Pacific plate shrinking as it cools

A map produced by scientists at the University of Nevada, Reno, and Rice University shows predicted velocities for sectors of the Pacific tectonic plate relative to points near the Pacific-Antarctic ridge, which lies in the South Pacific ocean. The researchers show the Pacific plate is contracting as younger sections of the lithosphere cool. -  Corné Kreemer and Richard Gordon
A map produced by scientists at the University of Nevada, Reno, and Rice University shows predicted velocities for sectors of the Pacific tectonic plate relative to points near the Pacific-Antarctic ridge, which lies in the South Pacific ocean. The researchers show the Pacific plate is contracting as younger sections of the lithosphere cool. – Corné Kreemer and Richard Gordon

The tectonic plate that dominates the Pacific “Ring of Fire” is not as rigid as many scientists assume, according to researchers at Rice University and the University of Nevada.

Rice geophysicist Richard Gordon and his colleague, Corné Kreemer, an associate professor at the University of Nevada, Reno, have determined that cooling of the lithosphere — the outermost layer of Earth — makes some sections of the Pacific plate contract horizontally at faster rates than others and cause the plate to deform.

Gordon said the effect detailed this month in Geology is most pronounced in the youngest parts of the lithosphere — about 2 million years old or less — that make up some the Pacific Ocean’s floor. They predict the rate of contraction to be 10 times faster than older parts of the plate that were created about 20 million years ago and 80 times faster than very old parts of the plate that were created about 160 million years ago.

The tectonic plates that cover Earth’s surface, including both land and seafloor, are in constant motion; they imperceptibly surf the viscous mantle below. Over time, the plates scrape against and collide into each other, forming mountains, trenches and other geological features.

On the local scale, these movements cover only inches per year and are hard to see. The same goes for deformations of the type described in the new paper, but when summed over an area the size of the Pacific plate, they become statistically significant, Gordon said.

The new calculations showed the Pacific plate is pulling away from the North American plate a little more — approximately 2 millimeters a year — than the rigid-plate theory would account for, he said. Overall, the plate is moving northwest about 50 millimeters a year.

“The central assumption in plate tectonics is that the plates are rigid, but the studies that my colleagues and I have been doing for the past few decades show that this central assumption is merely an approximation — that is, the plates are not rigid,” Gordon said. “Our latest contribution is to specify or predict the nature and rate of deformation over the entire Pacific plate.”

The researchers already suspected cooling had a role from their observation that the 25 large and small plates that make up Earth’s shell do not fit together as well as the “rigid model” assumption would have it. They also knew that lithosphere as young as 2 million years was more malleable than hardened lithosphere as old as 170 million years.

“We first showed five years ago that the rate of horizontal contraction is inversely proportional to the age of the seafloor,” he said. “So it’s in the youngest lithosphere (toward the east side of the Pacific plate) where you get the biggest effects.”

The researchers saw hints of deformation in a metric called plate circuit closure, which describes the relative motions where at least three plates meet. If the plates were rigid, their angular velocities at the triple junction would have a sum of zero. But where the Pacific, Nazca and Cocos plates meet west of the Galápagos Islands, the nonclosure velocity is 14 millimeters a year, enough to suggest that all three plates are deforming.

“When we did our first global model in 1990, we said to ourselves that maybe when we get new data, this issue will go away,” Gordon said. “But when we updated our model a few years ago, all the places that didn’t have plate circuit closure 20 years ago still didn’t have it.”

There had to be a reason, and it began to become clear when Gordon and his colleagues looked beneath the seafloor. “It’s long been understood that the ocean floor increases in depth with age due to cooling and thermal contraction. But if something cools, it doesn’t just cool in one direction. It’s going to be at least approximately isotropic. It should shrink the same in all directions, not just vertically,” he said.

A previous study by Gordon and former Rice graduate student Ravi Kumar calculated the effect of thermal contraction on vertical columns of oceanic lithosphere and determined its impact on the horizontal plane, but viewing the plate as a whole demanded a different approach. “We thought about the vertically integrated properties of the lithosphere, but once we did that, we realized Earth’s surface is still a two-dimensional problem,” he said.

