Scientists find ancient mountains that fed early life

This image shows the ancient mountain site, Brazil. -  Carlos Ganade de Araujo
This image shows the ancient mountain site, Brazil. – Carlos Ganade de Araujo

Scientists have found evidence for a huge mountain range that sustained an explosion of life on Earth 600 million years ago.

The mountain range was similar in scale to the Himalayas and spanned at least 2,500 kilometres of modern west Africa and northeast Brazil, which at that time were part of the supercontinent Gondwana.

“Just like the Himalayas, this range was eroded intensely because it was so huge. As the sediments washed into the oceans they provided the perfect nutrients for life to flourish,” said Professor Daniela Rubatto of the Research School of Earth Sciences at The Australian National University (ANU).

“Scientists have speculated that such a large mountain range must have been feeding the oceans because of the way life thrived and ocean chemistry changed at this time, and finally we have found it.”

The discovery is earliest evidence of Himalayan-scale mountains on Earth.

“Although the mountains have long since washed away, rocks from their roots told the story of the ancient mountain range’s grandeur,” said co-researcher Professor Joerg Hermann.

“The range was formed by two continents colliding. During this collision, rocks from the crust were pushed around 100 kilometres deep into the mantle, where the high temperatures and pressures formed new minerals.”

As the mountains eroded, the roots came back up to the surface, to be collected in Togo, Mali and northeast Brazil, by Brazilian co-researcher Carlos Ganade de Araujo, from the University of Sao Paolo.

Dr Ganade de Araujo recognised the samples were unique and brought the rocks to ANU where, using world-leading equipment, the research team accurately identified that the rocks were of similar age, and had been formed at similar, great depths.

The research team involved specialists from a range of different areas of Earth Science sharing their knowledge, said Professor Rubatto.

“With everyone cooperating to study tiny crystals, we have managed to discover a huge mountain range,” she said.




Video
Click on this image to view the .mp4 video
Scientists from Australian National University reveal how they found a mountain range that fed an explosion of life 600 million years ago. The range stretched 2,500 km across Gondwana from modern west Africa to Northeast Brazil. Tiny mineral crystals formed in the roots of these huge mountains were the key to reconstructing their age and size. – ANU Media

Rivers flow differently over gravel beds, study finds

River researchers used a specially constructed model to study how water flows over gravel river beds. Illinois postdoctoral researcher Gianluca Blois (left) and professor Jim Best also developed a technique to measure the water flow between the pore spaces in the river bed. -  L. Brian Stauffer
River researchers used a specially constructed model to study how water flows over gravel river beds. Illinois postdoctoral researcher Gianluca Blois (left) and professor Jim Best also developed a technique to measure the water flow between the pore spaces in the river bed. – L. Brian Stauffer

River beds, where flowing water meets silt, sand and gravel, are critical ecological zones. Yet how water flows in a river with a gravel bed is very different from the traditional model of a sandy river bed, according to a new study that compares their fluid dynamics.

The findings establish new parameters for river modeling that better represent reality, with implications for field researchers and water resource managers.

“The shallow zones where water in rivers interacts with the subsurface are critical environmentally, and how we have modeled those in the past may be radically different from reality,” said Jim Best, a professor of geology, geography and geographic information science at the University of Illinois. “If you’re a river engineer or a geomorphologist or a freshwater biologist, predicting where and when sediment transport is going to occur is very important. This study provides us with a very different set of conditions to look at those environments and potentially manage them.”

Best and postdoctoral researcher Gianluca Blois led the study at the U. of I., in collaboration with colleagues in the United Kingdom. The team published its findings in the journal Geophysical Research Letters.

The researchers used a specially constructed flume in the Ven Te Chow Hydrosystems Laboratory at Illinois to experimentally compare scenarios ranging from the traditional model of an impermeable river bottom to a completely permeable river bed – a collection of spheres that simulate gravel.

The researchers used a technique called particle image velocimetry (PIV), a widely used method for quantifying how water flows over a model river bed, pioneered at the U. of I. in the 1980s. Best and Blois developed a method to use PIV endoscopically to study, for the first time, fluid flow within the small spaces between the gravel. This allowed them to quantify flow within the river bed and link it to the stream flow above.

They found that, in the scenario that simulates a gravel bed, the patterns of flow velocity above the bed and the distribution of forces on the river bed were dramatically different from the models on which all previous work has been based. Their experimental scenarios also disproved one popular theory that explained the difference between classic models and field observations for the formation of bed topography, such as dunes.

“Bedforms formed in fine sediments are known to be substantially different from those formed in gravel beds, but we just didn’t know why,” Blois said. “People before us suggested that those differences were due to the roughness of the grains. But we introduced the bed permeability, just like real rivers. This, with our new measurement technique, allowed us to demonstrate that most of the stress variation is actually coming from fluid emerging from the permeable bed, rather than roughness.”

