From ‘Finding Nemo’ to minerals — what riches lie in the deep sea?

Left: The first species ever recovered from the deep sea. Center: Rockfish use deep-sea carbonate formations at Hydrate Ridge, US, as a refuge. Right: Deep-sea corals such as the one pictured are a source of jewelery and other riches. -  SERPENT Project/D.O.B. Jones, L. Levin, UK's BIS Department
Left: The first species ever recovered from the deep sea. Center: Rockfish use deep-sea carbonate formations at Hydrate Ridge, US, as a refuge. Right: Deep-sea corals such as the one pictured are a source of jewelery and other riches. – SERPENT Project/D.O.B. Jones, L. Levin, UK’s BIS Department

As fishing and the harvesting of metals, gas and oil have expanded deeper and deeper into the ocean, scientists are drawing attention to the services provided by the deep sea, the world’s largest environment. “This is the time to discuss deep-sea stewardship before exploitation is too much farther underway,” says lead-author Andrew Thurber. In a review published today in Biogeosciences, a journal of the European Geosciences Union (EGU), Thurber and colleagues summarise what this habitat provides to humans, and emphasise the need to protect it.

“The deep sea realm is so distant, but affects us in so many ways. That’s where the passion lies: to tell everyone what’s down there and that we still have a lot to explore,” says co-author Jeroen Ingels of Plymouth Marine Laboratory in the UK.

“What we know highlights that it provides much directly to society,” says Thurber, a researcher at the College of Earth, Ocean and Atmospheric Sciences at Oregon State University in the US. Yet, the deep sea is facing impacts from climate change and, as resources are depleted elsewhere, is being increasingly exploited by humans for food, energy and metals like gold and silver.

“We felt we had to do something,” says Ingels. “We all felt passionate about placing the deep sea in a relevant context and found that there was little out there aimed at explaining what the deep sea does for us to a broad audience that includes scientists, the non-specialists and ultimately the policy makers. There was a gap to be filled. So we said: ‘Let’s just make this happen’.”

In the review of over 200 scientific papers, the international team of researchers points out how vital the deep sea is to support our current way of life. It nurtures fish stocks, serves as a dumping ground for our waste, and is a massive reserve of oil, gas, precious metals and the rare minerals we use in modern electronics, such as cell phones and hybrid-car batteries. Further, hydrothermal vents and other deep-sea environments host life forms, from bacteria to sponges, that are a source of new antibiotics and anti-cancer chemicals. It also has a cultural value, with its strange species and untouched habitats inspiring books and films from 20,000 Leagues Under the Sea to Finding Nemo.

“From jewellery to oil and gas and future potential energy reserves as well as novel pharmaceuticals, deep-sea’s worth should be recognised so that, as we decide how to use it more in the future, we do not inhibit or lose the services that it already provides,” says Thurber.

The deep sea (ocean areas deeper than 200m) represents 98.5% of the volume of our planet that is hospitable to animals. It has received less attention than other environments because it is vast, dark and remote, and much of it is inaccessible to humans. But it has important global functions. In the Biogeosciences review the team shows that deep-sea marine life plays a crucial role in absorbing carbon dioxide from the atmosphere, as well as methane that occasionally leaks from under the seafloor. In doing so, the deep ocean has limited much of the effects of climate change.

This type of process occurs over a vast area and at a slow rate. Thurber gives other examples: manganese nodules, deep-sea sources of nickel, copper, cobalt and rare earth minerals, take centuries or longer to form and are not renewable. Likewise, slow-growing and long-lived species of fish and coral in the deep sea are more susceptible to overfishing. “This means that a different approach needs to be taken as we start harvesting the resources within it.”

By highlighting the importance of the deep sea and identifying the traits that differentiate this environment from others, the researchers hope to provide the tools for effective and sustainable management of this habitat.

“This study is one of the steps in making sure that the benefits of the deep sea are understood by those who are trying to, or beginning to, regulate its resources,” concludes Thurber. “We ultimately hope that it will be a useful tool for policy makers.”

From ‘Finding Nemo’ to minerals — what riches lie in the deep sea?