For the new study, Gordon and Kreemer started by determining how much the contractions would, on average, strain the horizontal surface. They divided the Pacific plate into a grid and calculated the strain on each of the nearly 198,000 squares based on their age, as determined by the seafloor age model published by the National Geophysical Data Center.

“That we could calculate on a laptop,” Gordon said. “If we tried to do it in three dimensions, it would take a high-powered computer cluster.”

The surface calculations were enough to show likely strain fields across the Pacific plate that, when summed, accounted for the deformation. As further proof, the distribution of recent earthquakes in the Pacific plate, which also relieve the strain, showed a greater number occurring in the plate’s younger lithosphere. “In the Earth, those strains are either accommodated by elastic deformation or by little earthquakes that adjust it,” he said.

“The central assumption of plate tectonics assumes the plates are rigid, and this is what we make predictions from,” said Gordon, who was recently honored by the American Geophysical Union for writing two papers about plate movements that are among the top 40 papers ever to appear in one of the organization’s top journals. “Up until now, it’s worked really well.”

“The big picture is that we now have, subject to experimental and observational tests, the first realistic, quantitative estimate of how the biggest oceanic plate departs from that rigid-plate assumption.”

Pacific plate shrinking as it cools

A map produced by scientists at the University of Nevada, Reno, and Rice University shows predicted velocities for sectors of the Pacific tectonic plate relative to points near the Pacific-Antarctic ridge, which lies in the South Pacific ocean. The researchers show the Pacific plate is contracting as younger sections of the lithosphere cool. -  Corné Kreemer and Richard Gordon
A map produced by scientists at the University of Nevada, Reno, and Rice University shows predicted velocities for sectors of the Pacific tectonic plate relative to points near the Pacific-Antarctic ridge, which lies in the South Pacific ocean. The researchers show the Pacific plate is contracting as younger sections of the lithosphere cool. – Corné Kreemer and Richard Gordon

The tectonic plate that dominates the Pacific “Ring of Fire” is not as rigid as many scientists assume, according to researchers at Rice University and the University of Nevada.

Rice geophysicist Richard Gordon and his colleague, Corné Kreemer, an associate professor at the University of Nevada, Reno, have determined that cooling of the lithosphere — the outermost layer of Earth — makes some sections of the Pacific plate contract horizontally at faster rates than others and cause the plate to deform.

Gordon said the effect detailed this month in Geology is most pronounced in the youngest parts of the lithosphere — about 2 million years old or less — that make up some the Pacific Ocean’s floor. They predict the rate of contraction to be 10 times faster than older parts of the plate that were created about 20 million years ago and 80 times faster than very old parts of the plate that were created about 160 million years ago.

The tectonic plates that cover Earth’s surface, including both land and seafloor, are in constant motion; they imperceptibly surf the viscous mantle below. Over time, the plates scrape against and collide into each other, forming mountains, trenches and other geological features.

On the local scale, these movements cover only inches per year and are hard to see. The same goes for deformations of the type described in the new paper, but when summed over an area the size of the Pacific plate, they become statistically significant, Gordon said.

The new calculations showed the Pacific plate is pulling away from the North American plate a little more — approximately 2 millimeters a year — than the rigid-plate theory would account for, he said. Overall, the plate is moving northwest about 50 millimeters a year.

“The central assumption in plate tectonics is that the plates are rigid, but the studies that my colleagues and I have been doing for the past few decades show that this central assumption is merely an approximation — that is, the plates are not rigid,” Gordon said. “Our latest contribution is to specify or predict the nature and rate of deformation over the entire Pacific plate.”

The researchers already suspected cooling had a role from their observation that the 25 large and small plates that make up Earth’s shell do not fit together as well as the “rigid model” assumption would have it. They also knew that lithosphere as young as 2 million years was more malleable than hardened lithosphere as old as 170 million years.

“We first showed five years ago that the rate of horizontal contraction is inversely proportional to the age of the seafloor,” he said. “So it’s in the youngest lithosphere (toward the east side of the Pacific plate) where you get the biggest effects.”

