up again to form the modern Gamburtsevs, which range across an area the size of the Alps. Erosion again chewed away at the mountains until earth entered a cooling phase 35 million years ago. Expanding outward from the Gamburtsevs, a growing layer of ice joined several other nucleation points to cover the entire continent in ice.

The researchers say that the mechanism that stalled aging of the Gamburtsevs at higher elevations may explain why some ridgelines in the Torngat Mountains on Canada’s Labrador Peninsula and the Scandinavian Mountains running through Norway, Sweden and Finland appear strikingly untouched. Massive ice sheets covered both landscapes during the last ice age, which peaked about 20,000 years ago, but many high-altitude features bear little trace of this event.

“The authors identify a mechanism whereby larger parts of mountains ranges in glaciated regions–not just Antarctica–could be spared from erosion,” said Stewart Jamieson, a glaciologist at Durham University who was not involved in the study. “This is important because these uplands are nucleation centers for ice sheets. If they were to gradually erode during glacial cycles, they would become less effective as nucleation points during later ice ages.”

Ice sheet behavior, then, may influence climate change in ways that scientists and computer models have yet to appreciate. As study coauthor Fausto Ferraccioli, head of the British Antarctic Survey’s airborne geophysics group, put it: “If these mountains in interior East Antarctica had been more significantly eroded then the ice sheet itself
may have had a different history.”

Other Authors

Hugh Carr and Tom Jordan of the British Antarctic Survey; Robin Bell, Michael Wolovick and Nicholas Frearson of Lamont-Doherty; Kathryn Rose of University of Bristol; Detlef Damaske of Germany’s Federal Institute for Geosciences and Natural Resources; David Braaten of Kansas University; and Carol Finn of the U.S. Geological Survey.

Copies of the paper, “Freezing of ridges and water networks preserves the Gamburtsev Subglacial Mountains for millions of years,” are available from the authors.

Scientist Contact

Tim Creyts


Massive geographic change may have triggered explosion of animal life

A new analysis from The University of Texas at Austin's Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. -  Ian Dalziel
A new analysis from The University of Texas at Austin’s Institute for Geophysics suggests a deep oceanic gateway, shown in blue, developed between the Pacific and Iapetus oceans immediately before the Cambrian sea level rise and explosion of life in the fossil record, isolating Laurentia from the supercontinent Gondwanaland. – Ian Dalziel

A new analysis of geologic history may help solve the riddle of the “Cambrian explosion,” the rapid diversification of animal life in the fossil record 530 million years ago that has puzzled scientists since the time of Charles Darwin.

A paper by Ian Dalziel of The University of Texas at Austin’s Jackson School of Geosciences, published in the November issue of Geology, a journal of the Geological Society of America, suggests a major tectonic event may have triggered the rise in sea level and other environmental changes that accompanied the apparent burst of life.

The Cambrian explosion is one of the most significant events in Earth’s 4.5-billion-year history. The surge of evolution led to the sudden appearance of almost all modern animal groups. Fossils from the Cambrian explosion document the rapid evolution of life on Earth, but its cause has been a mystery.

The sudden burst of new life is also called “Darwin’s dilemma” because it appears to contradict Charles Darwin’s hypothesis of gradual evolution by natural selection.

“At the boundary between the Precambrian and Cambrian periods, something big happened tectonically that triggered the spreading of shallow ocean water across the continents, which is clearly tied in time and space to the sudden explosion of multicellular, hard-shelled life on the planet,” said Dalziel, a research professor at the Institute for Geophysics and a professor in the Department of Geological Sciences.

Beyond the sea level rise itself, the ancient geologic and geographic changes probably led to a buildup of oxygen in the atmosphere and a change in ocean chemistry, allowing more complex life-forms to evolve, he said.

The paper is the first to integrate geological evidence from five present-day continents — North America, South America, Africa, Australia and Antarctica — in addressing paleogeography at that critical time.

Dalziel proposes that present-day North America was still attached to the southern continents until sometime into the Cambrian period. Current reconstructions of the globe’s geography during the early Cambrian show the ancient continent of Laurentia — the ancestral core of North America — as already having separated from the supercontinent Gondwanaland.

