How Earth avoided global warming, last time around

Geochemists have calculated a huge rise in atmospheric CO2 was only avoided by the formation of a vast mountain range in the middle of the ancient supercontinent, Pangea. This work is being presented to the Goldschmidt geochemistry conference in Sacramento, California.

Around 300 million years ago, plate tectonics caused the continents to aggregate into a giant supercontinent, known as “Pangea”. The sheer size of the continent meant that much of the land surface was far from the sea, and so the continent became increasingly arid due to lack of humidity. This aridity meant that rock weathering was reduced; normally, a reduction in rock weathering means that CO2 levels rise, yet in spite of this CO2 levels – which had been falling prior to the mountain formation- continued to drop, eventually undergoing the most significant drop in atmospheric CO2 of the last 500 million years. This phenomenon has remained unexplained, until now.

Now a group of French scientists from the CNRS in Toulouse have produced a model which seems to explain this contradiction. The period coincides with the rise of a vast series of mountains in the interior of Pangea, the “Hercynian” mountains”. These mountains arose in a wide belt, running from what is now the Appalachians, through to Ireland, South-Western England, through Paris and the Alps into Germany, and on further East.

According to team leader, Dr Yves Godderis (CNRS, Toulouse, France):

“The formation of these mountains meant that the rock weathering, which was threatening to slow to a walk through much of the supercontinent, was able to continue. The steep slopes of these Hercynian mountains produced physical erosion. Occurring in a humid equatorial environment, this physical erosion promoted rock weathering and removing CO2 from the atmosphere”.

He continued, “We believe that it is this which led to the dramatic drop in atmospheric levels of CO2. We estimate that if it hadn’t been for the formation of the Hercynian mountains, the atmospheric CO2 levels would have reached around 25 times the pre-industrial level, meaning that CO2 levels would have reached around 7000 ppm (parts per million). Let me put that into a present-day context; the current atmospheric CO2 levels are around 400 ppm, so this means that we would have seen CO2 rise to a level around 17 times current levels. This would obviously have had severe effects on the environment of that time. But the formation of the mountains in fact contributed to the greatest fall in atmospheric CO2 in the last 500 million years”.

The team believes that even if the mountains had not formed and CO2 levels rose sharply, this would not have led to a runaway greenhouse effect as happened on Venus, because the increasing temperatures would have led to rocks being ultimately weathered, heat compensating for the scarcity of water. Rock weathering would have removed CO2 from the atmosphere, thus stopping the rising temperatures.

“So it would eventually have been self-correcting” said Dr Godderis, “but there’s no doubt that this would have stalled Earth’s temperature at a high level for a long, long time. The world would look very different today if these mountains had not developed when they did.

This is a new model which explains some of the events in the 80 million years following the start of the Carboniferous period, and of course the ideas need to be confirmed before we can be sure that the model is completely accurate. The take-home message is that the factors affecting atmospheric CO2 over geological periods of time are complex, and our understanding is still evolving”.

Soil production breaks geologic speed record

This is a photo of the researcher hiking down the ridge at Rapid Creek to collect soil samples.  The dense bush and heavy 10 kilogram soil samples slowed uphill progress to less than 200 meters per hour. -  Andre Eger
This is a photo of the researcher hiking down the ridge at Rapid Creek to collect soil samples. The dense bush and heavy 10 kilogram soil samples slowed uphill progress to less than 200 meters per hour. – Andre Eger

Geologic time is shorthand for slow-paced. But new measurements from steep mountaintops in New Zealand show that rock can transform into soil more than twice as fast as previously believed possible.

The findings were published Jan. 16 in the early online edition of Science.

“Some previous work had argued that there were limits to soil production,” said first author Isaac Larsen, who did the work as part of his doctoral research in Earth sciences at the University of Washington. “But no one had made the measurements.”

The finding is more than just a new speed record. Rapidly eroding mountain ranges account for at least half of the total amount of the planet’s weathering and sediment production, although they occupy just a few percent of the Earth’s surface, researchers said.