The researchers saw hints of deformation in a metric called plate circuit closure, which describes the relative motions where at least three plates meet. If the plates were rigid, their angular velocities at the triple junction would have a sum of zero. But where the Pacific, Nazca and Cocos plates meet west of the Galápagos Islands, the nonclosure velocity is 14 millimeters a year, enough to suggest that all three plates are deforming.

“When we did our first global model in 1990, we said to ourselves that maybe when we get new data, this issue will go away,” Gordon said. “But when we updated our model a few years ago, all the places that didn’t have plate circuit closure 20 years ago still didn’t have it.”

There had to be a reason, and it began to become clear when Gordon and his colleagues looked beneath the seafloor. “It’s long been understood that the ocean floor increases in depth with age due to cooling and thermal contraction. But if something cools, it doesn’t just cool in one direction. It’s going to be at least approximately isotropic. It should shrink the same in all directions, not just vertically,” he said.

A previous study by Gordon and former Rice graduate student Ravi Kumar calculated the effect of thermal contraction on vertical columns of oceanic lithosphere and determined its impact on the horizontal plane, but viewing the plate as a whole demanded a different approach. “We thought about the vertically integrated properties of the lithosphere, but once we did that, we realized Earth’s surface is still a two-dimensional problem,” he said.

For the new study, Gordon and Kreemer started by determining how much the contractions would, on average, strain the horizontal surface. They divided the Pacific plate into a grid and calculated the strain on each of the nearly 198,000 squares based on their age, as determined by the seafloor age model published by the National Geophysical Data Center.

“That we could calculate on a laptop,” Gordon said. “If we tried to do it in three dimensions, it would take a high-powered computer cluster.”

The surface calculations were enough to show likely strain fields across the Pacific plate that, when summed, accounted for the deformation. As further proof, the distribution of recent earthquakes in the Pacific plate, which also relieve the strain, showed a greater number occurring in the plate’s younger lithosphere. “In the Earth, those strains are either accommodated by elastic deformation or by little earthquakes that adjust it,” he said.

“The central assumption of plate tectonics assumes the plates are rigid, and this is what we make predictions from,” said Gordon, who was recently honored by the American Geophysical Union for writing two papers about plate movements that are among the top 40 papers ever to appear in one of the organization’s top journals. “Up until now, it’s worked really well.”

“The big picture is that we now have, subject to experimental and observational tests, the first realistic, quantitative estimate of how the biggest oceanic plate departs from that rigid-plate assumption.”

Severe drought is causing the western US to rise

The severe drought gripping the western United States in recent years is changing the landscape well beyond localized effects of water restrictions and browning lawns. Scientists at Scripps Institution of Oceanography at UC San Diego have now discovered that the growing, broad-scale loss of water is causing the entire western U.S. to rise up like an uncoiled spring.

Investigating ground positioning data from GPS stations throughout the west, Scripps researchers Adrian Borsa, Duncan Agnew, and Dan Cayan found that the water shortage is causing an “uplift” effect up to 15 millimeters (more than half an inch) in California’s mountains and on average four millimeters (0.15 of an inch) across the west. From the GPS data, they estimate the water deficit at nearly 240 gigatons (62 trillion gallons of water), equivalent to a six-inch layer of water spread out over the entire western U.S.

Results of the study, which was supported by the U.S. Geological Survey (USGS), appear in the August 21 online edition of the journal Science.

While poring through various sets of data of ground positions from highly precise GPS stations within the National Science Foundation’s Plate Boundary Observatory and other networks, Borsa, a Scripps assistant research geophysicist, kept noticing the same pattern over the 2003-2014 period: All of the stations moved upwards in the most recent years, coinciding with the timing of the current drought.

Agnew, a Scripps Oceanography geophysics professor who specializes in studying earthquakes and their impact on shaping the earth’s crust, says the GPS data can only be explained by rapid uplift of the tectonic plate upon which the western U.S. rests (Agnew cautions that the uplift has virtually no effect on the San Andreas fault and therefore does not increase the risk of earthquakes).