The maps of water flow that the experiments produced could lead to better predictive models, so that researchers can more accurately predict and study how nutrients and pollutants travel and accumulate in rivers. These new models also could provide insight into the growth and behavior of organisms that thrive in the narrow zone where river flow meets the river bed.

“For example, when salmon spawn in gravel-bed rivers, they basically make a depression in the gravel, into which they lay their eggs,” Best said. “By doing that, not only do they protect the eggs, but they create a bump in the sediment that creates a pressure distribution that would keep fine grains from going into the bed, which would be detrimental to the eggs. It’s fascinating that fish actually take advantage of these flow dynamics.”

The researchers are working with collaborators around the world to study how permeability affects turbulence above the bed, how this affects the organisms that grow in the pore spaces, and how tiny particles and dissolved substances accumulate in porous riverbeds.

“It’s going to change the way we conceptualize these systems and model them,” Blois said. “We’re trying to raise awareness of the fact that we are now able to measure the complex flow dynamics in these challenging environments, and that’s going to open up a new paradigm for river research.”

Researchers solve riddle of the rock pools

The rock goby can change both its color and brightness to match its background in just one minute. -  Alice Lown
The rock goby can change both its color and brightness to match its background in just one minute. – Alice Lown

Research from the University of Exeter has revealed that the rock goby (Gobius paganellus), an unassuming little fish commonly found in rock pools around Britain, southern Europe, and North Africa, is a master of camouflage and can rapidly change colour to conceal itself against its background.

Whether hiding from predators or from families hunting in rock pools, the rock goby can change both its colour and brightness to match its background in just one minute.

Dr Martin Stevens from the Centre for Ecology and Conservation at the University of Exeter’s Penryn Campus in Cornwall said: “Anyone who’s been rock pooling will probably have encountered rock gobies, and may even have thought they could see them change colour in buckets. Our research shows that this is the case and that rock gobies can rapidly tune their appearance to match their background.”

The researchers found that when gobies were photographed on a bright white or dark background, they could change their brightness accordingly. When photographed on coloured backgrounds they altered their colour, becoming either more red or blue.

Undertaking this rapid visual change should be a major advantage for the fish when trying to avoid predators. Gobies find themselves under intense predation pressure at low tide from birds and at high tide from larger fish. To remain concealed they must rapidly respond as they are pushed over many different backgrounds by tides and waves.

The researchers collected the gobies from Gyllyngvase beach in Falmouth, Cornwall then photographed them against different backgrounds over time to quantify the speed and extent of the colour change. The results show that the fish were capable of rapid visual change for concealment.

The colour change is driven by special cells in the fishes’ bodies called ‘chromatophores’. These are found in many animals and work to condense or spread pigments of different colour over the body, changing the appearance of the fish. This process is guided by the visual system of the goby when it moves onto a new background.

Studies of colour change for camouflage have previously been undertaken in animals including chameleons, cuttlefish, flatfish, and crabs, but rarely have studies directly quantified the changes in colour and brightness that occur, how fast this happens, and how they affect camouflage matching.

NASA study finds 1934 had worst drought of last thousand years

A new study using a reconstruction of North American drought history over the last 1,000 years found that the drought of 1934 was the driest and most widespread of the last millennium.

Using a tree-ring-based drought record from the years 1000 to 2005 and modern records, scientists from NASA and Lamont-Doherty Earth Observatory found the 1934 drought was 30 percent more severe than the runner-up drought (in 1580) and extended across 71.6 percent of western North America. For comparison, the average extent of the 2012 drought was 59.7 percent.

“It was the worst by a large margin, falling pretty far outside the normal range of variability that we see in the record,” said climate scientist Ben Cook at NASA’s Goddard Institute for Space Studies in New York. Cook is lead author of the study, which will publish in the Oct. 17 edition of Geophysical Research Letters.

Two sets of conditions led to the severity and extent of the 1934 drought. First, a high-pressure system in winter sat over the west coast of the United States and turned away wet weather – a pattern similar to that which occurred in the winter of 2013-14. Second, the spring of 1934 saw dust storms, caused by poor land management practices, suppress rainfall.

“In combination then, these two different phenomena managed to bring almost the entire nation into a drought at that time,” said co-author Richard Seager, professor at the Lamont-Doherty Earth Observatory of Columbia University in New York. “The fact that it was the worst of the millennium was probably in part because of the human role.”

According to the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change, or IPCC, climate change is likely to make droughts in North America worse, and the southwest in particular is expected to become significantly drier as are summers in the central plains. Looking back one thousand years in time is one way to get a handle on the natural variability of droughts so that scientists can tease out anthropogenic effects – such as the dust storms of 1934.

“We want to understand droughts of the past to understand to what extent climate change might make it more or less likely that those events occur in the future,” Cook said.

