Study of Chile earthquake finds new rock structure that affects earthquake rupture

Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images,  These images revealed a new and previously jknknown rock structure in the Chile fault line. -  Stephen Hicks, University of Liverpool
Scientists used computer models to track the path of seismic waves through the Earth and generate 3-D images, These images revealed a new and previously jknknown rock structure in the Chile fault line. – Stephen Hicks, University of Liverpool

Researchers from the University of Liverpool have found an unusual mass of rock deep in the active fault line beneath Chile which influenced the rupture size of a massive earthquake that struck the region in 2010.

The geological structure, which was not previously known about, is unusually dense and large for this depth in the Earth’s crust. The body was revealed using 3-D seismic images of Earth’s interior based on the monitoring of vibrations on the Pacific seafloor caused by aftershocks from the magnitude 8.8 Chile earthquake. This imaging works in a similar way to CT scans that are used in hospitals.

Analysis of the 2010 earthquake also revealed that this structure played a key role in the movement of the fault, causing the rupture to suddenly slow down.

Seismologists think that the block of rock was once part of Earth’s mantle and may have formed around 220 million years ago, during the period of time known as the Triassic.

Liverpool Seismologist, Stephen Hicks from the School of Environmental Sciences, who led the research, said: “It was previously thought that dense geological bodies in an active fault zone may cause more movement of the fault during an earthquake.”

“However, our research suggests that these blocks of rock may in fact cause the earthquake rupture to suddenly slow down. But this slowing down can generate stronger shaking at the surface, which is more damaging to man-made structures.”

“It is now clear that ancient geology plays a big role in the generation of future earthquakes and their subsequent aftershocks.”

Professor Andreas Rietbrock, head of the Earthquake Seismology and Geodynamics research group added: “This work has clearly shown the potential of 3D ‘seismic’ images to further our understanding of the earthquake rupture process.

We are currently establishing the Liverpool Earth Observatory (LEO), which will allow us together with our international partners, to carry out similar studies in other tectonically active regions such as northern Chile, Indonesia, New Zealand and the northwest coast United States. This work is vital for understanding risk exposure in these countries from both ground shaking and tsunamis.”

Chile is located on the Pacific Ring of Fire, where the sinking of tectonic plates generates many of the world’s largest earthquakes.

The 2010 magnitude 8.8 earthquake in Chile is one of the best-recorded earthquakes, giving seismologists the best insight to date into the ruptures of mega-quakes.

###

The research, funded by the Natural Environment Research Council, is published in the journal Earth and Planetary Science Letters.

Foreshock series controls earthquake rupture

A long lasting foreshock series controlled the rupture process of this year’s great earthquake near Iquique in northern Chile. The earthquake was heralded by a three quarter year long foreshock series of ever increasing magnitudes culminating in a Mw 6.7 event two weeks before the mainshock. The mainshock (magnitude 8.1) finally broke on April 1st a central piece out of the most important seismic gap along the South American subduction zone. An international research team under leadership of the GFZ German Research Centre for Geosciences now revealed that the Iquique earthquake occurred in a region where the two colliding tectonic plates where only partly locked.

The Pacific Nazca plate and the South American plate are colliding along South America’s western coast. While the Pacific sea floor submerges in an oceanic trench under the South American coast the plates get stressed until occasionally relieved by earthquakes. In about 150 years time the entire plate margin from Patagonia in the south to Panama in the north breaks once completely through in great earthquakes. This cycle is almost complete with the exception of a last segment – the seismic gap near Iquique in northern Chile. The last great earthquake in this gap occurred back in 1877. On initiative of the GFZ this gap was monitored in an international cooperation (GFZ, Institut de Physique du Globe Paris, Centro Sismologico National – Universidad de Chile, Universidad de Catolica del Norte, Antofagasta, Chile) by the Integrated Plate Boundary Observatory Chile (IPOC), with among other instruments seismographs and cont. GPS. This long and continuous monitoring effort makes the Iquique earthquake the best recorded subduction megathrust earthquake globally. The fact that data of IPOC is distributed to the scientific community in near real time, allowed this timely analysis.