For Cayan, a research meteorologist with Scripps and USGS, the results paint a new picture of the dire hydrological state of the west.

“These results quantify the amount of water mass lost in the past few years,” said Cayan. “It also represents a powerful new way to track water resources over a very large landscape. We can home in on the Sierra Nevada mountains and critical California snowpack. These results demonstrate that this technique can be used to study changes in fresh water stocks in other regions around the world, if they have a network of GPS sensors.”

Severe drought is causing the western US to rise

The severe drought gripping the western United States in recent years is changing the landscape well beyond localized effects of water restrictions and browning lawns. Scientists at Scripps Institution of Oceanography at UC San Diego have now discovered that the growing, broad-scale loss of water is causing the entire western U.S. to rise up like an uncoiled spring.

Investigating ground positioning data from GPS stations throughout the west, Scripps researchers Adrian Borsa, Duncan Agnew, and Dan Cayan found that the water shortage is causing an “uplift” effect up to 15 millimeters (more than half an inch) in California’s mountains and on average four millimeters (0.15 of an inch) across the west. From the GPS data, they estimate the water deficit at nearly 240 gigatons (62 trillion gallons of water), equivalent to a six-inch layer of water spread out over the entire western U.S.

Results of the study, which was supported by the U.S. Geological Survey (USGS), appear in the August 21 online edition of the journal Science.

While poring through various sets of data of ground positions from highly precise GPS stations within the National Science Foundation’s Plate Boundary Observatory and other networks, Borsa, a Scripps assistant research geophysicist, kept noticing the same pattern over the 2003-2014 period: All of the stations moved upwards in the most recent years, coinciding with the timing of the current drought.

Agnew, a Scripps Oceanography geophysics professor who specializes in studying earthquakes and their impact on shaping the earth’s crust, says the GPS data can only be explained by rapid uplift of the tectonic plate upon which the western U.S. rests (Agnew cautions that the uplift has virtually no effect on the San Andreas fault and therefore does not increase the risk of earthquakes).

For Cayan, a research meteorologist with Scripps and USGS, the results paint a new picture of the dire hydrological state of the west.

“These results quantify the amount of water mass lost in the past few years,” said Cayan. “It also represents a powerful new way to track water resources over a very large landscape. We can home in on the Sierra Nevada mountains and critical California snowpack. These results demonstrate that this technique can be used to study changes in fresh water stocks in other regions around the world, if they have a network of GPS sensors.”

Has the puzzle of rapid climate change in the last ice age been solved?

During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong northwest winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful 'conveyor belt' in the world's oceans, was thus much weaker than at present, and consequently transported less heat to northern regions. -  Map: Alfred-Wegener-Institut
During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong northwest winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful ‘conveyor belt’ in the world’s oceans, was thus much weaker than at present, and consequently transported less heat to northern regions. – Map: Alfred-Wegener-Institut

During the last ice age a large part of North America was covered with a massive ice sheet up to 3km thick. The water stored in this ice sheet is part of the reason why the sea level was then about 120 meters lower than today. Young Chinese scientist Xu Zhang, lead author of the study who undertook his PhD at the Alfred Wegener Institute, explains. “The rapid climate changes known in the scientific world as Dansgaard-Oeschger events were limited to a period of time from 110,000 to 23,000 years before present. The abrupt climate changes did not take place at the extreme low sea levels, corresponding to the time of maximum glaciation 20,000 years ago, nor at high sea levels such as those prevailing today – they occurred during periods of intermediate ice volume and intermediate sea levels.” The results presented by the AWI researchers can explain the history of climate changes during glacial periods, comparing simulated model data with that retrieved from ice cores and marine sediments.

How rapid temperature changes might have occurred during times when the Northern Hemisphere ice sheets were at intermediate sizes (see schematic depictions on http://bit.ly/1uQoI70).

During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong westerly winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful “conveyor belt” in the world’s oceans, was thus much weaker than at present, and consequently transported less heat to northern regions.