The abnormal high-pressure system is one lesson from the past that informs scientists’ understanding of the current severe drought in California and the western United States.

“What you saw during this last winter and during 1934, because of this high pressure in the atmosphere, is that all the wintertime storms that would normally come into places like California instead got steered much, much farther north,” Cook said. “It’s these wintertime storms that provide most of the moisture in California. So without getting that rainfall it led to a pretty severe drought.”

This type of high-pressure system is part of normal variation in the atmosphere, and whether or not it will appear in a given year is difficult to predict in computer models of the climate. Models are more attuned to droughts caused by La Niña’s colder sea surface temperatures in the Pacific Ocean, which likely triggered the multi-year Dust Bowl drought throughout the 1930s. In a normal La Niña year, the Pacific Northwest receives more rain than usual and the southwestern states typically dry out.

But a comparison of weather data to models looking at La Niña effects showed that the rain-blocking high-pressure system in the winter of 1933-34 overrode the effects of La Niña for the western states. This dried out areas from northern California to the Rockies that otherwise might have been wetter.

As winter ended, the high-pressure system shifted eastward, interfering with spring and summer rains that typically fall on the central plains. The dry conditions were exacerbated and spread even farther east by dust storms.

“We found that a lot of the drying that occurred in the spring time occurred downwind from where the dust storms originated,” Cook said, “suggesting that it’s actually the dust in the atmosphere that’s driving at least some of the drying in the spring and really allowing this drought event to spread upwards into the central plains.”

Dust clouds reflect sunlight and block solar energy from reaching the surface. That prevents evaporation that would otherwise help form rain clouds, meaning that the presence of the dust clouds themselves leads to less rain, Cook said.

“Previous work and this work offers some evidence that you need this dust feedback to explain the real anomalous nature of the Dust Bowl drought in 1934,” Cook said.

Dust storms like the ones in the 1930s aren’t a problem in North America today. The agricultural practices that gave rise to the Dust Bowl were replaced by those that minimize erosion. Still, agricultural producers need to pay attention to the changing climate and adapt accordingly, not forgetting the lessons of the past, said Seager. “The risk of severe mid-continental droughts is expected to go up over time, not down,” he said.

Researchers turn to 3-D technology to examine the formation of cliffband landscapes

This is a scene from the Colorado Plateau region of Utah. -  Dylan Ward
This is a scene from the Colorado Plateau region of Utah. – Dylan Ward

A blend of photos and technology takes a new twist on studying cliff landscapes and how they were formed. Dylan Ward, a University of Cincinnati assistant professor of geology, will present a case study on this unique technology application at The Geological Society of America’s Annual Meeting & Exposition. The meeting takes place Oct. 19-22, in Vancouver.

Ward is using a method called Structure-From-Motion Photogrammetry – computational photo image processing techniques – to study the formation of cliff landscapes in Colorado and Utah and to understand how the layered rock formations in the cliffs are affected by erosion.

To get an idea of these cliff formations, think of one of the nation’s most spectacular tourist attractions, the Grand Canyon.

“The Colorado plateau, for example, has areas with a very simple, sandstone-over-shale layered stratigraphy. We’re examining how the debris and sediment off that sandstone ends up down in the stream channels on the shale, and affects the erosion by those streams,” explains Ward. “The river cuts down through the rock, creating the cliffs. The cliffs walk back by erosion, so there’s this spectacular staircase of stratigraphy that owes its existence and form to that general process.”

Ward’s research takes a new approach to documenting the topography in very high resolution, using a new method of photogrammetry – measurement in 3-D, based on stereo photographs.

“First, we use a digital camera to take photos of the landscape from different angles. Then, we use a sophisticated imaging processing program than can take that set of photos and find the common points between the photographs. From there, we can build a 3-D computer model of that landscape. Months of fieldwork, in comparison, would only produce a fraction of the data that we produce in the computer model,” says Ward.

Ward says that ultimately, examining this piece of the puzzle will give researchers an idea as to how the broader U.S. landscape was formed.

Microfossils reveal warm oceans had less oxygen, geologists say

Assistant Professor of Earth Sciences Zunli Lu was among the researchers to release these findings. -  Syracuse University
Assistant Professor of Earth Sciences Zunli Lu was among the researchers to release these findings. – Syracuse University

Researchers in Syracuse University’s College of Arts and Sciences are pairing chemical analyses with micropaleontology—the study of tiny fossilized organisms—to better understand how global marine life was affected by a rapid warming event more than 55 million years ago.

Their findings are the subject of an article in the journal Paleoceanography (John Wiley & Sons, 2014).