Left: The first species ever recovered from the deep sea. Center: Rockfish use deep-sea carbonate formations at Hydrate Ridge, US, as a refuge. Right: Deep-sea corals such as the one pictured are a source of jewelery and other riches. -  SERPENT Project/D.O.B. Jones, L. Levin, UK's BIS Department
Left: The first species ever recovered from the deep sea. Center: Rockfish use deep-sea carbonate formations at Hydrate Ridge, US, as a refuge. Right: Deep-sea corals such as the one pictured are a source of jewelery and other riches. – SERPENT Project/D.O.B. Jones, L. Levin, UK’s BIS Department

As fishing and the harvesting of metals, gas and oil have expanded deeper and deeper into the ocean, scientists are drawing attention to the services provided by the deep sea, the world’s largest environment. “This is the time to discuss deep-sea stewardship before exploitation is too much farther underway,” says lead-author Andrew Thurber. In a review published today in Biogeosciences, a journal of the European Geosciences Union (EGU), Thurber and colleagues summarise what this habitat provides to humans, and emphasise the need to protect it.

“The deep sea realm is so distant, but affects us in so many ways. That’s where the passion lies: to tell everyone what’s down there and that we still have a lot to explore,” says co-author Jeroen Ingels of Plymouth Marine Laboratory in the UK.

“What we know highlights that it provides much directly to society,” says Thurber, a researcher at the College of Earth, Ocean and Atmospheric Sciences at Oregon State University in the US. Yet, the deep sea is facing impacts from climate change and, as resources are depleted elsewhere, is being increasingly exploited by humans for food, energy and metals like gold and silver.

“We felt we had to do something,” says Ingels. “We all felt passionate about placing the deep sea in a relevant context and found that there was little out there aimed at explaining what the deep sea does for us to a broad audience that includes scientists, the non-specialists and ultimately the policy makers. There was a gap to be filled. So we said: ‘Let’s just make this happen’.”

In the review of over 200 scientific papers, the international team of researchers points out how vital the deep sea is to support our current way of life. It nurtures fish stocks, serves as a dumping ground for our waste, and is a massive reserve of oil, gas, precious metals and the rare minerals we use in modern electronics, such as cell phones and hybrid-car batteries. Further, hydrothermal vents and other deep-sea environments host life forms, from bacteria to sponges, that are a source of new antibiotics and anti-cancer chemicals. It also has a cultural value, with its strange species and untouched habitats inspiring books and films from 20,000 Leagues Under the Sea to Finding Nemo.

“From jewellery to oil and gas and future potential energy reserves as well as novel pharmaceuticals, deep-sea’s worth should be recognised so that, as we decide how to use it more in the future, we do not inhibit or lose the services that it already provides,” says Thurber.

The deep sea (ocean areas deeper than 200m) represents 98.5% of the volume of our planet that is hospitable to animals. It has received less attention than other environments because it is vast, dark and remote, and much of it is inaccessible to humans. But it has important global functions. In the Biogeosciences review the team shows that deep-sea marine life plays a crucial role in absorbing carbon dioxide from the atmosphere, as well as methane that occasionally leaks from under the seafloor. In doing so, the deep ocean has limited much of the effects of climate change.

This type of process occurs over a vast area and at a slow rate. Thurber gives other examples: manganese nodules, deep-sea sources of nickel, copper, cobalt and rare earth minerals, take centuries or longer to form and are not renewable. Likewise, slow-growing and long-lived species of fish and coral in the deep sea are more susceptible to overfishing. “This means that a different approach needs to be taken as we start harvesting the resources within it.”

By highlighting the importance of the deep sea and identifying the traits that differentiate this environment from others, the researchers hope to provide the tools for effective and sustainable management of this habitat.

“This study is one of the steps in making sure that the benefits of the deep sea are understood by those who are trying to, or beginning to, regulate its resources,” concludes Thurber. “We ultimately hope that it will be a useful tool for policy makers.”