So the record-breaking production at the mountaintops has implications for the entire carbon cycle by which the Earth’s crust pushes up to form mountains, crumbles, washes with rivers and rainwater to the sea, and eventually settles to the bottom to form new rock.

“This work takes the trend between soil production rates and chemical weathering rates and extends it to much higher values than had ever been previously observed,” said Larsen, now a postdoctoral researcher at the California Institute of Technology in Pasadena.

The study site in New Zealand’s Southern Alps is “an extremely rugged mountain range,” Larsen said, with rainfall of 10 meters (33 feet) per year and slopes of about 35 degrees.

To collect samples Larsen and co-author André Eger, then a graduate student at Lincoln University in New Zealand, were dropped from a helicopter onto remote mountaintops above the tree line. They would hike down to an appropriate test site and collect 20 pounds of dirt apiece, and then trek the samples back up to their base camp. The pair stayed at each of the mountaintop sites for about three days.

“I’ve worked in a lot of places,” Larsen said. “This was the most challenging fieldwork I’ve done.”

Researchers then brought soil samples back to the UW and measured the amount of Beryllium-10, an isotope that forms only at the Earth’s surface by exposure to cosmic rays. Those measurements showed soil production rates on the ridge tops ranging from 0.1 to 2.5 millimeters (1/10 of an inch) per year, and decrease exponentially with increasing soil thickness.

The peak rate is more than twice the proposed speed limit for soil production, in which geologists wondered if in places where soil is lost very quickly, the soil production just can’t keep up. In earlier work Larsen had noticed vegetation on very steep slopes and so he proposed this project to measure soil production rates at some of the steepest, wettest locations on the planet.

The new results show that soil production and weathering rates continue to increase as the landscape gets steeper and erodes faster, and suggest that other very steep locations such as the Himalayas and the mountains in Taiwan may also have very fast soil formation.

“A couple millimeters a year sounds pretty slow to anybody but a geologist,” said co-author David Montgomery, a UW professor of Earth and space sciences. “Isaac measured two millimeters of soil production a year, so it would take just a dozen years to make an inch of soil. That’s shockingly fast for a geologist, because the conventional wisdom is it takes centuries.”

The researchers believe plant roots may be responsible here. The mountain landscape was covered with low, dense vegetation. The roots of those plants reach into cracks in the rocks, helping break them apart and expose them to rainwater and chemical weathering.

“This opens up new questions about how soil production might happen in other locations, climates and environments,” Larsen said.

Glacial history affects shape and growth habit of alpine plants

Climate change reflects in the morphology and genes of plants. -  (Image: University of Basel / Jürg Stöcklin)
Climate change reflects in the morphology and genes of plants. – (Image: University of Basel / Jürg Stöcklin)

Alpine plants that survived the Ice Ages in different locations still show accrued differences in appearance and features. These findings were made by botanists from the University of Basel using two plant species. So far, it was only known that the glacial climate changes had left a «genetic fingerprint» in the DNA of alpine plants.

During the Ice Ages the European Alps were covered by a thick layer of ice. Climate fluctuations led to great changes in the occurrences of plants: They survived the cold periods in refugia on the periphery of the Alps which they then repopulated after the ice had drawn back. Such processes in the history of the earth can be detected by molecular analysis as «genetic fingerprints»: refugia and colonization routes can be identified as genetic groups within the plant species. Thus, the postglacial colonization history of alpine plants is still borne in plants alive today.

Yellow Bellflower and Creeping Avens

So far, it was unknown if the Ice Ages also affected the structure and growth habit of alpine plants. Prof. Jürg Stöcklin and his colleagues from the Institute of Botany at the University of Basel were now able to proof this phenomenon in two publications. The glacial periods have left marks on the Yellow Bellflower and the Creeping Avens that are visible to the naked eye. The ancestors of these plants survived the Ice Ages in different glacial refugia which led to the fact that today they show genetic differences in their external morphology and in important functional traits.