“Global warming impacts marine life in complex ways, of which the loss of dissolved oxygen [a condition known as hypoxia] is a growing concern” says Zunli Lu, assistant professor of Earth sciences and a member of Syracuse’s Water Science and Engineering Initiative. “Moreover, it’s difficult to predict future deoxygenation that is induced by carbon emissions, without a good understanding of our geologic past.”

Lu says this type of deoxygenation leads to larger and thicker oxygen minimum zones (OMZs) in the world’s oceans. An OMZ is the layer of water in an ocean where oxygen saturation is at its lowest.

Much of Lu’s work revolves around the Paleocene-Eocene Thermal Maximum (PETM), a well-studied analogue for modern climate warming. Documenting the expansion of OMZs during the PETM is difficult because of the lack of a sensitive, widely applicable indicator of dissolved oxygen.

To address the problem, Lu and his colleagues have begun working with iodate, a type of iodine that exists only in oxygenated waters. By analyzing the iodine-to-calcium ratios in microfossils, they are able to estimate the oxygen levels of ambient seawater, where microorganisms once lived.

Fossil skeletons of a group of protists known as foraminiferas have long been used for paleo-environmental reconstructions. Developing an oxygenation proxy for foraminifera is important to Lu because it could enable him study the extent of OMZs “in 3-D,” since these popcorn-like organisms have been abundant in ancient and modern oceans.

“By comparing our fossil data with oxygen levels simulated in climate models, we think OMZs were much more prevalent 55 million years ago than they are today,” he says, adding that OMZs likely expanded during the PETM. “Deoxygenation, along with warming and acidification, had a dramatic effect on marine life during the PETM, prompting mass extinction on the seafloor.”

Lu thinks analytical facilities that combine climate modeling with micropaleontology will help scientists anticipate trends in ocean deoxygenation. Already, it’s been reported that modern-day OMZs, such as ones in the Eastern Pacific Ocean, are beginning to expand. “They’re natural laboratories for research,” he says, regarding the interactions between oceanic oxygen levels and climate changes.”

###

The article’s lead author is Xiaoli Zhou, a Ph.D. student of Lu’s in Syracuse’s Earth sciences department. Other coauthors are Ellen Thomas, a senior research scientist in geology and geophysics at Yale University; Ros Rickaby, professor of biogeochemistry at the University of Oxford (U.K.); and Arne Winguth, assistant professor of oceanography at The University of Texas at Arlington.

Housed in Syracuse’s College of Arts and Sciences, the Department of Earth Sciences offers graduate and undergraduate degree opportunities in environmental geology, wetland hydrogeology, crustal evolution, sedimentology, isotope geochemistry, paleobiology, paleolimnology, and global environmental change.

Scientists discover carbonate rocks are unrecognized methane sink

Since the first undersea methane seep was discovered 30 years ago, scientists have meticulously analyzed and measured how microbes in the seafloor sediments consume the greenhouse gas methane as part of understanding how the Earth works.

The sediment-based microbes form an important methane “sink,” preventing much of the chemical from reaching the atmosphere and contributing to greenhouse gas accumulation. As a byproduct of this process, the microbes create a type of rock known as authigenic carbonate, which while interesting to scientists was not thought to be involved in the processing of methane.

That is no longer the case. A team of scientists has discovered that these authigenic carbonate rocks also contain vast amounts of active microbes that take up methane. The results of their study, which was funded by the National Science Foundation, were reported today in the journal Nature Communications.

“No one had really examined these rocks as living habitats before,” noted Andrew Thurber, an Oregon State University marine ecologist and co-author on the paper. “It was just assumed that they were inactive. In previous studies, we had seen remnants of microbes in the rocks – DNA and lipids – but we thought they were relics of past activity. We didn’t know they were active.

“This goes to show how the global methane process is still rather poorly understood,” Thurber added.

Lead author Jeffrey Marlow of the California Institute of Technology and his colleagues studied samples from authigenic compounds off the coasts of the Pacific Northwest (Hydrate Ridge), northern California (Eel River Basin) and central America (the Costa Rica margin). The rocks range in size and distribution from small pebbles to carbonate “pavement” stretching dozens of square miles.

“Methane-derived carbonates represent a large volume within many seep systems and finding active methane-consuming archaea and bacteria in the interior of these carbonate rocks extends the known habitat for methane-consuming microorganisms beyond the relatively thin layer of sediment that may overlay a carbonate mound,” said Marlow, a geobiology graduate student in the lab of Victoria Orphan of Caltech.

These assemblages are also found in the Gulf of Mexico as well as off Chile, New Zealand, Africa, Europe – “and pretty much every ocean basin in the world,” noted Thurber, an assistant professor (senior research) in Oregon State’s College of Earth, Ocean, and Atmospheric Sciences.