Ruptures in Detail

The mainshock of magnitude 8.1 broke the 150 km long central piece of the seismic gap, leaving, however, two large segments north and south intact. GFZ scientist Bernd Schurr headed the newly published study that appeared in the lastest issue of Nature Advance Online Publication: “The foreshocks skirted around the central rupture patch of the mainshock, forming several clusters that propagated from south to north.” The long-term earthquake catalogue derived from IPOC data revealed that stresses were increasing along the plate boundary in the years before the earthquake. Hence, the plate boundary started to gradually unlock through the foreshock series under increasing stresses, until it finally broke in the Iquique earthquake. Schurr further states: “If we use the from GPS data derived locking map to calculate the convergence deficit assuming the ~6.7 cm/yr convergence rate and subtract the earthquakes known since 1877, this still adds up to a possible M 8.9 earthquake.” This applies if the entire seismic gap would break at once. However, the region of the Iquique earthquake might now form a barrier that makes it more likely that the unbroken regions north and south break in separate, smaller earthquakes.

International Field Campaign

Despite the fact that the IPOC instruments delivered continuous data before, during and after the earthquake, the GFZ HART (Hazard And Risk Team) group went into the field to meet with international colleagues to conduct additional investigations. More than a dozen researchers continue to measure on site deformation and record aftershocks in the aftermath of this great rupture. Because the seismic gap is still not closed, IPOC gets further developed. So far 20 multi-parameter stations have been deployed. These consist of seismic broadband and strong-motion sensors, continuous GPS receivers, magneto-telluric and climate sensors, as well as creepmeters, which transmit data in near real-time to Potsdam. The European Southern astronomical Observatory has also been integrated into the observation network.

Study of Chilean quake shows potential for future earthquake

Near real-time analysis of the April 1 earthquake in Iquique, Chile, showed that the 8.2 event occurred in a gap on the fault unruptured since 1877 and that the April event was not what the scientists had expected, according to an international team of geologists.

“We assumed that the area of the 1877 earthquake would eventually rupture, but all indications are that this 8.2 event was not the 8.8 event we were looking for,” said Kevin P. Furlong, professor of geophysics, Penn State. “We looked at it to see if this was the big one.”

But according to the researchers, it was not. Seismologists expect that areas of faults will react the same way over and over. However, the April earthquake was about nine times less energetic than the one in 1877 and was incapable of releasing all the stress on the fault, leaving open the possibility of another earthquake.

The Iquique earthquake took place on the northern portion of the subduction zone formed when the Nazca tectonic plate slides under the South American plate. This is one of the longest uninterrupted plate boundaries on the planet and the site of many earthquakes and volcanos. The 8.2 earthquake was foreshadowed by a systematic sequence of foreshocks recorded at 6.0, 6.5, 6.7 and 6.2 with each foreshock triggering the next until the main earthquake occurred.

These earthquakes relieved the stresses on some parts of the fault. Then the 8.2 earthquake relieved more stress, followed by a series of aftershocks in the range of 7.7. While the aftershocks did fill in some of the gaps left by the 8.2 earthquake, the large earthquake and aftershocks could not fill in the entire gap where the fault had not ruptured in a very long time. That area is unruptured and still under stress.

The foreshocks eased some of the built up stress on 60 to 100 miles of fault, and the main shock released stress on about 155 miles, but about 155 miles of fault remain unchanged, the researchers report today (Aug. 13) in Nature.

“There can still be a big earthquake there,” said Furlong. “It didn’t release the total hazard, but it told us something about this large earthquake area. That an 8.8 rupture doesn’t always happen.”

The researchers were able to do this analysis in near real time because of the availability of large computing power and previously laid groundwork.

The computing power allowed researchers to model the fault more accurately. In the past, subduction zones were modeled as if they were on a plane, but the plate that is subducting curves underneath the other plate creating a 3-dimensional fault line. The researchers used a model that accounted for this curving and so more accurately recreated the stresses on the real geology at the fault.

“One of the things the U.S. Geological Survey and we have been doing is characterizing the major tectonic settings,” said Furlong. “So when an earthquake is imminent, we don’t need a lot of time for the background.”