In contrast, Dalziel suggests the development of a deep oceanic gateway between the Pacific and Iapetus (ancestral Atlantic) oceans isolated Laurentia in the early Cambrian, a geographic makeover that immediately preceded the global sea level rise and apparent explosion of life.

“The reason people didn’t make this connection before was because they hadn’t looked at all the rock records on the different present-day continents,” he said.

The rock record in Antarctica, for example, comes from the very remote Ellsworth Mountains.

“People have wondered for a long time what rifted off there, and I think it was probably North America, opening up this deep seaway,” Dalziel said. “It appears ancient North America was initially attached to Antarctica and part of South America, not to Europe and Africa, as has been widely believed.”

Although the new analysis adds to evidence suggesting a massive tectonic shift caused the seas to rise more than half a billion years ago, Dalziel said more research is needed to determine whether this new chain of paleogeographic events can truly explain the sudden rise of multicellular life in the fossil record.

“I’m not claiming this is the ultimate explanation of the Cambrian explosion,” Dalziel said. “But it may help to explain what was happening at that time.”


To read the paper go to

Rewriting the history of volcanic forcing during the past 2,000 years

Locations of Antarctic ice core sites used for volcanic sulfate aerosol deposition reconstruction (right); a  DRI scientist examines a freshly drilled ice core in the field before ice cores are analyzed in DRI's ultra-trace ice core analytical laboratory. -  M. Sigl
Locations of Antarctic ice core sites used for volcanic sulfate aerosol deposition reconstruction (right); a DRI scientist examines a freshly drilled ice core in the field before ice cores are analyzed in DRI’s ultra-trace ice core analytical laboratory. – M. Sigl

A team of scientists led by Michael Sigl and Joe McConnell of Nevada’s Desert Research Institute (DRI) has completed the most accurate and precise reconstruction to date of historic volcanic sulfate emissions in the Southern Hemisphere.

The new record, described in a manuscript published today in the online edition of Nature Climate Change, is derived from a large number of individual ice cores collected at various locations across Antarctica and is the first annually resolved record extending through the Common Era (the last 2,000 years of human history).

“This record provides the basis for a dramatic improvement in existing reconstructions of volcanic emissions during recent centuries and millennia,” said the report’s lead author Michael Sigl, a postdoctoral fellow and specialist in DRI’s unique ultra-trace ice core analytical laboratory, located on the Institute’s campus in Reno, Nevada.

These reconstructions are critical to accurate model simulations used to assess past natural and anthropogenic climate forcing. Such model simulations underpin environmental policy decisions including those aimed at regulating greenhouse gas and aerosol emissions to mitigate projected global warming.

Powerful volcanic eruptions are one of the most significant causes of climate variability in the past because of the large amounts of sulfur dioxide they emit, leading to formation of microscopic particles known as volcanic sulfate aerosols. These aerosols reflect more of the sun’s radiation back to space, cooling the Earth. Past volcanic events are measured through sulfate deposition records found in ice cores and have been linked to short-term global and regional cooling.

This effort brought together the most extensive array of ice core sulfate data in the world, including the West Antarctic Ice Sheet (WAIS) Divide ice core – arguably the most detailed record of volcanic sulfate in the Southern Hemisphere. In total, the study incorporated 26 precisely synchronized ice core records collected in an array of 19 sites from across Antarctica.

“This work is the culmination of more than a decade of collaborative ice core collection and analysis in our lab here at DRI,” said Joe McConnell, a DRI research professor who developed the continuous-flow analysis system used to analyze the ice cores.

McConnell, a member of several research teams that collected the cores (including the 2007-2009 Norwegian-American Scientific Traverse of East Antarctica and the WAIS Divide project that reached a depth of 3,405 meters in 2011), added, “The new record identifies 116 individual volcanic events during the last 2000 years.”

“Our new record completes the period from years 1 to 500 AD, for which there were no reconstructions previously, and significantly improves the record for years 500 to 1500 AD,” Sigl added. This new record also builds on DRI’s previous work as part of the international Past Global Changes (PAGES) effort to help reconstruct an accurate 2,000-year-long global temperature for individual continents.

This study involved collaborating researchers from the United States, Japan, Germany, Norway, Australia, and Italy. International collaborators contributed ice core samples for analysis at DRI as well as ice core measurements and climate modeling.