The study is important, scientists say, because the rock-based microbes potentially may consume a huge amount of methane. The microbes were less active than those found in the sediment, but were more abundant – and the areas they inhabit are extensive, making their importance potential enormous. Studies have found that approximately 3-6 percent of the methane in the atmosphere is from marine sources – and this number is so low due to microbes in the ocean sediments consuming some 60-90 percent of the methane that would otherwise escape.

Now those ratios will have to be re-examined to determine how much of the methane sink can be attributed to microbes in rocks versus those in sediments. The distinction is important, the researchers say, because it is an unrecognized sink for a potentially very important greenhouse gas.

“We found that these carbonate rocks located in areas of active methane seeps are themselves more active,” Thurber said. “Rocks located in comparatively inactive regions had little microbial activity. However, they can quickly activate when methane becomes available.

“In some ways, these rocks are like armies waiting in the wings to be called upon when needed to absorb methane.”

The ocean contains vast amounts of methane, which has long been a concern to scientists. Marine reservoirs of methane are estimated to total more than 455 gigatons and may be as much as 10,000 gigatons carbon in methane. A gigaton is approximate 1.1 billion tons.

By contrast, all of the planet’s gas and oil deposits are thought to total about 200-300 gigatons of carbon.

A unique approach to monitoring groundwater supplies near Ohio fracking sites

This image shows a drilling rig in Carroll County, Ohio. -  Amy Townsend-Small
This image shows a drilling rig in Carroll County, Ohio. – Amy Townsend-Small

A University of Cincinnati research project is taking a groundbreaking approach to monitoring groundwater resources near fracking sites in Ohio. Claire Botner, a UC graduate student in geology, will outline the project at The Geological Society of America’s Annual Meeting & Exposition. The meeting takes place Oct. 19-22, in Vancouver.

Botner’s research is part of UC Groundwater Research of Ohio (GRO), a collaborative research project out of UC to examine the effects of fracking (hydraulic fracturing) on groundwater in the Utica Shale region of eastern Ohio. First launched in Carroll County in 2012, the GRO team of researchers is examining methane levels and origins of methane in private wells and springs before, during and after the onset of fracking. The team travels to the region to take water samples four times a year.

Amy Townsend-Small, the lead researcher for GRO and a UC assistant professor of geology, says the UC study is unique in comparison with studies on water wells in other shale-rich areas of the U.S. where fracking is taking place – such as the Marcellus Shale region of Pennsylvania.

Townsend-Small says water samples finding natural gas-derived methane in wells near Pennsylvania fracking sites were taken only after fracking had occurred, so methane levels in those wells were not documented prior to or during fracking in Pennsylvania.

Hydraulic fracturing, or fracking, involves using millions of gallons of water mixed with sand and chemicals to break up organic-rich shale to release natural gas resources.

Proponents say the practice promises a future in lower energy prices, an increase in domestic jobs and less dependence on foreign oil from unstable overseas governments.

Opponents raise concerns about increasing methane gas levels (a powerful greenhouse gas) and other contamination involving the spillover of fracking wastewater in the groundwater of shale-rich regions.

“The only way people with private groundwater will know whether or not their water is affected by fracking is through regular monitoring,” says Townsend-Small.

The Ohio samples are being analyzed by UC researchers for concentrations of methane as well as other hydrocarbons and salt, which is pulled up in the fracking water mixture from the shales. The shales are ancient ocean sediments.

Botner’s study involves testing on 22 private wells in Carroll County between November 2012 and last May. The first fracking permits were issued in the region in 2011. So far, results indicate that any methane readings in groundwater wells came from organic matter. In less than a handful of cases, the natural methane levels were relatively high, above 10 milligrams per liter. However, most of the wells carried low levels of methane.

The UC sampling has now been expanded into Columbiana, Harrison, Stark and Belmont counties in Ohio. Researchers then review data on private drinking water wells with the homeowners. “We’re working on interacting with these communities and educating them about fracking as well as gathering scientific data, which is lacking on a very sensitive issue,” says Botner. “It can also be reassuring to receive data on their water supplies from an objective, university resource.”

The team also is seeking additional funding to begin monitoring groundwater wells near wastewater injection wells, where fracking brine is deposited after the wells are drilled.

###

Funding for Botner’s research to be presented at the GSA meeting is supported by a grant from the Missouri-based Deer Creek Foundation.

Botner is among UC graduate students and faculty who are presenting more than two dozen research papers, PowerPoint presentations or poster exhibitions at the GSA meeting. The meeting draws geoscientists from around the world representing more than 40 different disciplines.

UC’s nationally ranked Department of Geology conducts field research around the world in areas spanning paleontology, Quaternary geology, geomorphology, sedimentology, stratigraphy, tectonics, environmental geology and biogeochemistry.

The Geological Society of America, founded in 1888, is a scientific society with more than 26,500 members from academia, government and industry in more than 100 countries. Through its meetings, publications and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind.