In essence, they are creating a library of information about earthquake faults and have completed the first level, a general set of information on areas such as Japan, South America and the Caribbean. Now they are creating the levels of north and south Japan or Chile, Peru and Ecuador.

Knowing where the old earthquake occurred, how large it was and how long ago it happened, the researchers could look at the foreshocks, see how much stress they relieved and anticipate, at least in a small way, what would happen.

“This is what we need to do in the future in near real time for decision makers,” said Furl.

Scientists discover evidence of super-fast deep earthquake

As scientists learn more about earthquakes that rupture at fault zones near the planet’s surface-and the mechanisms that trigger them-an even more intriguing earthquake mystery lies deeper in the planet.

Scientists at Scripps Institution of Oceanography at UC San Diego have discovered the first evidence that deep earthquakes, those breaking at more than 400 kilometers (250 miles) below Earth’s surface, can rupture much faster than ordinary earthquakes. The finding gives seismologists new clues about the forces behind deep earthquakes as well as fast-breaking earthquakes that strike near the surface.

Seismologists have documented a handful of these events, in which an earthquake’s rupture travels faster than the shear waves of seismic energy that it radiates. These “supershear” earthquakes have rupture speeds of four kilometers per second (an astonishing 9,000 miles per hour) or more.

In a National Science Foundation-funded study reported in the June 11, 2014, issue of the journal Science, Scripps geophysicists Zhongwen Zhan and Peter Shearer of Scripps, along with their colleagues at Caltech, discovered the first deep supershear earthquake while examining the aftershocks of a magnitude 8.3 earthquake on May 24, 2013, in the Sea of Okhotsk off the Russian mainland.

Details of a magnitude 6.7 aftershock of the event captured Zhan’s attention. Analyzing data from the IRIS (Incorporated Research Institutions for Seismology) consortium, which coordinates a global network of seismological instruments, Zhan noted that most seismometers around the world yielded similar records, all suggesting an anomalously short duration for a magnitude 6.7 earthquake.

Data from one seismometer, however, stationed closest to the event in Russia’s Kamchatka Peninsula, told a different story with intriguing details.

After closely analyzing the data, Zhan not only found that the aftershock ruptured extremely deeply at 640 kilometers (400 miles) below the earth’s surface, but its rupture velocity was extraordinary-about eight kilometers per second (five miles per second), nearly 50 percent faster than the shear wave velocity at that depth.

“For a 6.7 earthquake you would expect a duration of seven to eight seconds, but this one lasted just two seconds,” said Shearer, a geophysics professor in the Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics (IGPP) at Scripps. “This is the first definitive example of supershear rupture for a deep earthquake since previously supershear ruptures have been documented only for shallow earthquakes.”

“This finding will help us understand why deep earthquakes happen,” said Zhan. “One quarter of earthquakes occur at large depths, and some of these can be pretty big, but we still don’t understand why they happen. So this earthquake provides a new observation for deep earthquakes and high-rupture speeds.”

Zhan also believes the new information will be useful in examining ultra-fast earthquakes and their potential for impacting fault zones near the earth’s surface. Although not of supershear caliber, California’s destructive 1994 Northridge earthquake had a comparable size and geometry to that of the 6.7 Sea of Okhotsk aftershock.

“If a shallow earthquake such as Northridge goes supershear, it could cause even more shaking and possibly more damage,” said Zhan.

Longmanshen fault zone still hazardous, suggest new reports

The 60-kilometer segment of the fault northeast of the 2013 Lushan rupture is the place in the region to watch for the next major earthquake, according to research published in Seismological Research Letters (SRL). Research papers published in this special section of SRL suggest the 2008 Wenchuan earthquake triggered the magnitude 6.6 Lushan quake.

Guest edited by Huajian Yao, professor of geophysics at the University of Science and Technology of China, the special section includes eight articles that present current data, description and preliminary analysis of the Lushan event and discuss the potential of future earthquakes in the region.

More than 87,000 people were killed or went missing as a result of the 2008 magnitude 7.9 Wenchuan earthquake in China’s Sichuan province, the largest quake to hit China since 1950. In 2013, the Lushan quake occurred ~90 km to the south and caused 203 deaths, injured 11,492 and affected more than 1.5 million people.