According to Yuko Motizuki from RIKEN (Japan’s largest comprehensive research institution), “The collaboration between DRI, National Institute of Polar Research (NIPR), and RIKEN just started in the last year, and we were very happy to be able to use the two newly obtained ice core records taken from Dome Fuji, where the volcanic signals are clearly visible. This is because precipitation on the site mainly contains stratospheric components.” Dr. Motizuki analyzed the samples collected by the Japanese Antarctic Research Expedition.

Simulations of volcanic sulfate transport performed with a coupled aerosol-climate model were compared to the ice core observations and used to investigate spatial patterns of sulfate deposition to Antarctica.

“Both observations and model results show that not all eruptions lead to the same spatial pattern of sulfate deposition,” said Matthew Toohey from the German institute GEOMAR Helmholtz Centre for Ocean Research Kiel. He added, “Spatial variability in sulfate deposition means that the accuracy of volcanic sulfate reconstructions depends strongly on having a sufficient number of ice core records from as many different regions of Antarctica as possible.”

With such an accurately synchronized and robust array, Sigl and his colleagues were able to revise reconstructions of past volcanic aerosol loading that are widely used today in climate model simulations. Most notably, the research found that the two largest volcanic eruptions in recent Earth history (Samalas in 1257 and Kuwae in 1458) deposited 30 to 35 percent less sulfate in Antarctica, suggesting that these events had a weaker cooling effect on global climate than previously thought.

Study links Greenland ice sheet collapse, sea level rise 400,000 years ago

A research team is hiking to sample the Greenland ice-sheet margin in south Greenland. -  (Photo by Kelsey Winsor, courtesy Oregon State University)
A research team is hiking to sample the Greenland ice-sheet margin in south Greenland. – (Photo by Kelsey Winsor, courtesy Oregon State University)

A new study suggests that a warming period more than 400,000 years ago pushed the Greenland ice sheet past its stability threshold, resulting in a nearly complete deglaciation of southern Greenland and raising global sea levels some 4-6 meters.

The study is one of the first to zero in on how the vast Greenland ice sheet responded to warmer temperatures during that period, which were caused by changes in the Earth’s orbit around the sun.

Results of the study, which was funded by the National Science Foundation, are being published this week in the journal Nature.

“The climate 400,000 years ago was not that much different than what we see today, or at least what is predicted for the end of the century,” said Anders Carlson, an associate professor at Oregon State University and co-author on the study. “The forcing was different, but what is important is that the region crossed the threshold allowing the southern portion of the ice sheet to all but disappear.

“This may give us a better sense of what may happen in the future as temperatures continue rising,” Carlson added.

Few reliable models and little proxy data exist to document the extent of the Greenland ice sheet loss during a period known as the Marine Isotope Stage 11. This was an exceptionally long warm period between ice ages that resulted in a global sea level rise of about 6-13 meters above present. However, scientists have been unsure of how much sea level rise could be attributed to Greenland, and how much may have resulted from the melting of Antarctic ice sheets or other causes.

To find the answer, the researchers examined sediment cores collected off the coast of Greenland from what is called the Eirik Drift. During several years of research, they sampled the chemistry of the glacial stream sediment on the island and discovered that different parts of Greenland have unique chemical features. During the presence of ice sheets, the sediments are scraped off and carried into the water where they are deposited in the Eirik Drift.

“Each terrain has a distinct fingerprint,” Carlson noted. “They also have different tectonic histories and so changes between the terrains allow us to predict how old the sediments are, as well as where they came from. The sediments are only deposited when there is significant ice to erode the terrain. The absence of terrestrial deposits in the sediment suggests the absence of ice.

“Not only can we estimate how much ice there was,” he added, “but the isotopic signature can tell us where ice was present, or from where it was missing.”

This first “ice sheet tracer” utilizes strontium, lead and neodymium isotopes to track the terrestrial chemistry.

The researchers’ analysis of the scope of the ice loss suggests that deglaciation in southern Greenland 400,000 years ago would have accounted for at least four meters – and possibly up to six meters – of global sea level rise. Other studies have shown, however, that sea levels during that period were at least six meters above present, and may have been as much as 13 meters higher.

Carlson said the ice sheet loss likely went beyond the southern edges of Greenland, though not all the way to the center, which has not been ice-free for at least one million years.