Geologists dig into science around the globe, on land and at sea

University of Cincinnati geologists will be well represented among geoscientists from around the world at The Geological Society of America’s Annual Meeting and Exposition. The meeting takes place Oct. 19-22, in Vancouver, Canada, and will feature geoscientists representing more than 40 different disciplines. The meeting will feature highlights of UC’s geological research that is taking place globally, from Chile to Costa Rica, Belize, Bulgaria, Scotland, Trinidad and a new project under development in the Canary Islands.

UC faculty and graduate students are lead or supporting authors on more than two dozen Earth Sciences-related research papers and/or PowerPoint and poster exhibitions at the GSA meeting.

The presentations also cover UC’s longtime and extensive exploration and findings in the Cincinnati Arch of the Ohio Valley, world-renowned for its treasure trove of paleontology – plant and animal fossils that were preserved when a shallow sea covered the region 450 million years ago during the Paleozoic Era.

Furthermore, in an effort to diversify the field of researchers in the Earth Sciences, a UC assistant professor of science education and geology, Christopher Atchison, was awarded funding from the National Science Foundation and the Society of Exploration Geophysics to lead a research field trip in Vancouver for students with disabilities. Graduate and undergraduate student participants will conduct the research on Oct. 18 and then join events at the GSA meeting. They’ll be guided by geoscience researchers representing the United Kingdom, New Zealand, Canada and the U.S. Those guides include Atchison and Julie Hendricks, a UC special education major from Batavia, Ohio, who will be using her expertise in American Sign Language (ASL) to assist student researchers representing Deaf and Hard of Hearing communities.

The meeting will also formally introduce Arnold Miller, UC professor of geology, as the new president-elect of the national Paleontological Society Thomas Lowell, professor of geology, is a recently elected Fellow of the Geological Society of America – a recognition for producing a substantial body of research. Lowell joins colleagues Warren Huff, professor of geology, and Lewis Owen, professor and head of the Department of Geology, as GSA Fellows.

Here are highlights of the UC research to be presented at the GSA meeting Oct. 19-22:

Staying Put or Moving On? Researchers Develop Model to Identify Migrating Patterns of Different Species

Are plant and animal species what you might call lifelong residents – they never budge from the same place? That’s a relatively common belief in ecology and paleoecology – that classes of organisms tend to stay put over millions of years and either evolve or go extinct as the environment changes. UC researchers developed a series of numerical models simulating shifting habitats in fossil regions to compare whether species changed environments when factoring geological and other changes in the fossil record. They found that geologically driven changes in the quality of the fossil record did not distort the real ecological signal, and that most species maintained their particular habitat preferences through time. They did not evolve to adapt to changing environments, but rather, they migrated, following their preferred environments. That is to say, they did not stay in place geographically but by moving, they were able to track their favored habitats. Field research for the project was conducted in New York state as well as the paleontological-rich region of Cincinnati; Dayton, Ohio, Lexington, Ky.; and Indiana. Funding for the project was supported by The Paleontological Society; The Geological Society of America; The American Museum of Natural History and the UC Geology Department’s Kenneth E. Caster Memorial Fund.

Presenter: Andrew Zaffos, UC geology doctoral student

Co-authors: Arnold Miller, Carlton Brett

Pioneering Study Provides a Better Understanding of What Southern Ohio and Central Kentucky Looked Like Hundreds of Millions of Years Ago

The end of the Ordovician period resulted in one of the largest mass extinction events in the Earth’s history. T.J. Malgieri, a UC master’s student in geology, led this study examining the limestone and shales of the Upper Ordovician Period – the geologic Grant Lake Formation covering southern Ohio and central Kentucky – to recreate how the shoreline looked some 445 million years ago. In this pioneering study of mud cracks and deposits in the rocks, the researchers discovered that the shoreline existed to the south and that the water became deeper toward the north. By determining these ecological parameters, the ramp study provides a better understanding of environments during a time of significant ecological change. Malgieri says the approach can be applied to other basins throughout the world to create depth indicators in paeloenvironments.

Presenter: T.J. Malgieri, UC geology master’s student

Co-authors: Carlton Brett, Cameron Schalbach, Christopher Aucoin, UC; James Thomka (UC, University of Akron); Benjamin Dattilo, Indiana University Purdue University Ft. Wayne

UC Researchers Take a Unique Approach to Monitoring Groundwater Supplies Near Ohio Fracking Sites

A collaborative research project out of UC is examining effects of fracking on groundwater in the Utica Shale region of eastern Ohio. First launched in Carroll County in 2012, the team of researchers is examining methane levels and origins of methane in private wells and springs before, during and after the onset of fracking. The team travels to the region to take water samples four times a year.