“After the 2008 magnitude 7.9 Wenchuan earthquake along the Longmenshan fault zone in western Sichuan of China, researchers in China and elsewhere have paid particular attention to this region, seeking to understand how the seismic hazard potential changed in the southern segment of the fault and nearby faults,” said Yao. “Yet the occurrence of this magnitude 6.6 Lushan event surprised many. The challenge of understanding where and when the next big quake will occur after a devastating seismic event continues after this Lushan event, although we now have gained much more information about this area.”

Preliminary rupture details

The southern part of the Longmenshan fault zone is complex and still only moderately understood. Similar to the central segment where the 2008 Wenchuan event occurred, the southern segment, which generated the Lushan rupture, includes the Wenchuan-Maoxian fault, Beichuan-Yingxiu fault, the Pengxian-Guanxian fault and Dayi faults, a series of sub-parallel secondary faults.

Although the Lushan earthquake’s mainshock did not break to the surface, the strong shaking still caused significant damage and casualties in the epicentral region. Three papers detail the rupture process of the Lushan quake. Libo Han from the China Earthquake Administration and colleagues provide a preliminary analysis of the Lushan mainshock and two large aftershocks, which appear to have occurred in the upper crust and terminated at a depth of approximately 8 km. While the Lushan earthquake cannot be associated with any identified surface faults, Han and colleagues suggest the quake may have occurred on a blind thrust fault subparallel to the Dayi fault, which lies at and partly defines the edge of the Chengdu basin. Based on observations from extensive trenching and mapping of fault activity after both the Wenchuan and Lushan earthquakes, Chen Lichun and colleagues from the China Earthquake Administration suggest the Lushan quake spread in a “piggyback fashion” toward the Sichuan basin, but with weaker activity and lower seismogenic potential than the Wenchuan quake. And Junju Xie, from the China Earthquake Administration and Beijing University of Technology, and colleagues examined the vertical and horizontal near-source strong motion from the Mw 6.8 Lushan earthquake. The vertical ground motion is relatively weak for this event, likely due to the fact that seismic energy dissipated at the depth of 12-25 km and the rupture did not break through the ground surface.

Possible link between Lushan and Wenchuan earthquakes

Were the Lushan and Wenchuan earthquakes related? And if so, what is the relationship? Some researchers consider the Lushan quake to be a strong aftershock of the Wenchuan quake, while others see them as independent events. In this special section, researchers tackled the question from various perspectives.

To discover whether the Lushan earthquake was truly independent from the Wenchuan quake, researchers need to have an accurate picture of where the Lushan quake originated. Yong Zhang from the GFZ German Research Centre for Geosciences and the China Earthquake Administration and colleagues begin this process by confirming a new hypocenter for Lushan. To find this place where the fault first began to rupture, the researchers analyze near-fault strong-motion data (movements that took place at a distance of up to a few tens of kilometers away from the fault) as well as long distance (thousands of kilometers ) teleseismic data.

Using their newly calculated location for the hypocenter, Zhang and colleagues now agree with earlier studies that suggest the initial Lushan rupture was a circular rupture event with no predominant direction. But they note that their calculations place the major slip area in the Lushan quake about 40 to 50 kilometers apart from the southwest end of the Wenchuan quake fault. This “gap” between the two faults may hold increased seismic hazards, caution Zhang and colleagues.

Ke Jia of Beijing University and colleagues explore the relationship of the two quakes with a statistical analysis of aftershocks in the region as well as the evolution of shear stress in the lower crust and upper mantle in the broader quake region. Their analyses suggest that the Wenchuan quake did affect the Lushan quake in an immediate sense by changing the overall background seismicity in the region. If these changes in background seismicity are taken into account, the researchers calculate a 62 percent probability that Lushan is a strong aftershock of Wenchuan.

Similarly, Yanzhao Wang from the China Earthquake Administration and colleagues quantified the stress loading of area faults due to the Wenchuan quake and suggest the change in stress may have caused the Lushan quake to rupture approximately 28.4 to 59.3 years earlier than expected. They conclude that the Lushan earthquake is at least 85 percent of a delayed aftershock of the Wenchuan earthquake, rather than due solely to long-term tectonic loading.