During the extended cold phases the ice sheets continued to thicken. When higher ice sheets prevailed over North America, typical in periods of intermediate sea levels, the prevailing westerly winds split into two branches. The major wind field ran to the north of the so-called Laurentide Ice Sheet and ensured that the sea ice boundary off the European coast shifted to the north. Ice-free seas permit heat exchange to take place between the atmosphere and the ocean. At the same time, the southern branch of the northwesterly winds drove warmer water into the ice-free areas of the northeast Atlantic and thus amplified the transportation of heat to the north. The modified conditions stimulated enhanced circulation in the ocean. Consequently, a thicker Laurentide Ice Sheet over North America resulted in increased ocean circulation and therefore greater transportation of heat to the north. The climate in the Northern Hemisphere became dramatically warmer within a few decades until, due to the retreat of the glaciers over North America and the renewed change in wind conditions, it began to cool off again.

“Using the simulations performed with our climate model, we were able to demonstrate that the climate system can respond to small changes with abrupt climate swings,” explains Professor Gerrit Lohmann, leader of the Paleoclimate Dynamics group at the Alfred Wegener Institute, Germany. In doing so he illustrates the new study’s significance with regards to contemporary climate change. “At medium sea levels, powerful forces, such as the dramatic acceleration of polar ice cap melting, are not necessary to result in abrupt climate shifts and associated drastic temperature changes.”

At present, the extent of Arctic sea ice is far less than during the last glacial period. The Laurentide Ice Sheet, the major driving force for ocean circulation during the glacials, has also disappeared. Climate changes following the pattern of the last ice age are therefore not to be anticipated under today’s conditions.

“There are apparently some situations in which the climate system is more resistant to change while in others the system tends toward strong fluctuations,” summarises Gerrit Lohmann. “In terms of the Earth’s history, we are currently in one of the climate system’s more stable phases. The preconditions, which gave rise to rapid temperature changes during the last ice age do not exist today. But this does not mean that sudden climate changes can be excluded in the future.”

Has the puzzle of rapid climate change in the last ice age been solved?

During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong northwest winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful 'conveyor belt' in the world's oceans, was thus much weaker than at present, and consequently transported less heat to northern regions. -  Map: Alfred-Wegener-Institut
During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong northwest winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful ‘conveyor belt’ in the world’s oceans, was thus much weaker than at present, and consequently transported less heat to northern regions. – Map: Alfred-Wegener-Institut

During the last ice age a large part of North America was covered with a massive ice sheet up to 3km thick. The water stored in this ice sheet is part of the reason why the sea level was then about 120 meters lower than today. Young Chinese scientist Xu Zhang, lead author of the study who undertook his PhD at the Alfred Wegener Institute, explains. “The rapid climate changes known in the scientific world as Dansgaard-Oeschger events were limited to a period of time from 110,000 to 23,000 years before present. The abrupt climate changes did not take place at the extreme low sea levels, corresponding to the time of maximum glaciation 20,000 years ago, nor at high sea levels such as those prevailing today – they occurred during periods of intermediate ice volume and intermediate sea levels.” The results presented by the AWI researchers can explain the history of climate changes during glacial periods, comparing simulated model data with that retrieved from ice cores and marine sediments.

How rapid temperature changes might have occurred during times when the Northern Hemisphere ice sheets were at intermediate sizes (see schematic depictions on http://bit.ly/1uQoI70).

During the cold stadial periods of the last ice age, massive ice sheets covered northern parts of North America and Europe. Strong westerly winds drove the Arctic sea ice southward, even as far as the French coast. Since the extended ice cover over the North Atlantic prevented the exchange of heat between the atmosphere and the ocean, the strong driving forces for the ocean currents that prevail today were lacking. Ocean circulation, which is a powerful “conveyor belt” in the world’s oceans, was thus much weaker than at present, and consequently transported less heat to northern regions.