Notably, the Yellow Bellflower’s inflorescence and timing of flowering differ between plants from the Eastern Alps and plants from the central or western parts of the Alps. Regarding the Creeping Avens, plants from the Western Alps show significantly more offshoots but have fewer flowers than those from the Eastern Alps, while the dissection of the leaves increases from West to East.

Plants are more adaptable than assumed

The Botanists from Basel further discovered that the variations within one species are partly due to natural selection. For example, the timing of flowering in the Yellow Bellflower can be explained with variability in growing season length. Plants shorten their flowering duration as adaptation to the shorter growing seasons at higher elevations.

«The findings are important for understanding the effects that future climate changes may have on plants», says Stöcklin. «The glacial periods have positively affected the intraspecific biodiversity.» Furthermore, the scientists were able to show that plants are more adaptable than has been assumed previously. Climate changes do have an effect on the distribution of species; however, alpine plants also possess considerable skills to genetically adapt to changing environmental conditions.

Are the Alps growing or shrinking?

The high sediment load of the river shows the effect of the erosion at the Bernina Glacier in Switzerland. Image Credit: Ramon Brentführer © GFZ
The high sediment load of the river shows the effect of the erosion at the Bernina Glacier in Switzerland. Image Credit: Ramon Brentführer © GFZ

The Alps are growing just as quickly in height, as they are shrinking. This paradoxical result could be proven by a group of German and Swiss geoscientists. Due to glaciers and rivers about exactly the same amount of material is eroded from the Alp slopes as is regenerated from the deep Earth’s crust. The climatic cycles of the glacial period in Europe over the past 2.5 million years have accelerated this erosion process. In the latest volume of the science magazine “Tectonophysics” ( No. 474, S.236-249) the scientists prove that today’s uplifting of the Alps is driven by these strong climatic variations.

The formation of the Alps through the collision of the two continents Africa and Europe began about approximately 55 million years ago. This led to the upthrusting of the highest European mountains, which probably already achieved its greatest height some millions of years ago. At present, however, the Swiss Alps are no longer growing as a result of this tectonic process.

Swiss geodesists, who have already been measuring the Alps with highest accuracy for decades, have observed, however, that the Alp summits, as compared to low land, rise up to one millimetre per year. Over millions of years a considerable height would have to result. But why then are the Alps not as high as the Himalayas? Researchers from the GFZ German Research Centre for Geosciences were able to calculate that mountains eroded concurrently at almost exactly the same speed.

“This mountain erosion cannot even be determined using the highly precise methods of modern geodesy” explains Professor Friedhelm v. Blanckenburg from the GFZ. “We use the rare isotope Beryllium-10, which develops in the land surface via cosmic radiation. The quicker a surface erodes, the fewer isotopes of this type are present therein”. Therefore, von Blanckenburg, and the GFZ geoscientist, Dr. Hella Wittmann, have analysed this “cosmogenic” isotope in the sand of the Swiss Alps rivers and, thus, in the direct products of erosion.

How does it come about now that the Alps erode at the same speed that they rise? “Here pure upthrusting forces are at work. It is similar to an iceberg in the sea. If the top melts, the iceberg surfaces out of the water by almost the same share” explains von Blanckenburg. Thus this paradoxical situation with the Alps that through wind, water, glaciers and rock fall, they are being constantly finely eroded from the top but on the other hand, regenerated from the Earth’s mantle. This phenomenon, even if already postulated theoretically has now been proven for a complete mountain range for the first time.

Thus, the Alps are constantly rising, although they have been deemed “dead” in a tectonic sense. Instead of plate forces it is the strong climatic variations since the beginning of the so-called quaternary glacial before approximately 2.5 million years, to which mountain slopes in particular have been reacting so sensitively. This holds the Alps in motion.

‘Rosetta Stone’ of supervolcanoes discovered in Italian Alps

Some lower peaks in the Alps. These are in the Chamonix Valley, near the Mer de Glace.
Some lower peaks in the Alps. These are in the Chamonix Valley, near the Mer de Glace.