After the Wenchuan quake, researchers immediately began calculating stress changes on the major faults surrounding the rupture zone, in part to identify where dangerous aftershocks might occur and to test how well these stress change calculations might work to predict new earthquakes. As part of these analyses, Tom Parsons of the U.S. Geological Survey and Margarita Segou of GeoAzur compared data collected from the Wenchuan and Lushan quakes with data on aftershocks and stress change in four other major earthquakes, including the M 7.4 Landers and Izmit quakes in California and Turkey, respectively, and the M 7.9 Denali quake in Alaska and the M 7.1 Canterbury quake in New Zealand.

Their comparisons reveal that strong aftershocks similar to Lushan are likely to occur where there is highest overall aftershock activity, where stress change is the greatest and on well-developed fault zones. But they also note that by these criteria, the Lushan quake would only have been predicted by stress changes, and not the clustering of aftershocks following the 2008 Wenchuan event.

Future earthquakes in this region

After Wenchuan and Lushan, where should seismologists and other look for the next big quake in the region? After the 2008 Wenchuan quake, seismologists were primed with data to help predict where and when the next rupture might be in the region. The data suggested that the Wenchuan event would increase seismic stress in the southern Longmenshan fault that was the site of the 2013 Lushan quake. But that information alone could not predict that the southern Longmenshan fault would be the next to rupture after Wenchuan, say Mian Liu of the University of Missouri and colleagues, because the Wenchuan earthquake also increased the stress on numerous others faults in the region

Additional insights can be gained from seismic moment studies, according to Liu and colleagues. Moment balancing compares how much seismic strain energy is accumulated along a fault over a certain period with the amount of strain energy released over the same period. In the case of the Longmenshan fault, there had been a slow accumulation of strain energy without release by a major seismic event for more than a millennium. After the Wenchuan quake, the southern part of the Longmenshan fault became the fault with the greatest potential for a quake. And now, after Lushan, Liu and colleagues say that the 60 kilometer-long segment of the fault northeast of the Lushan rupture is the place in the region to watch for the next major earthquake.

What drives aftershocks?

On 27 February 2010 an earthquake of magnitude 8.8 struck South-Central Chile near the town of Maule. The main shock displaced the subduction interface by up to 16 meters. Like usually after strong earthquakes a series of aftershocks occurred in the region with decreasing size over the next months. A surprising result came from an afterslip study: Up to 2 meters additional slip occurred along the plate interface within 420 days only, in a pulse like fashion and without associated seismicity. An international research group lead by GFZ analysed the main shock as well as the following postseismic phase with a dense network of instruments including more than 60 high-resolution GPS stations (Earth and Planetary Science Letters ,Dec. 01, 2013).

The aftershocks and the now found “silent” afterslip are key to understand the processes occurring after strong earthquakes. The GPS data in combination with seismological data allowed for the first time a comparative analysis: Are after-shocks triggered solely by stress transfer from the main shock or are additional mechanisms active? ?Our results suggest, that the classic view of the stress re-laxation due to aftershocks are too simple” says Jonathan Bedford from GFZ to the new observation: ?Areas with large stress transfer do not correlate with af-tershocks in all magnitude classes as hitherto assumed and stress shadows show surprisingly high seismic activity.

A conclusion is that local processes which are not detectable at the surface by GPS monitoring along the plate interface have a significant effect on the local stress field. Pressurized fluids in the crust and mantle could be the agent here. As suspected previously, the main and aftershocks might have generated perme-abilities in the source region which are explored by hydrous fluids. This effects the local stress field triggering aftershocks rather independently from the large scale, main shock induced stress transfer. The present study provides evidences for such a mechanism. Volume (3D) seismic tomography which is sensitive to fluid pressure changes in combination with GPS monitoring will allow to better monitor the evolution of such processes.

The main shock was due to a rupture of the interface between the Nasca and the South American plates. Aftershocks are associated with hazards as they can be of similar size as the main shock and, in contrast to the latter, much shallower in the crust.