Presenter: Claire Botner, a UC geology master’s student

Co-author: Amy Townsend-Small, UC assistant professor of geology

Sawing Through Seagrass to Reveal Clues to the Past

Kelsy Feser, a UC doctoral student in geology, is working at several sites around St. Croix in the Virgin Islands to see if human developments impact marine life. The research focuses on shells of snails and clams that have piled up on the sea floor for thousands of years. Digging through layers of thick seagrass beds on the ocean floor, Feser can examine deeper shells that were abundant thousands of years ago and compare them to shallower layers that include living clams and snails. Early analysis indicates a greater population of potentially pollution-tolerant mussels in an area near a landfill on the island, compared with shells from much earlier time periods. Feser is doing this sea grass analysis around additional sites including tourist resorts, an oil refinery, a power plant and a marina. Funding for the research is provided by the Paleontological Society, the GSA, the American Museum of Natural History and the UC Geology Department.

Presenter: Kelsy Feser, UC geology doctoral student

Co-authors: Arnold Miller

Turning to the Present to Understand the Past

In order to properly interpret changes in climate, vegetation, or animal populations over time, it is necessary to establish a comparative baseline. Stella Mosher, a UC geology master’s student, is studying stable carbon, nitrogen, sulfur and strontium isotopes in modern vegetation from the Canary Islands in order to quantify modern climatic and environmental patterns. Her findings will provide a crucial foundation for future UC research on regional paleoclimatic and paleoenvironmental shifts.

Presenter: Stella Mosher, graduate student in geology

Co-authors: Brooke Crowley, assistant professor of geology; Yurena Yanes, research assistant professor of geology

A Study on the Impact of Sea Spray

Sulfur is an element of interest in both geology and archaeology, because it can reveal information about the diets of ancient cultures. This study takes a novel approach to studying how sea spray can affect the sulfur isotope values in plants on a small island, focusing on the island of Trinidad. Researchers collected leaves from different plant species to get their sulfur isotope value, exploring whether wind direction played a role in how plants were influenced by the marine water from sea spray. Vegetation was collected from the edges of the island to the deeply forested areas. The study found that sulfur isotope values deeper inland and on the calmer west coast were dramatically lower in indicating marine water than vegetation along the edges and the east coast. The findings can help indicate the foraging activities of humans and animals. Funding for the study was supported by the Geological Society of America, the UC Graduate Student Association and the UC Department of Geology.

Presenter: Janine Sparks, UC geology doctoral student

Co-authors: Brooke Crowley, UC assistant professor, geology/anthropology; William Gilhooly III, assistant professor, Earth Sciences, Indiana University-Purdue University Indianapolis

Proxy Wars – The Paleobiology Data Debate

For the past several decades, paleobiologists have built large databases containing information on fossil plants and animals of all geological ages to investigate the timing and extent of major changes in biodiversity – changes such as mass extinctions that have taken place throughout the history of life. Biodiversity researcher Arnold Miller says that in building these databases, it can be a challenge to accurately identify species in the geological record, so it has been common for researchers to instead study biodiversity trends using data compiled at broader levels of biological classification, including the genus level, under the assumption that these patterns are effective proxies for what would be observed among species if the data were available. Miller has been involved in construction of The Paleobiology Database, an extensive public online resource that contains global genus- and species-level data, now permitting a direct, novel look at the similarities and differences between patterns at these two levels. Miller’s discussion aims to set the record straight as to when researchers can effectively use a genus as a proxy for a species and also when it’s inappropriate. This research is funded by the NASA Astrobiology Program.

Presenter: Arnold Miller, UC professor of geology

A Novel New Method for Examining the Distribution of Pores in Rocks

Oil and gas companies take an interest in the porosity of sedimentary rocks because those open spaces can be filled with fuel resources. Companies involved with hydraulic fracturing (“fracking”) are also interested in porosity because it could be a source for storing wastewater as a result of fracking. In this unique study, UC researchers made pore-size measurements similar to those used in crystal size distribution (CSD) theory to determine distribution of pores as a function of their sizes, using thin sections of rock. In addition to providing accurate porosity distribution at a given depth, their approach can be extended to evaluate variation of pore spaces as a function of depth in a drill core, percent of pores in each size range, and pore types and pore geometry. The Texas Bureau of Economic Geology provided the rock samples used in the study. Funding for the study was supported by the Turkish Petroleum Corporation.

Presenter: Ugurlu Ibrahim, master’s student in geology

Co-author: Attila Kilinc, professor of geology

Researchers Turn to 3-D Technology to Examine the Formation of Cliffband Landscapes

A blend of photos and technology takes a new twist on studying cliff landscapes and how they were formed. The method called Structure-From-Motion Photogrammetry – computational photo image processing techniques – is used to study the formation of cliff landscapes in Colorado and Utah and to understand how the layered rock formations in the cliffs are affected by erosion.