Scientists have found the “Rosetta Stone” of supervolcanoes, those giant pockmarks in the Earth’s surface produced by rare and massive explosive eruptions that rank among nature’s most violent events. The eruptions produce devastation on a regional scale – and possibly trigger climatic and environmental effects at a global scale.

A fossil supervolcano has been discovered in the Italian Alps’ Sesia Valley by a team led by James E. Quick, a geology professor at Southern Methodist University. The discovery will advance scientific understanding of active supervolcanoes, like Yellowstone, which is the second-largest supervolcano in the world and which last erupted 630,000 years ago.

A rare uplift of the Earth’s crust in the Sesia Valley reveals for the first time the actual “plumbing” of a supervolcano from the surface to the source of the magma deep within the Earth, according to a new research article reporting the discovery. The uplift reveals to an unprecedented depth of 25 kilometers the tracks and trails of the magma as it moved through the Earth’s crust.

Supervolcanoes, historically called calderas, are enormous craters tens of kilometers in diameter. Their eruptions are sparked by the explosive release of gas from molten rock or “magma” as it pushes its way to the Earth’s surface.

Calderas erupt hundreds to thousands of cubic kilometers of volcanic ash. Explosive events occur every few hundred thousand years. Supervolcanoes have spread lava and ash vast distances and scientists believe they may have set off catastrophic global cooling events at different periods in the Earth’s past.

Sesia Valley’s caldera erupted during the “Permian” geologic time period, say the discovery scientists. It is more than 13 kilometers in diameter.

“What’s new is to see the magmatic plumbing system all the way through the Earth’s crust,” says Quick, who previously served as program coordinator for the Volcano Hazards Program of the U.S. Geological Survey. “Now we want to start to use this discovery. We want to understand the fundamental processes that influence eruptions: Where are magmas stored prior to these giant eruptions? From what depth do the eruptions emanate?”

Sesia Valley’s unprecedented exposure of magmatic plumbing provides a model for interpreting geophysical profiles and magmatic processes beneath active calderas. The exposure also serves as direct confirmation of the cause-and-effect link between molten rock moving through the Earth’s crust and explosive volcanism.

“It might lead to a better interpretation of monitoring data and improved prediction of eruptions,” says Quick, lead author of the research article reporting the discovery, “Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km.,” in Geology.

Calderas, which typically exhibit high levels of seismic and hydrothermal activity, often swell, suggesting movement of fluids beneath the surface.

“We want to better understand the tell-tale signs that a caldera is advancing to eruption so that we can improve warnings and avoid false alerts,” Quick says.

To date, scientists have been able to study exposed caldera “plumbing” from the surface of the Earth to a depth of only 5 kilometers. Because of that, scientific understanding has been limited to geophysical data and analysis of erupted volcanic rocks. Quick likens the relevance of Sesia Valley to seeing bones and muscle inside the human body for the first time after previously envisioning human anatomy on the basis of a sonogram only.

“We think of the Sesia Valley find as the ‘Rosetta Stone’ for supervolcanoes because the depth to which rocks are exposed will help us to link the geologic and geophysical data,” Quick says. “This is a very rare spot. The base of the Earth’s crust is turned up on edge. It was created when Africa and Europe began colliding about 30 million years ago and the crust of Italy was turned on end.”

Bristish researchers introduced the term “supervolcano” in the last 10 years. Scientists have documented fewer than two dozen caldera eruptions in the last 1 million years.

Besides Yellowstone, other monumental explosions have included Lake Toba on Indonesia’s Sumatra island 74,000 years ago, which is believed to be the largest volcanic eruption on Earth in the past 25 million years.

Described as a massive climate-changing event, the Lake Toba eruption is thought to have killed an estimated 60% of humans alive at the time.

Another caldera, and one that remains active, Long Valley in California erupted about 760,000 years ago and spread volcanic ash for 600 cubic kilometers. The ash blanketed the southwestern United States, extending from California to as far west as Nebraska.

“There will be another supervolcano explosion,” Quick says. “We don’t know where. Sesia Valley could help us to predict the next event.”