Devastating long-distance impact of earthquakes

In 2006 the island of Java, Indonesia was struck by a devastating earthquake followed by the onset of a mud eruption to the east, flooding villages over several square kilometers and that continues to erupt today. Until now, researchers believed the earthquake was too far from the mud volcano to trigger the eruption. Geophysicists at the University of Bonn, Germany and ETH Zurich, Switzerland use computer-based simulations to show that such triggering is possible over long distances. The results have been published in “Nature Geoscience.”

On May 27, 2006 the ground of the Indonesian island Java was shaking with a magnitude 6.3 earthquake. The epicenter was located 25 km southwest of the city of Yogyakarta and initiated at a depth of 12 km. The earthquake took thousands of lives, injured ten thousand and destroyed buildings and homes. 47 hours later, about 250 km from the earthquake hypocenter, a mud volcano formed that came to be known as “Lusi”, short for “Lumpur Sidoarjo”. Hot mud erupted in the vicinity of an oil drilling-well, shooting mud up to 50 m into the sky and flooding the area. Scientists expect the mud volcano to be active for many more years.

Eruption of mud volcano has natural cause

Was the eruption of the mud triggered by natural events or was it man-made by the nearby exploration-well? Geophysicists at the University of Bonn, Germany and at ETH Zürich, Switzerland investigated this question with numerical wave-propagation experiments. “Many researchers believed that the earthquake epicenter was too far from Lusi to have activated the mud volcano,” says Prof. Dr. Stephen A. Miller from the department of Geodynamics at the University of Bonn. However, using their computer simulations that include the geological features of the Lusi subsurface, the team of Stephen Miller concluded that the earthquake was the trigger, despite the long distance.

The overpressured solid mud layer was trapped between layers with different acoustic properties, and this system was shaken from the earthquake and aftershocks like a bottle of champagne. The key, however, is the reflections provided by the dome-shaped geology underneath Lusi that focused the seismic waves of the earthquakes like the echo inside a cave. Prof. Stephen Miller explains: “Our simulations show that the dome-shaped structure with different properties focused seismic energy into the mud layer and could very well have liquified the mud that then injected into nearby faults.”

Previous studies would have underestimated the energy of the seismic waves, as ground motion was only considered at the surface. However, geophysicists at the University of Bonn suspect that those were much less intense than at depth. The dome-like structure “kept” the seismic waves at depth and damped those that reached the surface. “This was actually a lower estimate of the focussing effect because only one wave cycle was input. This effect increases with each wave cycle because of the reducing acoustic impedance of the pressurizing mud layer”. In response to claims that the reported highest velocity layer used in the modeling is a measurement artifact, Miller says “that does not change our conclusions because this effect will occur whenever a layer of low acoustic impedance is sandwiched between high impedance layers, irrespective of the exact values of the impedances. And the source of the Lusi mud was the inside of the sandwich.”

It has already been proposed that a tectonic fault is connecting Lusi to a 15 km distant volcanic system. Prof. Miller explains “This connection probably supplies the mud volcano with heat and fluids that keep Lusi erupting actively up to today”, explains Miller.

With their publication, scientists from Bonn and Zürich point out, that earthquakes can trigger processes over long distances, and this focusing effect may apply to other hydrothermal and volcanic systems. Stephen Miller concludes: “Being a geological rarity, the mud volcano may contribute to a better understanding of triggering processes and relationships between seismic and volcanic activity.” Miller also adds “maybe this work will settle the long-standing controversy and focus instead on helping those affected.” The island of Java is part of the so called Pacific Ring of Fire, a volcanic belt which surrounds the entire Pacific Ocean. Here, oceanic crust is subducted underneath oceanic and continental tectonic plates, leading to melting of crustal material at depth. The resulting magma uprises and is feeding numerous volcanoes.

Measuring the hazards of global aftershock

The entire world becomes an aftershock zone after a massive magnitude (M) 7 or larger earthquake-but what hazard does this pose around the planet? Researchers are working to extend their earthquake risk estimates over a global scale, as they become better at forecasting the impact of aftershocks at a local and regional level.