During the extended cold phases the ice sheets continued to thicken. When higher ice sheets prevailed over North America, typical in periods of intermediate sea levels, the prevailing westerly winds split into two branches. The major wind field ran to the north of the so-called Laurentide Ice Sheet and ensured that the sea ice boundary off the European coast shifted to the north. Ice-free seas permit heat exchange to take place between the atmosphere and the ocean. At the same time, the southern branch of the northwesterly winds drove warmer water into the ice-free areas of the northeast Atlantic and thus amplified the transportation of heat to the north. The modified conditions stimulated enhanced circulation in the ocean. Consequently, a thicker Laurentide Ice Sheet over North America resulted in increased ocean circulation and therefore greater transportation of heat to the north. The climate in the Northern Hemisphere became dramatically warmer within a few decades until, due to the retreat of the glaciers over North America and the renewed change in wind conditions, it began to cool off again.

“Using the simulations performed with our climate model, we were able to demonstrate that the climate system can respond to small changes with abrupt climate swings,” explains Professor Gerrit Lohmann, leader of the Paleoclimate Dynamics group at the Alfred Wegener Institute, Germany. In doing so he illustrates the new study’s significance with regards to contemporary climate change. “At medium sea levels, powerful forces, such as the dramatic acceleration of polar ice cap melting, are not necessary to result in abrupt climate shifts and associated drastic temperature changes.”

At present, the extent of Arctic sea ice is far less than during the last glacial period. The Laurentide Ice Sheet, the major driving force for ocean circulation during the glacials, has also disappeared. Climate changes following the pattern of the last ice age are therefore not to be anticipated under today’s conditions.

“There are apparently some situations in which the climate system is more resistant to change while in others the system tends toward strong fluctuations,” summarises Gerrit Lohmann. “In terms of the Earth’s history, we are currently in one of the climate system’s more stable phases. The preconditions, which gave rise to rapid temperature changes during the last ice age do not exist today. But this does not mean that sudden climate changes can be excluded in the future.”

Induced quakes rattle less than tectonic quakes, except near epicenter

Induced earthquakes generate significantly lower shaking than tectonic earthquakes with comparable magnitudes, except within 10 km of the epicenter, according to a study to be published online August 19 in the Bulletin of the Seismological Society of America (BSSA). Within 10 km of the epicenter, the reduced intensity of shaking is likely offset by the increased intensity of shaking due to the shallow source depths of injection-induced earthquakes.

Using data from the USGS “Did You Feel It?” system, Seismologist Susan Hough explored the shaking intensities of 11 earthquakes in the central and eastern United States (CEUS) considered likely caused by fluid injection.

“Although moderate injection-induced earthquakes in the CEUS will be widely felt due to low regional attenuation,” writes Hough, “the damage from earthquakes induced by injection will be more concentrated in proximity to the event epicenters than shaking from tectonic earthquakes.”

Induced quakes rattle less than tectonic quakes, except near epicenter

Induced earthquakes generate significantly lower shaking than tectonic earthquakes with comparable magnitudes, except within 10 km of the epicenter, according to a study to be published online August 19 in the Bulletin of the Seismological Society of America (BSSA). Within 10 km of the epicenter, the reduced intensity of shaking is likely offset by the increased intensity of shaking due to the shallow source depths of injection-induced earthquakes.

Using data from the USGS “Did You Feel It?” system, Seismologist Susan Hough explored the shaking intensities of 11 earthquakes in the central and eastern United States (CEUS) considered likely caused by fluid injection.

“Although moderate injection-induced earthquakes in the CEUS will be widely felt due to low regional attenuation,” writes Hough, “the damage from earthquakes induced by injection will be more concentrated in proximity to the event epicenters than shaking from tectonic earthquakes.”

Gorges are eradicated by downstream sweep erosion

Local surface uplift can block rivers, particularly in mountainous regions. The impounded water, however, always finds its way downstream, often cutting a narrow gorge into the rocks. Subsequent erosion of the rocks can lead to a complete eradication of this initial incision, until not a trace is left of the original breakthrough. In extreme cases the whole gorge disappears, leaving behind a broad valley with a flat floodplain. Previously, the assumption was that this transition from a narrow gorge to a wide valley was driven by gorge widening and the erosion of the walls of the gorges.