Jeju Island is a live volcano

These are pictures of the sedimentary layer containing charcoal found on a stony mountain developing site in Sangchang-ri, and the carbonized wood sample used for the radiocarbon dating. Thick lava covers the upper gravel layer. -  KIGAM
These are pictures of the sedimentary layer containing charcoal found on a stony mountain developing site in Sangchang-ri, and the carbonized wood sample used for the radiocarbon dating. Thick lava covers the upper gravel layer. – KIGAM

In Jeju, a place emerging as a world-famous vacation spot with natural tourism resources, a recent study revealed a volcanic eruption occurred on the island. The Korea Institute of Geoscience and Mineral Resources (KIGAM) indicated that there are the traces that indicated that a recent volcanic eruption was evident 5,000 years ago. That is the first time to actually find out the date when lava spewed out of a volcano 5,000 years ago in the inland part of the island as well as the one the whole peninsula.

The research team led by Dr. Jin-Young Lee confirmed in results from radiocarbon dating for carbonized wood (charcoal) found below the basaltic layer located in Sangchang-ri, Seogwipo-si, Jeju-do it dated back to 5,000 years ago; which means the time when the basalt on the upper layer was formed took place relatively recently, i.e. 5,000 years ago, and which demonstrates that the island has experienced a volcanic eruption fairly recently.

The latest volcanic eruption occurring on Jeju Island was volcanic activity known to have spewed around 7,000 years ago at Mt. Songak. The basaltic layer in Sangchang-ri is known to be formed due to the eruption in the vicinity of Byeongak Oreum 35,000 years ago; though, this study revealed that the layer is a product of the most recent volcanic activity among those known ever. Volcanic activity at Mt. Songak was limited hydro volcanic activity out of which a great deal of volcanic ash was released while it is evident that Sangchang-ri was a dynamic active volcano out of which lava was spewed and then flowed down in all directions along the inland slope.

It is also remarkable that the research team enhanced the accuracy of the findings in the radiocarbon dating technique using carbonized wood, consequently raising the reliability of the findings. Until now, previous research used the dating method for rocks covering the upper sedimentary layer, in which such dating method with the relatively longer half-life period shows limitations in determining the time the basalt was formed about 10,000 years ago.


In order to overcome the limitations of the dating method for the rocks covering the upper sedimentary layer, the research team led by Dr. Jin-Young Lee concurrently used radiocarbon dating and optically stimulated luminescence dating (OSL), using such cross-validation of which raised the accuracy of tracing the past volcanic activities.

Judging from the findings, Jeju Island is not an extinct volcano, but seems to rather be a potentially live volcano because a volcano that has erupted within 10,000 years is defined to be a live volcano on a geological basis.

Not remaining complacent for the findings, the research team plans to continuously conduct the studies on the time the volcanic rocks were formed in several regions on the island in order to identify the latest volcanic activity.

Jeju Island is a live volcano

These are pictures of the sedimentary layer containing charcoal found on a stony mountain developing site in Sangchang-ri, and the carbonized wood sample used for the radiocarbon dating. Thick lava covers the upper gravel layer. -  KIGAM
These are pictures of the sedimentary layer containing charcoal found on a stony mountain developing site in Sangchang-ri, and the carbonized wood sample used for the radiocarbon dating. Thick lava covers the upper gravel layer. – KIGAM

In Jeju, a place emerging as a world-famous vacation spot with natural tourism resources, a recent study revealed a volcanic eruption occurred on the island. The Korea Institute of Geoscience and Mineral Resources (KIGAM) indicated that there are the traces that indicated that a recent volcanic eruption was evident 5,000 years ago. That is the first time to actually find out the date when lava spewed out of a volcano 5,000 years ago in the inland part of the island as well as the one the whole peninsula.

The research team led by Dr. Jin-Young Lee confirmed in results from radiocarbon dating for carbonized wood (charcoal) found below the basaltic layer located in Sangchang-ri, Seogwipo-si, Jeju-do it dated back to 5,000 years ago; which means the time when the basalt on the upper layer was formed took place relatively recently, i.e. 5,000 years ago, and which demonstrates that the island has experienced a volcanic eruption fairly recently.

The latest volcanic eruption occurring on Jeju Island was volcanic activity known to have spewed around 7,000 years ago at Mt. Songak. The basaltic layer in Sangchang-ri is known to be formed due to the eruption in the vicinity of Byeongak Oreum 35,000 years ago; though, this study revealed that the layer is a product of the most recent volcanic activity among those known ever. Volcanic activity at Mt. Songak was limited hydro volcanic activity out of which a great deal of volcanic ash was released while it is evident that Sangchang-ri was a dynamic active volcano out of which lava was spewed and then flowed down in all directions along the inland slope.