Presenter: Dylan Ward, UC assistant professor of geology

Testing the Links Between Climate and Sedimentation in the Atacama Desert, Northern Chile

The Atacama Desert is used as an analog for understanding the surface of Mars. In some localities, there has been no activity for millions of years. UC researchers have been working along the flank of the Andes Mountains in northern Chile, and this particular examination focuses on the large deposits of sediment that are transported down the plateau and gather at the base. The researchers are finding that their samples are not reflecting the million-year-old relics previously found on such expeditions, but may indicate more youthful activity possibly resulting from climatic events. The research is supported by a $273,634 grant from the National Science Foundation to explore glacio-geomorphic constraints on the climate history of subtropical northern Chile.

Presenter: Jason Cesta, UC geology master’s student

Co-author: Dylan Ward, UC assistant professor of geology

Uncovering the Explosive Mysteries Surrounding the Manganese of Northeast Bulgaria

UC’s geology collections hold minerals from field expeditions around the world, including manganese from the Obrochishte mines of northeastern Bulgaria. Found in the region’s sedimentary rock, manganese can be added to metals such as steel to improve strength. It’s widely believed that these manganese formations were the result of ocean water composition at the time the sediments were deposited in the ocean. In this presentation, UC researchers present new information on why they believe the manganese formations resulted from volcanic eruptions, perhaps during the Rupelian stage of the geologic time scale, when bentonite clay minerals were formed. The presentation evolved from an advance class project last spring under the direction of Warren Huff, a UC professor of geology.

Presenter: Jason Cesta, UC geology master’s student

Co-authors: Warren Huff, UC professor of geology; Christopher Aucoin; Michael Harrell; Thomas Malgieri; Barry Maynard; Cameron Schwalbach; Ibrahim Ugurlu; Antony Winrod

Two UC researchers will chair sessions at the GSA meeting: Doctoral student Gary Motz will chair the session, “Topics in Paleoecology: Modern Analogues and Ancient Systems,” on Oct. 19. Matt Vrazo, also a doctoral student in geology, is chairing “Paleontology: Trace Fossils, Taphonomy and Exceptional Preservation” on Oct. 21, and will present, “Taphonomic and Ecological Controls on Eurypterid Lagerstäten: A Model for Preservation in the Mid-Paleozoic.”

###

UC’s nationally ranked Department of Geology conducts field research around the world in areas spanning paleontology, quaternary geology, geomorphology, sedimentology, stratigraphy, tectonics, environmental geology and biogeochemistry.

The Geological Society of America, founded in 1888, is a scientific society with more than 26,500 members from academia, government, and industry in more than 100 countries. Through its meetings, publications, and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind.

Past climate change and continental ice melt linked to varying CO2 levels

Scientists at the Universities of Southampton and Cardiff have discovered that a globally warm period in Earth’s geological past featured highly variable levels of CO2.

Previous studies have found that the Miocene climatic optimum, a period that extends from about 15 to 17 million years ago, was associated with big changes in both temperature and the amount of continental ice on the planet.

Now a new study, published in Paleoceanography, has found that these changes in temperature and ice volume were matched by equally dramatic shifts in atmospheric CO2.

Using more detailed records than has previously been available, scientists have shown that CO2 levels in this period reached around 500 ppm (parts per million), the same level that the Intergovernmental Panel on Climate Change (IPPC) projects for the end of the century.

Lead author Rosanna Greenop, from Ocean and Earth Science at the University of Southampton, says: “The drivers of short term, orbital-scale temperature and ice volume change during warm periods of the Earth’s history have never been analysed before. Here we are able to show that in the same way as the more recent ice ages are linked with cycles of CO2, it also plays an important role in cyclical climate changes during warm periods.

Researchers also showed that at low levels of CO2, ice volume varied strongly, but at higher levels, there was little or no additional change in volume. The authors of the study hypothesis that there must be a portion of the East Antarctic ice sheet that varies in volume at the lower end of the CO2 range. However, the absence of additional ice melt at higher CO2 levels suggests that there is also a portion of the ice sheet that remains stable at the maximum CO2 levels.

Evidence suggests that the northern Hemisphere and West Antarctic ice sheets did not exist during the warm Miocene climatic optimum.

“While we recognise that the Miocene climatic optimum is not a perfect analogue for our own warm future, the geological past does represent an actual reality that the Earth system experienced,” says the University of Southampton’s Dr Gavin Foster, co-author of the study. “As such the findings of this study have large implications for the stability of the continental ice sheets in the future. They indicate that portions of the East Antarctic ice sheet can act in a dynamic fashion, growing and shrinking in response to climate forcing.”

Co-author Caroline Lear, of Cardiff University, adds: “We tend to think of the Antarctic ice sheet as a sluggish ice sheet, but these records show that in past warm climates it has been surprisingly sensitive to natural variations in carbon dioxide levels.