A team of scientists from the GFZ German Research Centre for Geosciences in Potsdam has now revealed a new mechanism that drives this process of fluvial erosion (Nature Geoscience, 17.08.2014). The geoscientists analyzed the development of a gorge on the Da’an Chi river in Taiwan over a period of almost ten years. There, uplift that was caused by the Jiji earthquake of 1999 (magnitude 7.6), and that runs transverse to the river, had formed a blockage. Earthquakes of that size occur there every 300 to 500 years. “Before the quake there was no sign of a gorge at all in this riverbed, which is one and a half kilometers wide”, explains Kristen Cook of the GFZ. “We have here the world’s first real-time observation of the evolution of gorge width by fluvial erosion over the course of several years.” Currently the gorge is roughly a kilometer long, 25 meters wide and up to 17 meters deep. Initially, the gorge walls were eroded at a rate of five meters per year, and today are still retreating one and a half meters per year.

The scientists identified a hitherto unknown mechanism by which the gorge is destroyed. “Downstream sweep erosion” they termed this process. “A wide braided channel upstream of the gorge is necessary,” explains co-author Jens Turowski (GFZ). “The course of this channel changes regularly and it has to flow in sharp bends to run into the gorge. In these bends, the bed-load material that is transported by the river hits the upper edge of the gorge causing rapid erosion.” This mechanism gradually washes away all of the bedrock surrounding the gorge and, therefore, is the cause for the planation of the riverbed over the complete width of the valley. Assuming the current erosion rate of 17 meters per year, it will take here at the Da’an Chi River only 50 to 100 years until again a flat beveled channel again fills the valley. In contrast, lateral erosion in the gorge would be too slow to eradicate the gorge in the time of one earthquake cycle. The newly discovered downstream sweep erosion is far more effective.

Gorges are eradicated by downstream sweep erosion

Local surface uplift can block rivers, particularly in mountainous regions. The impounded water, however, always finds its way downstream, often cutting a narrow gorge into the rocks. Subsequent erosion of the rocks can lead to a complete eradication of this initial incision, until not a trace is left of the original breakthrough. In extreme cases the whole gorge disappears, leaving behind a broad valley with a flat floodplain. Previously, the assumption was that this transition from a narrow gorge to a wide valley was driven by gorge widening and the erosion of the walls of the gorges.

A team of scientists from the GFZ German Research Centre for Geosciences in Potsdam has now revealed a new mechanism that drives this process of fluvial erosion (Nature Geoscience, 17.08.2014). The geoscientists analyzed the development of a gorge on the Da’an Chi river in Taiwan over a period of almost ten years. There, uplift that was caused by the Jiji earthquake of 1999 (magnitude 7.6), and that runs transverse to the river, had formed a blockage. Earthquakes of that size occur there every 300 to 500 years. “Before the quake there was no sign of a gorge at all in this riverbed, which is one and a half kilometers wide”, explains Kristen Cook of the GFZ. “We have here the world’s first real-time observation of the evolution of gorge width by fluvial erosion over the course of several years.” Currently the gorge is roughly a kilometer long, 25 meters wide and up to 17 meters deep. Initially, the gorge walls were eroded at a rate of five meters per year, and today are still retreating one and a half meters per year.

The scientists identified a hitherto unknown mechanism by which the gorge is destroyed. “Downstream sweep erosion” they termed this process. “A wide braided channel upstream of the gorge is necessary,” explains co-author Jens Turowski (GFZ). “The course of this channel changes regularly and it has to flow in sharp bends to run into the gorge. In these bends, the bed-load material that is transported by the river hits the upper edge of the gorge causing rapid erosion.” This mechanism gradually washes away all of the bedrock surrounding the gorge and, therefore, is the cause for the planation of the riverbed over the complete width of the valley. Assuming the current erosion rate of 17 meters per year, it will take here at the Da’an Chi River only 50 to 100 years until again a flat beveled channel again fills the valley. In contrast, lateral erosion in the gorge would be too slow to eradicate the gorge in the time of one earthquake cycle. The newly discovered downstream sweep erosion is far more effective.