It is also remarkable that the research team enhanced the accuracy of the findings in the radiocarbon dating technique using carbonized wood, consequently raising the reliability of the findings. Until now, previous research used the dating method for rocks covering the upper sedimentary layer, in which such dating method with the relatively longer half-life period shows limitations in determining the time the basalt was formed about 10,000 years ago.


In order to overcome the limitations of the dating method for the rocks covering the upper sedimentary layer, the research team led by Dr. Jin-Young Lee concurrently used radiocarbon dating and optically stimulated luminescence dating (OSL), using such cross-validation of which raised the accuracy of tracing the past volcanic activities.

Judging from the findings, Jeju Island is not an extinct volcano, but seems to rather be a potentially live volcano because a volcano that has erupted within 10,000 years is defined to be a live volcano on a geological basis.

Not remaining complacent for the findings, the research team plans to continuously conduct the studies on the time the volcanic rocks were formed in several regions on the island in order to identify the latest volcanic activity.

How much magma is hiding beneath our feet?

Molten rock (or magma) has a strong influence on our planet and its inhabitants, causing destructive volcanic eruptions and generating some of the giant mineral deposits. Our understanding of these phenomena is, however, limited by the fact that most magma cools and solidifies several kilometres beneath our feet, only to be exposed at the surface, millions of years later, by erosion. Scientists have never been able to track the movements of magma at such great depths? that is, until a team from the University of Geneva (UNIGE) discovered an innovative technique, details of which will be published in the next issue of the journal Nature.

It is a story of three scientists: a modelling specialist, an expert in a tiny mineral known as “zircon”, and a volcanologist. Following a casual conversation, the researchers stumbled upon an idea, and eventually a new method to estimate the volume and flow of magma required for the construction of magma chambers was shaped. The technique they developed makes it possible to refine predictions of future volcanic eruptions as well as identifying areas of the planet that are rich in magma-related natural resources.

Zircon: a valuable mineral for scientists

Professor Urs Schaltegger has been studying zircon for more than ten years in his laboratory at UNIGE, one of the world’s few labs in this field. «The zircon crystals that are found in solidified magma hold key information about the injection of molten rock into a magma chamber before it freezes underground,» explains the professor. Zircon contains radioactive elements that enable researchers to determine its age. As part of the study, the team from the Section of Earth and Environmental Sciences of UNIGE paired data collected using natural samples and numerical simulation. As Guy Simpson, a researcher at UNIGE further explains: «Modelling meant that we could establish how the age of crystallised zircon in a cooled magma reservoir depends on the flow rate of injected magma and the size of the reservoir.»

Applications for society and industry


In the Nature article, the researchers propose a model that is capable of determining with unprecedented accuracy the age, volume and injection rate of magma that has accumulated at inaccessible depths. As a result, they have established that the formation of Earth’s crust, volcanic super eruptions and mineral deposits occur under very specific yet different conditions. Professor Luca Caricchi adds: «When we determine the age of a family of zircons from a small sample of solidified magmatic rock, using results from the mathematical model we have developed, we can tell what the size of the entire magma chamber was, as well as how fast the magma reservoir grew». The professor continues: «This information means that we can determine the probability of an explosive volcanic eruption of a certain size to occur. In addition, the model will be of interest to industry because we will be able to identify new areas of our planet that are home to large amounts of natural resources such as copper and gold.»

New Oso report, rockfall in Yosemite, and earthquake models

From AGU’s blogs: Oso disaster had its roots in earlier landslides

A research team tasked with being some of the first scientists and engineers to evaluate extreme events has issued its findings on disastrous Oso, Washington, landslide. The report studies the conditions and causes related to the March 22 mudslide that killed 43 people and destroyed the Steelhead Haven neighborhood in Oso, Washington. The team from the Geotechnical Extreme Events Reconnaissance (GEER) Association, funded by the National Science Foundation, determined that intense rainfall in the three weeks before the slide likely was a major issue, but factors such as altered groundwater migration, weakened soil consistency because of previous landslides and changes in hillside stresses played key roles.