In their Nature article, the researchers contrasted the events of Marine Isotope Stage 11 with another warming period that occurred about 125,000 years ago and resulted in a sea level rise of 5-10 meters. Their analysis of the sediment record suggests that not as much of the Greenland ice sheet was lost – in fact, only enough to contribute to a sea level rise of less than 2.5 meters.

“However, other studies have shown that Antarctica may have been unstable at the time and melting there may have made up the difference,” Carlson pointed out.

The researchers say the discovery of an ice sheet tracer that can be documented through sediment core analysis is a major step to understanding the history of ice sheets in Greenland – and their impact on global climate and sea level changes. They acknowledge the need for more widespread coring data and temperature reconstructions.

“This is the first step toward more complete knowledge of the ice history,” Carlson said, “but it is an important one.”

Solving the puzzle of ice age climates

The paleoclimate record for the last ice age – a time 21,000 years ago called the “Last Glacial Maximum” (LGM) – tells of a cold Earth whose northern continents were covered by vast ice sheets. Chemical traces from plankton fossils in deep-sea sediments reveal rearranged ocean water masses, as well as extended sea ice coverage off Antarctica. Air bubbles in ice cores show that carbon dioxide in the atmosphere was far below levels seen before the Industrial Revolution.

While ice ages are set into motion by Earth’s slow wobbles in its transit around the sun, researchers agree that the solar-energy decrease alone wasn’t enough to cause this glacial state. Paleoclimatologists have been trying to explain the actual mechanism behind these changes for 200 years.

“We have all these scattered pieces of information about changes in the ocean, atmosphere, and ice cover,” says Raffaele Ferrari, the Breene M. Kerr Professor of Physical Oceanography in MIT’s Department of Earth, Atmospheric and Planetary Sciences, “and what we really want to see is how they all fit together.”

Researchers have always suspected that the answer must lie somewhere in the oceans. Powerful regulators of Earth’s climate, the oceans store vast amounts of organic carbon for thousands of years, keeping it from escaping into the atmosphere as CO2. Seawater also takes up CO2 from the atmosphere via photosynthesizing microbes at the surface, and via circulation patterns.

In a new application of ocean physics, Ferrari, along with Malte Jansen PhD ’12 of Princeton University and others at the California Institute of Technology, have found a new approach to the puzzle, which they detail in this week’s Proceedings of the National Academy of Sciences.

Lung of the ocean

The researchers focused on the Southern Ocean, which encircles Antarctica – a critical part of the carbon cycle because it provides a connection between the atmosphere and the deep ocean abyss. Ruffled by the winds whipping around Antarctica, the Southern Ocean is one of the only places where the deepest carbon-rich waters ever rise to the surface, to “breathe” CO2 in and out.

The modern-day Southern Ocean has a lot of room to breathe: Deeper, carbon-rich waters are constantly mixing into the waters above, a process enhanced by turbulence as water runs over jagged, deep-ocean ridges.

But during the LGM, permanent sea ice covered much more of the Southern Ocean’s surface. Ferrari and colleagues decided to explore how that extended sea ice would have affected the Southern Ocean’s ability to exchange CO2 with the atmosphere.

Shock to the system

This question demanded the use of the field’s accumulated knowledge of ocean physics. Using a mathematical equation that describes the wind-driven ocean circulation patterns around Antarctica, the researchers calculated the amount of water that was trapped under the sea ice by currents in the LGM. They found that the shock to the entire Earth from this added ice cover was massive: The ice covered the only spot where the deep ocean ever got to breathe. Since the sea ice capped these deep waters, the Southern Ocean’s CO2 was never exhaled to the atmosphere.

The researchers then saw a link between the sea ice change and the massive rearrangement of ocean waters that is evident in the paleoclimate record. Under the expanded sea ice, a greater amount of upwelled deep water sank back downward. Southern Ocean abyssal water eventually filled a greater volume of the entire midlevel and lower ocean – lifting the interface between upper and lower waters to a shallower depth, such that the deep, carbon-rich waters lost contact with the upper ocean. Breathing less, the ocean could store a lot more carbon.

A Southern Ocean suffocated by sea ice, the researchers say, helps explain the big drop in atmospheric CO2 during the LGM.