There is little doubt that surface waves from a large, M≥7 earthquake can distort fault zones and volcanic centers as they pass through the Earth’s crust, and these waves could trigger seismic activity. According to the Tom Parsons, seismologist with the U.S. Geological Survey, global surveys suggest that there is a significant rate increase in global seismic activity during and in the 45 minutes after a M≥7 quake across all kinds of geologic settings. But it is difficult to find strong evidence that surface waves from these events immediately trigger M>5 earthquakes, and these events may be relatively rare. Nevertheless, seismologists would like to be able to predict the frequency of large triggered quakes in this global aftershock zone and associated hazard.

Studies of hundreds of M≥7 mainshock earthquake effects in 21 different regions around the world has provided some initial insights into how likely a damaging global aftershock might be. Initial results show that remote triggering has occurred at least once in about half of the regions studied during the past 30 years. Larger (M>5) global aftershocks appear to be delayed by several hours as compared with their lower magnitude counterparts. Parsons suggests that local seismic networks can monitor the rate of seismic activity immediately after a global mainshock quake, with the idea that a vigorous uptick in activity could signal a possible large aftershock.

Parsons presented his research at the annual meeting of the Seismological Society of America, which is an international scientific society devoted to the advancement of seismology and the understanding of earthquakes for the benefit of society. It publishes the prestigious peer-reviewed journal BSSA – the Bulletin of the Seismological Society of America – and the bimonthly Seismological Research Letters, which serves as a general forum for informal communication among seismologists and those interested in seismology and related disciplines.

Mine disaster: Hundreds of aftershocks

A study by University of Utah mining engineers and seismologists found 2,189 suspected seismic events before and after Utah's deadly Crandall Canyon coal mine collapse in 2007, and 1,328 of those events have a high probability of being real: 759 seismic events before the collapse (many related to mining) and 569 aftershocks (some related to rescue efforts). The high-probability events shown here reveal seismic activity clustered in three areas, two of which already were known: near the east end of the mine
(right) and where miners were working, toward the west end of the mine (left of center).  But the third cluster, at the mine's west end (far left) was revealed by the new study. It shows the collapse was at least as big and possibly larger than a 2008 University of Utah study that revealed the collapse extended from the east part of the mine to the area where miners were working. For comparison, see other map. -  Tex Kubacki, University of Utah.
A study by University of Utah mining engineers and seismologists found 2,189 suspected seismic events before and after Utah’s deadly Crandall Canyon coal mine collapse in 2007, and 1,328 of those events have a high probability of being real: 759 seismic events before the collapse (many related to mining) and 569 aftershocks (some related to rescue efforts). The high-probability events shown here reveal seismic activity clustered in three areas, two of which already were known: near the east end of the mine
(right) and where miners were working, toward the west end of the mine (left of center). But the third cluster, at the mine’s west end (far left) was revealed by the new study. It shows the collapse was at least as big and possibly larger than a 2008 University of Utah study that revealed the collapse extended from the east part of the mine to the area where miners were working. For comparison, see other map. – Tex Kubacki, University of Utah.

A new University of Utah study has identified hundreds of previously unrecognized small aftershocks that happened after Utah’s deadly Crandall Canyon mine collapse in 2007. The aftershocks suggest the collapse was as big – and perhaps bigger – than shown in another study by the university in 2008.

Mapping out the locations of the aftershocks “helps us better delineate the extent of the collapse at Crandall canyon. It’s gotten bigger,” says Tex Kubacki, a University of Utah master’s student in mining engineering.

“We can see now that, prior to the collapse, the seismicity was occurring where the mining was taking place, and that after the collapse, the seismicity migrated to both ends of the collapse zone,” including the mine’s west end, he adds.

Kubacki was scheduled to present the findings Friday in Salt Lake City during the Seismological Society of America’s 2013 annual meeting.

Six coal miners died in the Aug. 6, 2007 mine collapse, and three rescuers died 10 days later. The mine’s owner initially blamed the collapse on an earthquake, but the University of Utah Seismograph Stations said it was the collapse itself, not an earthquake, that registered on seismometers.

A 2008 study by University of Utah seismologist Jim Pechmann found the epicenter of the collapse was near where the miners were working, and aftershocks showed the collapse area covered 50 acres, four times larger than originally thought, extending from crosscut 120 on the east to crosscut 143 on the west, where miners worked. A crosscut is a north-south tunnel intersecting the mine’s main east-west tunnels.