From this week’s Eos: Reducing Rockfall Risk in Yosemite National Park

The glacially sculpted granite walls of Yosemite Valley attract 4 million visitors a year, but rockfalls from these cliffs pose substantial hazards. Responding to new studies, the National Park Service recently took actions to reduce the human risk posed by rockfalls in Yosemite National Park.

From AGU’s journals: A new earthquake model may explain discrepancies in San Andreas fault slip

Investigating the earthquake hazards of the San Andreas Fault System requires an accurate understanding of accumulating stresses and the history of past earthquakes. Faults tend to go through an “earthquake cycle”-locking and accumulating stress, rupturing in an earthquake, and locking again in a well-accepted process known as “elastic rebound.” One of the key factors in preparing for California’s next “Big One” is estimating the fault slip rate, the speed at which one side of the San Andreas Fault is moving past the other.

Broadly speaking, there are two ways geoscientists study fault slip. Geologists formulate estimates by studying geologic features at key locations to study slip rates through time. Geodesists, scientists who measure the size and shape of the planet, use technologies like GPS and satellite radar interferometry to estimate the slip rate, estimates which often differ from the geologists’ estimations.

In a recent study by Tong et al., the authors develop a new three-dimensional viscoelastic earthquake cycle model that represents 41 major fault segments of the San Andreas Fault System. While previous research has suggested that there are discrepancies between the fault slip rates along the San Andreas as measured by geologic and geodetic means, the authors find that there are no significant differences between the two measures if the thickness of the tectonic plate and viscoelasticity are taken into account. The authors find that the geodetic slip rate depends on the plate thickness over the San Andreas, a variable lacking in previous research.

The team notes that of the 41 studied faults within the San Andreas Fault system, a small number do in fact have disagreements between the geologic and geodetic slip rates. These differences could be attributed to inadequate data coverage or to incomplete knowledge of the fault structures or the chronological sequence of past events.

How much magma is hiding beneath our feet?

Molten rock (or magma) has a strong influence on our planet and its inhabitants, causing destructive volcanic eruptions and generating some of the giant mineral deposits. Our understanding of these phenomena is, however, limited by the fact that most magma cools and solidifies several kilometres beneath our feet, only to be exposed at the surface, millions of years later, by erosion. Scientists have never been able to track the movements of magma at such great depths? that is, until a team from the University of Geneva (UNIGE) discovered an innovative technique, details of which will be published in the next issue of the journal Nature.

It is a story of three scientists: a modelling specialist, an expert in a tiny mineral known as “zircon”, and a volcanologist. Following a casual conversation, the researchers stumbled upon an idea, and eventually a new method to estimate the volume and flow of magma required for the construction of magma chambers was shaped. The technique they developed makes it possible to refine predictions of future volcanic eruptions as well as identifying areas of the planet that are rich in magma-related natural resources.

Zircon: a valuable mineral for scientists

Professor Urs Schaltegger has been studying zircon for more than ten years in his laboratory at UNIGE, one of the world’s few labs in this field. «The zircon crystals that are found in solidified magma hold key information about the injection of molten rock into a magma chamber before it freezes underground,» explains the professor. Zircon contains radioactive elements that enable researchers to determine its age. As part of the study, the team from the Section of Earth and Environmental Sciences of UNIGE paired data collected using natural samples and numerical simulation. As Guy Simpson, a researcher at UNIGE further explains: «Modelling meant that we could establish how the age of crystallised zircon in a cooled magma reservoir depends on the flow rate of injected magma and the size of the reservoir.»

Applications for society and industry


In the Nature article, the researchers propose a model that is capable of determining with unprecedented accuracy the age, volume and injection rate of magma that has accumulated at inaccessible depths. As a result, they have established that the formation of Earth’s crust, volcanic super eruptions and mineral deposits occur under very specific yet different conditions. Professor Luca Caricchi adds: «When we determine the age of a family of zircons from a small sample of solidified magmatic rock, using results from the mathematical model we have developed, we can tell what the size of the entire magma chamber was, as well as how fast the magma reservoir grew». The professor continues: «This information means that we can determine the probability of an explosive volcanic eruption of a certain size to occur. In addition, the model will be of interest to industry because we will be able to identify new areas of our planet that are home to large amounts of natural resources such as copper and gold.»