Dependent relationship

The study suggests a dynamic link between sea-ice expansion and the increase of ocean water insulated from the atmosphere, which the field has long treated as independent events. This insight takes on extra relevance in light of the fact that paleoclimatologists need to explain not just the very low levels of atmospheric CO2 during the last ice age, but also the fact that this happened during each of the last four glacial periods, as the paleoclimate record reveals.

Ferrari says that it never made sense to argue that independent changes drew down CO2 by the exact same amount in every ice age. “To me, that means that all the events that co-occurred must be incredibly tightly linked, without much freedom to drift beyond a narrow margin,” he says. “If there is a causality effect among the events at the start of an ice age, then they could happen in the same ratio.”

New study finds Antarctic Ice Sheet unstable at end of last ice age

This is one of many icebergs that sheared off the continent and ended up in the Scotia Sea. -  Photo courtesy of Michael Weber, University of Cologne
This is one of many icebergs that sheared off the continent and ended up in the Scotia Sea. – Photo courtesy of Michael Weber, University of Cologne

A new study has found that the Antarctic Ice Sheet began melting about 5,000 years earlier than previously thought coming out of the last ice age – and that shrinkage of the vast ice sheet accelerated during eight distinct episodes, causing rapid sea level rise.

The international study, funded in part by the National Science Foundation, is particularly important coming on the heels of recent studies that suggest destabilization of part of the West Antarctic Ice Sheet has begun.

Results of this latest study are being published this week in the journal Nature. It was conducted by researchers at University of Cologne, Oregon State University, the Alfred-Wegener-Institute, University of Hawaii at Manoa, University of Lapland, University of New South Wales, and University of Bonn.

The researchers examined two sediment cores from the Scotia Sea between Antarctica and South America that contained “iceberg-rafted debris” that had been scraped off Antarctica by moving ice and deposited via icebergs into the sea. As the icebergs melted, they dropped the minerals into the seafloor sediments, giving scientists a glimpse at the past behavior of the Antarctic Ice Sheet.

Periods of rapid increases in iceberg-rafted debris suggest that more icebergs were being released by the Antarctic Ice Sheet. The researchers discovered increased amounts of debris during eight separate episodes beginning as early as 20,000 years ago, and continuing until 9,000 years ago.

The melting of the Antarctic Ice Sheet wasn’t thought to have started, however, until 14,000 years ago.

“Conventional thinking based on past research is that the Antarctic Ice Sheet has been relatively stable since the last ice age, that it began to melt relatively late during the deglaciation process, and that its decline was slow and steady until it reached its present size,” said lead author Michael Weber, a scientist from the University of Cologne in Germany.

“The sediment record suggests a different pattern – one that is more episodic and suggests that parts of the ice sheet repeatedly became unstable during the last deglaciation,” Weber added.

The research also provides the first solid evidence that the Antarctic Ice Sheet contributed to what is known as meltwater pulse 1A, a period of very rapid sea level rise that began some 14,500 years ago, according to Peter Clark, an Oregon State University paleoclimatologist and co-author on the study.

The largest of the eight episodic pulses outlined in the new Nature study coincides with meltwater pulse 1A.

“During that time, the sea level on a global basis rose about 50 feet in just 350 years – or about 20 times faster than sea level rise over the last century,” noted Clark, a professor in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences. “We don’t yet know what triggered these eight episodes or pulses, but it appears that once the melting of the ice sheet began it was amplified by physical processes.”

The researchers suspect that a feedback mechanism may have accelerated the melting, possibly by changing ocean circulation that brought warmer water to the Antarctic subsurface, according to co-author Axel Timmermann, a climate researcher at the University of Hawaii at Manoa.

“This positive feedback is a perfect recipe for rapid sea level rise,” Timmermann said.

Some 9,000 years ago, the episodic pulses of melting stopped, the researchers say.

“Just as we are unsure of what triggered these eight pulses,” Clark said, “we don’t know why they stopped. Perhaps the sheet ran out of ice that was vulnerable to the physical changes that were taking place. However, our new results suggest that the Antarctic Ice Sheet is more unstable than previously considered.”

Today, the annual calving of icebergs from Antarctic represents more than half of the annual loss of mass of the Antarctic Ice Sheet – an estimated 1,300 to 2,000 gigatons (a gigaton is a billion tons). Some of these giant icebergs are longer than 18 kilometers.