In the new study, the collapse area “looks like it goes farther west – to the full extent of the western end of the mine, Kubacki says.

Study co-author Michael “Kim” McCarter, a University of Utah professor of mining engineering, says the findings are tentative, but “might extend the collapse farther west.” He is puzzled because “some of that is in an area where no mining had occurred.”

Kubacki says one theory is that the seismic events at the west end and some of those at the eastern end of the mine may be caused by “faulting forming along a cone of collapse” centered over the mine.

Kubacki and McCarter conducted the new study with seismologists Keith Koper and Kris Pankow of the University of Utah Seismograph Stations. McCarter and Pankow also coauthored the 2008 study.

Before the new study, researchers knew of about 55 seismic events – down to magnitude 1.6 – near the mine before and after the collapse, which measured 3.9 on the local magnitude scale and 4.1 on the “moment” magnitude scale that better reflects energy release, Kubacki says.

The new study analyzed records of seismometers closest to the mine for evidence of tremors down to magnitudes minus-1, which Kubacki says is about one-tenth the energy released by a hand grenade. He found:

  • Strong statistical evidence there were at least 759 seismic events before the mine collapse and 569 aftershocks.

  • Weak evidence there were as many as 1,022 seismic events before the collapse and 1,167 aftershocks.

“We’ve discovered up to about 2,000 previously unknown events spanning from July 26 to Aug. 30, 2007,” Kubacki says, although some of the weak-evidence events may turn out not to be real or to be unrelated to the collapse.

The seismic events found in the new study show tremors clustered in three areas: the east end of the collapse area, the area where miners were working toward the mine’s west end, and – new in this study – at the mine’s west end, beyond where miners worked.

“We have three clusters to look at and try to come up with an explanation of why there were three,” McCarter says. “They are all related to the collapse.”

Some of the tremors in the eastern cluster are related to rescue attempts and a second collapse that killed three rescuers, but some remain unexplained, he adds.

Kubacki says most of the seismic activity before the collapse was due to mining, although scientists want to investigate whether any of those small jolts might have been signs of the impending collapse. So far, however, “there is nothing measured that would have said, ‘Here’s an event [mine collapse] that’s ready to happen,” McCarter says.

Kubacki came up with the new numbers of seismic events by analyzing the records of seismometers closest to Crandall Canyon (about 12 miles away). “We took the known seismic events already in the catalog and searched for events that looked the same,” he adds. “These new events kept popping up. There are tiny events that may show up on one station but not network-wide.”

“Any understanding we can get toward learning how and why mine collapses happen is going to be of interest to the mining community,” Kubacki says.

McCarter adds: “We are looking at the Crandall Canyon event because we have accurate logs and very extensive seismic data, and that provides a way of investigating the data to see if anything could be applied to other mines to improve safety.”

Earth: Waves of disaster: Lessons from Japan and New Zealand

On Feb. 22, a magnitude-6.1 earthquake struck Christchurch, New Zealand, killing nearly 200 people and causing $12 billion in damage. About three weeks later, a massive magnitude-9.0 earthquake struck northern Honshu, Japan. The quake and tsunami killed about 30,000 people and caused an estimated $310 billion in damage. Both events are stark reminders of human vulnerability to natural disasters and provide a harsh reality check: Even technologically advanced countries with modern building codes are not immune from earthquake disasters.

Both events also offer lessons to be learned, as EARTH explores in the June features “Don’t Forget About the Christchurch Earthquake” and “Japan’s Megaquake and Killer Tsunamis.” What could have been done to prevent or mitigate the damage in both countries? And what can similar locations around the world learn? Furthermore, how did the March temblor and tsunami off the coast of Japan complicate the picture of foreshocks and aftershocks?

Discover what these events are teaching scientists about earthquakes, and read other stories on topics such as what scientists are doing to try to get ahead of the mysterious disease that’s killing bats in droves, what legacy can still be found in the sands of the D-Day beaches, and how the Japanese disaster may change the face of nuclear energy worldwide, all in the June issue. Plus, don’t miss the story about the new biofuel made from grass.