New Oso report, rockfall in Yosemite, and earthquake models

From AGU’s blogs: Oso disaster had its roots in earlier landslides

A research team tasked with being some of the first scientists and engineers to evaluate extreme events has issued its findings on disastrous Oso, Washington, landslide. The report studies the conditions and causes related to the March 22 mudslide that killed 43 people and destroyed the Steelhead Haven neighborhood in Oso, Washington. The team from the Geotechnical Extreme Events Reconnaissance (GEER) Association, funded by the National Science Foundation, determined that intense rainfall in the three weeks before the slide likely was a major issue, but factors such as altered groundwater migration, weakened soil consistency because of previous landslides and changes in hillside stresses played key roles.

From this week’s Eos: Reducing Rockfall Risk in Yosemite National Park

The glacially sculpted granite walls of Yosemite Valley attract 4 million visitors a year, but rockfalls from these cliffs pose substantial hazards. Responding to new studies, the National Park Service recently took actions to reduce the human risk posed by rockfalls in Yosemite National Park.

From AGU’s journals: A new earthquake model may explain discrepancies in San Andreas fault slip

Investigating the earthquake hazards of the San Andreas Fault System requires an accurate understanding of accumulating stresses and the history of past earthquakes. Faults tend to go through an “earthquake cycle”-locking and accumulating stress, rupturing in an earthquake, and locking again in a well-accepted process known as “elastic rebound.” One of the key factors in preparing for California’s next “Big One” is estimating the fault slip rate, the speed at which one side of the San Andreas Fault is moving past the other.

Broadly speaking, there are two ways geoscientists study fault slip. Geologists formulate estimates by studying geologic features at key locations to study slip rates through time. Geodesists, scientists who measure the size and shape of the planet, use technologies like GPS and satellite radar interferometry to estimate the slip rate, estimates which often differ from the geologists’ estimations.

In a recent study by Tong et al., the authors develop a new three-dimensional viscoelastic earthquake cycle model that represents 41 major fault segments of the San Andreas Fault System. While previous research has suggested that there are discrepancies between the fault slip rates along the San Andreas as measured by geologic and geodetic means, the authors find that there are no significant differences between the two measures if the thickness of the tectonic plate and viscoelasticity are taken into account. The authors find that the geodetic slip rate depends on the plate thickness over the San Andreas, a variable lacking in previous research.

The team notes that of the 41 studied faults within the San Andreas Fault system, a small number do in fact have disagreements between the geologic and geodetic slip rates. These differences could be attributed to inadequate data coverage or to incomplete knowledge of the fault structures or the chronological sequence of past events.

The bend in the Appalachian mountain chain is finally explained

A dense, underground block of volcanic rock (shown in red) helped shape the well-known bend in the Appalachian mountain range. -  Graphic by Michael Osadciw/University of Rochester.
A dense, underground block of volcanic rock (shown in red) helped shape the well-known bend in the Appalachian mountain range. – Graphic by Michael Osadciw/University of Rochester.

The 1500 mile Appalachian mountain chain runs along a nearly straight line from Alabama to Newfoundland-except for a curious bend in Pennsylvania and New York State. Researchers from the College of New Jersey and the University of Rochester now know what caused that bend-a dense, underground block of rigid, volcanic rock forced the chain to shift eastward as it was forming millions of years ago.

According to Cindy Ebinger, a professor of earth and environmental sciences at the University of Rochester, scientists had previously known about the volcanic rock structure under the Appalachians. “What we didn’t understand was the size of the structure or its implications for mountain-building processes,” she said.

The findings have been published in the journal Earth and Planetary Science Letters.

When the North American and African continental plates collided more than 300 million years ago, the North American plate began folding and thrusting upwards as it was pushed westward into the dense underground rock structure-in what is now the northeastern United States. The dense rock created a barricade, forcing the Appalachian mountain range to spring up with its characteristic bend.

The research team-which also included Margaret Benoit, an associate professor of physics at the College of New Jersey, and graduate student Melanie Crampton at the College of New Jersey-studied data collected by the Earthscope project, which is funded by the National Science Foundation. Earthscope makes use of 136 GPS receivers and an array of 400 portable seismometers deployed in the northeast United States to measure ground movement.

Benoit and Ebinger also made use of the North American Gravity Database, a compilation of open-source data from the U.S., Canada, and Mexico. The database, started two decades ago, contains measurements of the gravitational pull over the North American terrain. Most people assume that gravity has a constant value, but when gravity is experimentally measured, it changes from place to place due to variations in the density and thickness of Earth’s rock layers. Certain parts of the Earth are denser than others, causing the gravitational pull to be slightly greater in those places.

Data on the changes in gravitational pull and seismic velocity together allowed the researchers to determine the density of the underground structure and conclude that it is volcanic in origin, with dimensions of 450 kilometers by 100 kilometers. This information, along with data from the Earthscope project ultimately helped the researchers to model how the bend was formed.

Ebinger called the research project a “foundation study” that will improve scientists’ understanding of the Earth’s underlying structures. As an example, Ebinger said their findings could provide useful information in the debate over hydraulic fracturing-popularly known is hydrofracking-in New York State.

Hydrofracking is a mining technique used to extract natural gas from deep in the earth. It involves drilling horizontally into shale formations, then injecting the rock with sand, water, and a cocktail of chemicals to free the trapped gas for removal. The region just west of the Appalachian Basin-the Marcellus Shale formation-is rich in natural gas reserves and is being considered for development by drilling companies.

The bend in the Appalachian mountain chain is finally explained

A dense, underground block of volcanic rock (shown in red) helped shape the well-known bend in the Appalachian mountain range. -  Graphic by Michael Osadciw/University of Rochester.
A dense, underground block of volcanic rock (shown in red) helped shape the well-known bend in the Appalachian mountain range. – Graphic by Michael Osadciw/University of Rochester.

The 1500 mile Appalachian mountain chain runs along a nearly straight line from Alabama to Newfoundland-except for a curious bend in Pennsylvania and New York State. Researchers from the College of New Jersey and the University of Rochester now know what caused that bend-a dense, underground block of rigid, volcanic rock forced the chain to shift eastward as it was forming millions of years ago.

According to Cindy Ebinger, a professor of earth and environmental sciences at the University of Rochester, scientists had previously known about the volcanic rock structure under the Appalachians. “What we didn’t understand was the size of the structure or its implications for mountain-building processes,” she said.

The findings have been published in the journal Earth and Planetary Science Letters.

When the North American and African continental plates collided more than 300 million years ago, the North American plate began folding and thrusting upwards as it was pushed westward into the dense underground rock structure-in what is now the northeastern United States. The dense rock created a barricade, forcing the Appalachian mountain range to spring up with its characteristic bend.

The research team-which also included Margaret Benoit, an associate professor of physics at the College of New Jersey, and graduate student Melanie Crampton at the College of New Jersey-studied data collected by the Earthscope project, which is funded by the National Science Foundation. Earthscope makes use of 136 GPS receivers and an array of 400 portable seismometers deployed in the northeast United States to measure ground movement.

Benoit and Ebinger also made use of the North American Gravity Database, a compilation of open-source data from the U.S., Canada, and Mexico. The database, started two decades ago, contains measurements of the gravitational pull over the North American terrain. Most people assume that gravity has a constant value, but when gravity is experimentally measured, it changes from place to place due to variations in the density and thickness of Earth’s rock layers. Certain parts of the Earth are denser than others, causing the gravitational pull to be slightly greater in those places.

Data on the changes in gravitational pull and seismic velocity together allowed the researchers to determine the density of the underground structure and conclude that it is volcanic in origin, with dimensions of 450 kilometers by 100 kilometers. This information, along with data from the Earthscope project ultimately helped the researchers to model how the bend was formed.

Ebinger called the research project a “foundation study” that will improve scientists’ understanding of the Earth’s underlying structures. As an example, Ebinger said their findings could provide useful information in the debate over hydraulic fracturing-popularly known is hydrofracking-in New York State.

Hydrofracking is a mining technique used to extract natural gas from deep in the earth. It involves drilling horizontally into shale formations, then injecting the rock with sand, water, and a cocktail of chemicals to free the trapped gas for removal. The region just west of the Appalachian Basin-the Marcellus Shale formation-is rich in natural gas reserves and is being considered for development by drilling companies.